Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48654
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor管希聖(Hsi-Sheng Goan)
dc.contributor.authorPo-Wen Chenen
dc.contributor.author陳柏文zh_TW
dc.date.accessioned2021-06-15T07:06:45Z-
dc.date.available2011-12-10
dc.date.copyright2010-12-10
dc.date.issued2010
dc.date.submitted2010-11-18
dc.identifier.citation[1] M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge, 1997).
[2] H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin,
1999).
[3] S. T. Barnett and P. M. Radmore, Methods in theoretical quantum optics (Clare-
don Press, Oxford, 2002).
[4] C. W. Gardiner and P. Zoller, Quantum Noise, 2nd edition. (Springer-Verlag,
Berlin, 2000).
[5] D. F. Walls and G. J. Milburn, Quantum Optics, 2nd edition. (Springer-Verlag,
Berlin, 2008).
[6] J. P. Paz and W. H. Zurek in Coherent Matter Waves, Proceedings of the Les
Houches Summer School, Session LXXII, edited by R. Kaiser, C. Westbrook,
and F. David (Springer-Verlag, Berlin, 2001 ); arXiv: quant-ph/0010011.
[7] H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford
University Press, Oxford, 2002).
[8] Philipp Zedler, Gernot Schaller, Gerold Kiesslich, Clive Emary, and Tobias Bran-
des, Phys. Rev. B 80, 045309 (2009).
[9] Kuan-Liang Liu, Hsi-Sheng Goan, Phys. Rev. A 76, 022312 (2007).
[10] G. Kieslich, E. SchLoll, T. Brandes, F. Hohls, and R. J. Haug, Phys. Rev. Lett.
99, 206602 (2007).
[11] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H.Willems van- Beveren, S.
DeFranceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys.
Rev. B 67, 161308(R) (2003)
[12] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin,
C. M. Marcus, M. P. Hanson, A. C. Gossard. Science 309, 1280 (2005).
[13] I. D. Vega and D. Alonso, Phys. Rev. A 77, 043836 (2008).
[14] Landauer, R. and Buttiker, Phys. Rev. Lett. 54 2049.(1985).
[15] S. Datta, Electronic Transport in Mesoscopic System (Cambridge University
Press, Cambridge, 1995); Y. Imry, Introduction to Mesoscopic Physics (Oxford
University Press, New York, 1997).
[16] W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature 423, 422
(2003); T. Fujisawa, T. Hayashi, Y. Hirayama, H.D. Cheong, and Y.H. Jeong,
Appl. Phys. Lett. 84, 2343 (2004); J. Bylander, T. Duty, and P. Delsing, Nature
434, 361 (2005); J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B.
Witkamp, L.M.V. Vandersypen, and L.P. Kouwenhoven, Nature 430, 431 (2004);
S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, K.
Ensslin, D.C. Driscoll, and A.C. Gossard, Phys. Rev. Lett. 96, 076605 (2006);
S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn, K. Ensslin, D. C.
Driscoll, A. C. Gossard Surf. Sci. Rep. 64, 191 (2009).
[17] Eugene V. Sukhorukov, Andrew N. Jordan, , et al, Nature Physics 3, 243 - 247
(2007).
[18] H. Van Houten and C. Beenakker, Physics Today 49, 22 (1996).
[19] Ya. M. Blanter, M. Buttiker, Phys. Rep. 336, 1 (2000).
[20] H. M. Wiseman, et al, Quantum Measurement And Control (Cambridge Univer-
sity Press, Cambridge, 2010).
[21] Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M.
Itano, C. Monroe, and D. J. Wineland, Phys. Rev. A 62, 053807 (2000).
[22] I. Bloch, Nat. Phys. 1, 23 (2005).
[23] R. G. Knobel and A. N. Cleland, Nature London 424, 291 (2003).
[24] M. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science 304, 74 (2004).
[25] C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).
[26] N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins,
Phys. Rev. Lett. 75, 3426 (1995).
[27] A. S. Parkins, P. Zoller, and H. J. Carmichael, Phys. Rev. A 48, 758 (1993).
[28] P. Tombesi and D. Vitali, Phys. Rev. A 50, 4253 (1994).
[29] N. L‥utkenhaus, J. I. Cirac, and P. Zoller, Phys. Rev. A 57, 548 (1998).
[30] T. Werlang, R. Guzman, F. O. Prado, and C. J. Villas-Buoas, Phys. Rev. A 78,
033820 (2008).
[31] S. G. Clark and A. S. Parkins, Phys. Rev. Lett. 90, 047905 (2003).
[32] M. P. Blencowe and M. N. Wybourne, Appl. Phys. Lett. 77, 3845 (2000); Y.
Zhang and M. P. Blencowe, J. Appl. Phys. 91, 4249 (2002); R. Knobel and A.
N. Cleland, Appl. Phys. Lett. 81, 2258 (2002).
[33] A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe
and K. C. Schwab, Nature 443, 193 (2006).
[34] M. Poggio, M. P. Jura, C. L. Degen1, M. A. Topinka, H. J. Mamin1, D.
Goldhaber-Gordon and D. Rugar, Nature Physics 4, 635 - 638 (2008).
[35] D. A. Rodrigues and A. D. Armour, New. J. Phys 7, 251 (2005); A. D. Armour,
M. P. Blencowe, and Y. Zhang, Phys. Rev. B 69, 125313 (2004); A. D. Armour,
Phys. Rev. B 70, 165315 (2004).
[36] D. Mozyrsky, I. Martin and M. B Hastings, Phys. Rev. Lett 92, 018303 (2004).
[37] D. Mozyrsky and I. Martin, Phys. Rev. Lett 89, 018301 (2002).
[38] A. A. Clerk and S. M. Girvin, Phys. Rev. B 70, 121303(R) (2004).
[39] J. Wabnig, D. V. Khomitsky, J. Rammer and A. L. Shelankov, Phys. Rev. B 72,
165347 (2005).
[40] A. Y. Smirnov, G. Mourokh and Norman J. M. Horing, Phys. Rev. B 67, 115312
(2003).
[41] J. Wabnig, J. Rammer and A. L. Shelankov, Phys. Rev. B 75, 205319 (2007).
[42] A. Shnirman and G. Sch‥on, Phys. Rev. B 57, 15400 (1998); Y. Makhlin, G.
Sch‥on, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
[43] H.-S. Goan, Phys. Rev. B 70, 075305 (2004).
[44] S. A. Gurvitz, Phys. Rev. B 56, 15215 (1997); S. A. Gurvitz and Ya. S. Prager,
Phys. Rev. B 53, 15932 (1996); S. A. Gurvitz, L. Fedichkin, D. Mozyrsky, and
G. P. Berman, Phys. Rev. Lett. 91, 066801 (2003).
[45] A. N. Korotkov, Phys. Rev. B 60, 5737 (1999); A. N. Korotkov, Phys. Rev. B,
63, 115403 (2001).
[46] H.-S. Goan, G. J. Milburn, H. M. Wiseman, and H. B. Sun, Phys. Rev. B 63,
125326 (2001);H.-S. Goan and G. J. Milburn, Phys. Rev. B 64, 235307 (2001).
[47] H.-S. Goan, Quantum Inf. Comput. 3, 121 (2003).
[48] T. M. Stace and S. D. Barrett Phys. Rev. Lett 92, 136802 (2004)
[49] X. Q. Li, W. K. Zhang, P. Cui, J. Shao, Z. Ma and Y. Yan, Phys. Rev. B 69,
085315 (2004).
[50] X. Q. Li, P. Cui and Y. Yan, Phys. Rev. Lett 94, 066803 (2005); X. Q. Li, J. Y.
Luo, Y. G. Yang, P. Cui and Y. Yan, Phys. Rev. B 71, 205304 (2005); X. Q. Li
and Y. Yan, Phys. Rev. B 75, 075114 (2007).
[51] M. T. Lee and W. M. Zhang, J. Chem. Phys. 129, 224106 (2008).
[52] M. Lax, Opt. Commun. 179, 463 (2000).
[53] G. W. Ford and R. F. O’Connell, Phys. Rev. Lett. 77, 798 (1996).
[54] G. W. Ford and R. F. O’Connell, Ann. Phys. (N.Y.) 276, 144 (1999); G. W.
Ford and R. F. O’Connell, Opt. Commun. 179, 451 (2000).
[55] G. W. Ford and R. F. O’Connell, Opt. Commun. 179, 477 (2000).
[56] H. P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 59, 1633 (1999). H.
P. Breuer, B. Kappler, and F. Petruccione, Ann. Phys. (N.Y.) 291, 36 (2001).
[57] M. Schr‥oder, U. Kleinekath‥ofer, and M. Schreiber, J. Chem. Phys. 124, 084903
(2006).
[58] E. Ferraro, M. Scala1, R. Migliore, and A. Napoli, Phys. Rev. A 80, 042112
(2009).
[59] F. Shibata, Y. Takahashi, N. Hashitsume, J. Stat. Phys. 17, 171 (1977); S.
Chaturvedi and F. Shibata, Z. Phys. B 35 297 (1979).
[60] U. Kleinekath‥ofer, J. Chem. Phys. 121, 2505 (2004).
[61] I Sinayskiy et al., J. Phys. A: Math. Theor. 42, 485301 (2009).
[62] D Mogilevtsev et al., J. Phys.: Condens. Matter 21, 055801 (2009).
[63] P. Haikka and S. Maniscalco, Phys. Rev. A 81, 052103 (2010); P. Haikka, arX-
ive:0911.4600.
[64] S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).
[65] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
[66] A. Royer, Phys. Lett. A 315, 335 (2003).
[67] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation (Cambridge University Press, Cambridge, 2000); Quantum Computation
and Quantum Information Theory, edited by C. Macchiavello, G. M. Palma, and
A. Zeilinger (World Scientific, Singapore, 2000).
[68] A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, Phys. Rev.
Lett. 69, 1293 (1992).
[69] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters,
Phys. Rev. Lett. 70, 1895 (1993).
[70] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001); M. A. Nielsen,
Rep. Math. Phys. 57, 147 (2006); P. Walther, K. J. Resch, T. Rudolph, E.
Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature
(London) 434, 169 (2005); C.-Y. Lu, X.-Q. Zhou, O. G‥uhne, W.-B. Gao, J.
Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, Nat. Phys. 3, 91 (2007).
[71] A. Einstein, B. Podolsky, and R. Rosen, Phys. Rev. 47, 777 (1935).
[72] B.E. Kane. A Silicon-Based Nuclear Spin Quantum Computer. Nature 393,
133(1998).
[73] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[74] T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).
[75] M. P. Almeida et al., Science 316, 579 (2007).
[76] T. Yu and J. H. Eberly, Opt. Commun. 264, 393 (2006); H. T. Cui et al., Phys.
Lett. A 365, 44 (2007); M. Ikram, F. L. Li, and M. S. Zubairy, Phys. Rev. A
75, 062336 (2007); M. P. Almeida et al., Science 316, 579 (2007); J. Laurat, K.
S. Choi, H. Deng, C. W. Chou, and H. J. Kimble, Phys. Rev. Lett. 99, 180504
(2007); A. Al Qasimi and D. F. V. James, Phys. Rev. A 77, 012117 (2008); W.
Cui et al., J. Phys. A: Math. Theor. 42, 025303 (2009).
[77] L. Mazzala, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys.
Rev. A 79, 042302 (2009).
[78] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. Lett. 99, 160502 (2007).
[79] Z. Y. Xu and M. Feng, Phys. Lett. A 373, 1906 (2009).
[80] W. Cui, Z. Xi, and Y. Pan, J. Phys. A: Math. Theor. 42, 155303 (2009).
[81] L. Mazzala, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys.
Rev. A 79, 042302 (2009).
[82] E. Ferraro, M. Scala, R. Migliore and A. Napoli, Phys. Rev. A 82, 042112 (2010).
[83] D. Mundarain and M. Orszag, Phys. Rev. A 75, 040303(R) (2007).
[84] M. Hernandez and M. Orszag, Phys. Rev. A 78, 042114 (2008).
[85] C. Fleming, N. I. Cummings, C. Anastopoulos, B. L. Hu, arXiv: 1003.1749
(2010).
[86] B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
[87] Sabrina Maniscalco and Francesco Petruccione, Phys. Rev. A 73, 012111 (2006).
[88] B. L. Hu et al., Phys. Rev. D 45 2843 (1992).
[89] Z. Ficek and R. Tana′s, Phys. Rep. 372, 369 (2002); Man-Hong Yung, arXiv:
quant-ph/0707.2779.
[90] S. Vorojtsov et al., Phys. Rev. B 71, 205322 (2005); Z.-J. Wu et al., Phys. Rev.
B 71, 205323 (2005); X.-F. Cao, and H. Zheng, Eur. Phys. J. B 68, 209 (2009).
[91] D. Mundarain and M. Orszag, Phys. Rev. A 75, 040303(R) (2007).
[92] M. Hernandez and M. Orszag, Phys. Rev. A 78, 042114 (2008).
[93] M. Orszag, Quantum Optics, 2nd ed. (Springer-Verlag, Berlin, 2007).
[94] D. A. Lidar, D. Bacon, and K. B. Whaley, Phys. Rev. Lett. 82, 4556 (1999); D.
A. Lidar, and K. B. Whaley, quant-ph/0301032
[95] P. Zanardi and M. Rasetti, Mod. Phys. Lett. B, 11, 1085, 1997.
[96] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[97] H. G. Graighead, Science 290, 1532 (2000).
[98] M. Roukes, Phys. World 14:2, 25 FEB (2001).
[99] M. Blencowe, Phys. Rep. 395, 159 (2004).
[100] D. H. Santamore, H.-S. Goan, G. J. Milburm and M.L. Roukes, Phys. Rev. A
70, 052105 (2004).
[101] W. K. Hensinger, D. W. Utami, H.-S. Goan, K. Schwab, C. Monroe, G. J.
Milburn, Phys. Rev. A 72, 041405 (2005)
[102] L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, Phys. Rev. Lett. 97, 237201
(2006).
[103] C. P. Sun, L. F. Wei, Y.-X. Liu, and F. Nori, Phys. Rev. A 73, 022318 (2006).
[104] L.Y. Gorelik, A. Isacsson, M.V. Voinova, B. Kasemo, R.I. Shekhter and M.
Jonson, Phys. Rev. Lett. 80, 4526 (1998); Chtchelkatchev N M, BelzigW and
Bruder C, Phys. Rev. B 70, 193305 (2004); Fedorets D, Gorelik LY, Shekhter R
I and Jonson M, Phys. Rev. Lett. 92, 166801 (2004).
[105] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L,
Nature 407, 57 (2000); Erbe A,Weiss C, ZwergerW and Blick R H, Phys. Rev.
Lett. 87, 096106 (2001).
[106] D. W. Utami, H.-S. Goan, and G. J. Milburn, Phys. Rev. B 70, 075303 (2004);
D. W. Utami, H.-S. Goan, C. A. Holmes, and G. J. Milburn, Phys. Rev. B 74,
014303 (2006); J. Twamley, D. W. Utami, H.-S. Goan and G. Milburn, New J.
Phys. 8, 63 (2006).
[107] S. H. Ouyang, J. Q. You, and F. Nori, Phys. Rev. B. 79, 075304 (2009).
[108] T. Kwapi′nski, R. Taranko, and E. Taranko, Phys. Rev. B 66, 035315 (2002).
[109] Yu Zhu, Joseph Maciejko, Tao Ji, and Hong Guo, Phys. Rev. B 71, 075317
(2005).
[110] J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 74, 085324 (2006).
[111] Z. Feng, J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 77, 075302 (2008).
[112] S. Welack, M. Schreiber and U. Kleinekathofer, J. Chem. Phys. 124 044712
(2006).
[113] D. Hou, Y. He, X. Liu, J. Kang, J. Chen, and R. Han, Physica E (Amsterdam)
31, 191 (2006).
[114] J. Jin,M. W. Y. Tu,W. M. Zhang and Y. Yan, New J. Phys. 12, 083013 (2010);
X. Zheng, J. Luo, J. Jin and Y. Yan, J. Chem. Phys. 130, 124508 (2009).
[115] W. Y. T. Matisse and W. M. Zhang, Phys. Rev. B, 78 235311(2008).
[116] Md. M. Ali, P.-W. Chen, and H.-S. Goan, Phys. Rev. A 82, 022103 (2010).
[117] W. T. Strunz and T. Yu, Phys. Rev. A. 69, 052115 (2004).
[118] F. Haake and R. Reibold, Phys. Rev. A 32, 2462 (1985).
[119] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992).
[120] M. G. Palma, K.-A. Suominen, and A. Ekert, Proc. R. Soc. A 452, 567 (1996).
[121] L.-M. Duan and G.-C. Guo, Phys. Rev. A 57, 737 (1998).
[122] L. Di′osi, N. Gisin, and W. T. Strunz, Phys. Rev. A. 58, 1699 (1998).
[123] John H. Reina, Luis Quiroga, and Neil F. Johnson, Phys. Rev. A 65, 032326
(2002).
[124] G. Schaller and T. Brandes, Phys. Rev. A 78, 022106 (2008).
[125] H.-S. Goan, C.-C. Jian, and P.-W. Chen, Phys. Rev. A 82, 012111 (2010).
[126] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev. Lett. 101, 150402
(2008).
[127] H. P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009).
[128] A. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050403 (2010).
[129] X. M. Lu, X. Wang, C. P. Sun, arXiv:0912.0587
[130] S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione, and A. Messina, Phys. Rev.
A 70, 032113 (2004).
[131] F. Intravaia, S. Maniscalco, and A. Messina, Phys. Rev. A 67, 042108 (2003).
[132] N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1994).
[133] T. S. Ho, S. H. Hung, H. T. Chen and S. I. Chu, Phys. Rev. B 79, 235323
(2009).
[134] J. Gabelli, G. F`eve, J.-M. Berroir, B. Placais, A. Cavanna, B. Etienne, Y. Jin,
and D. C. Glattli, Science 313, 499 (2006).
[135] T. Fujisawa, T. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado, S.
Tarucha, and L. P. Kouwenhoven, Science 282, 932 (1998).
[136] L. H. Ryder, Quantum Field theeory 2nd Ed. (Cambridge University Press,
Cambridge 1996).
[137] F. Mandl and G. Shaw, Quantum Field theeory Rev. Ed. (John Wiley & Son,
Chichester 1993).
[138] A. Sˇandulescu, H. Scutaru and W. Scheid, Ann. Phys, 173, 277 (1987).
[139] J. Rammer, A. L. Shelankov and J. Wabnig, Phys. Rev. B 70 115327 (2004).
[140] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf,
Rev. Mod. Phys. 82, 1155 (2010).
[141] M. Lax, Phys. Rev. 129, 2342 (1963).
[142] D. Alonso and I. D. Vega, Phys. Rev. Lett. 94, 200403(2005).
[143] I. D. Vega and D. Alonso, Phys. Rev. A 73, 022102(2006).
[144] D. Alonso and I. D. Vega, Phys. Rev.A 75, 052108(2007).
[145] U. Harbola, M. Esposito, and S. Mukamel, Phys. Rev. B 74, 235309 (2006).
[146] V. Moldoveanu, A. Manolescu, and V. Gudmundsson, New J. Phys. 11, 073019
(2009); V. Gudmundsson, C. Gainar, C.-S. Tang, V. Moldoveanu, and A.
Manolescu, New J. Phys. 11, 113007 (2009).
[147] G. W. Semenoff and H. Umezawa, Nucl. Phys. B 220, 196 (1983).
[148] L. Onsager, Phys. Rev. 37, 405 (1931).
[149] H. B. Callen, T. A. Welton, Phys. Rev 83, 34 (1951).
[150] G. W. Ford, J. T. Lewis and R. F. O’Connell, Phys. Rev. A 37, 4419 (1988).
[151] L. Onsager, Phys. Rev. 38, 2265 (1931).
[152] R. Feynman, F. L. Vernon, The theory of a general quantum system interacting
with a linear dissipative system, Ann. Phys. (N.Y.) 24, 118–173 (1963).
[153] A. Caldeira, A. Leggett, Quantum tunneling in a dissipative system, Ann.
Phys. (N.Y.) 149, 374–456 (1983).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48654-
dc.description.abstract本論文致力於在幾個不同物理系統中的非馬可夫(non-Markovian)動力過程的研究。具體地介紹,我們研究兩個量子位元在熱壓縮態環境(thermal squeezed bath)下的非馬可夫糾纏動力行為,一個奈米諧振子在量子點接觸器(quantum point contact)測量下的非馬可夫動力行為,和一個量子位元系統在熱庫環境下的不同時間關聯函數的非馬可夫演化過程。首先、在兩個量子位元在熱壓縮態環境下的非馬可夫糾纏動力行為研究中,我們發現非馬可夫的糾纏動力行為明顯地不同於其對應的馬可夫動力行為。我們顯示一個在非馬可夫過程中的無退相干的量子態(decoherence-free state)也同時是馬可夫過程中的無退相干的量子態,但是一個在馬可夫過程中的無退相干的量子態就不一定為非馬可夫過程中的無退相干的量子態。我們延伸對零溫壓縮態環境的計算到有溫度的壓縮態環境,並探究壓縮態環境溫度對糾纏動力行為的影響。第二、我們研究一個奈米諧振子在量子點接觸器或穿隧接面(tunnel junction)測量下的非馬可夫動力行為。我們推導在二階近似下的非馬可夫過程中與電子數目有關的條件式和與其無關的非條件式主方程式。在我們推導過程中,我們沒有做在光學系統中常用的兩種近似:也就是旋轉波近似(rotating wave approximation)和馬可夫近似。我們發現非馬可夫的動力行為有相當大的差別相對於其對應的馬可夫動力行為。我們計算可提供被測奈米諧振子資訊的隨時間變化的量子點接觸器傳輸電流。我們發現一個在研究相同問題的文獻中被忽略的含時瞬變電流項。此額外的含時瞬變電流項跟奈米諧振子位置與動量對稱化算符的期望值有關,並且其係數來自於量子點接觸器關聯函數的虛部分的組合。我們發現到此額外的項對非馬可夫的總和含時瞬變電流有實質上的貢獻並與其對應的馬可夫的瞬變電流不論在定性與定量上都有明顯的不同。此項額外瞬變電流的存在與否,可用來見證是否有非馬可夫動力行為特徵存在於此奈米諧振子與量子點接觸器模系統中。第三、我們使用量子主方程式方法去推導在有限溫度環境中對任何可分離的初始系統和環境的狀態(純態或者混態)的情況下的不同時間系統算符的非馬可夫關聯函數的演化方程式。此演化方程式是有效到系統與環境的耦合常數為微擾的二階近似。此演化方程式可應用到一般的開放性量子系統耦合到有限溫度的環境的模型,不論其在系統與環境的交互作用中的系統算符是否為Hermitian。我們給出在弱交互作用下,此演化方程式變為量子回歸定理(quantum regression theorem)的條件,並應用此推導出來的演化分程式到一個二能級系統(原子) 耦合到玻色子環境中(電磁場)的模型,其中在系統與環境的交互作用中的系統算符為non-Hermitian。zh_TW
dc.description.abstractThe thesis is devoted to the study of the non-Markovian dynamical process in several different physical systems. Specifically, we investigate the non-Markovian entangle-
ment dynamics of two quantum bits (qubits) in a thermal squeezed bath, the non-Markovian dynamics of a nanomechanical resonator (NMR) measured by a quantum
point contact (QPC) detector and, the non-Markovian evolution of two-time correlation functions (CF’s) of a two-level atom coupled to a thermal bosonic bath. First, in
the investigation of the non-Markovian entanglement dynamics of two qubits in a common squeezed bath, we see a remarkable difference between the non-Markovian entanglement dynamics and its Markovian counterpart. We show that a non-Markovian decoherence-free state is also decoherence free in the Markovian regime, but all the
Markovian decoherence-free states are not necessarily decoherence free in the non-Markovian domain. We extend our calculation from a squeezed vacuum bath to a
squeezed thermal bath, where we see the effect of finite bath temperatures on the entanglement dynamics. Second, we also investigate the dynamics of a NMR subject to
a measurement by a low-transparency QPC or tunnel junction in the non-Markovian domain. We derive the non-Markovian number-resolved (conditional) and unconditional master equations valid to second order in the tunneling Hamiltonian without making the rotating-wave approximation and the Markovian approximation, generally made for systems in quantum optics. We find considerable difference in dynamics between the non-Markovian cases and its Markovian counterparts. We also calculate the time-dependent transport current through the QPC which contains information
about the measured NMR system. We find an extra transient current term proportional to the expectation value of the symmetrized product of the position andmomentum operators of the NMR. This extra term, with a coefficient coming from
the combination of the imaginary parts of the QPC reservoir correlation functions,
was generally ignored in the studies of the same problem in the literature. But we find that it has a substantial contribution to the total transient current in the Non-
Markovian case and differs qualitatively and quantitatively from its Markovian counterpart. Thus it may serve as a witness or signature of non-Markovian features for the
coupled NMR-QPC system. Finally, we use the quantum master equation approach to derive, valid to second order in the system-environment interaction Hamiltonian,
non-Markovian evolution equations of two-time CF’s of system operators at finite environment temperatures with any initial separable system-environment states (pure or
mixed). When applied to a general model of a system coupled to a finite-temperature
bosonic environment with a system coupling operator L in the system-environment interaction Hamiltonian, the resultant evolution equations are valid for both Her-
mitian and non-Hermitian system coupling operator cases. We then give conditions on which the derived evolution equations reduced to the case of quantum regression
theorem (QRT)in the weak system-environment coupling case, and apply the derived evolution equations to a problem of a two-level system (atom) coupled to a bosonic
environment (electromagnetic fields) with $L = L^(+)$.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:06:45Z (GMT). No. of bitstreams: 1
ntu-99-D94222008-1.pdf: 2626740 bytes, checksum: 9ccfc724befe79956769029c56ee922f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 INRODUCTION
1
2 Background and Methods
7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Microscopic Derivation of the Master Equations . . . . . . . . . . . . 8
2.2.1 Approximation1: Weak coupling . . . . . . . . . . . . . . . . . 9
2.2.2 Approximation2: Markovian approximation . . . . . . . . . . 10
2.3 Non-Markovian Master Equations . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Time-Convolution Projection Operator Technique . . . . . . . 12
2.3.2 Time-Convolutionless Projection Operator Technique . . . . . 14
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Decoherence-free subspace and disentanglement dynamics for two
qubits in a common non-Markovian squeezed reservoir 18
3.1 Two qubits in a common non-Markovian squeezed reservoir . . . . . . 21
3.2 Difference between Markovian and non-Markovian dynamics . . . . . 23
3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Non-Markovian dynamics of a nanomechanical resonator measured
by a quantum point contact
34
4.1 Hamiltonian of the NMR-QPC model . . . . . . . . . . . . . . . . . . 37
4.2 Number-resolved quantum master equation . . . . . . . . . . . . . . . 39
4.3 Unconditional master equation and Markovian limit . . . . . . . . . . 48
4.3.1 Unconditional master equation . . . . . . . . . . . . . . . . . 48
4.3.2 Markovian limit . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Dynamics of the NMR . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Transport current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Numerical Results and Analysis . . . . . . . . . . . . . . . . . . . . . 57
4.6.1 Effect of only the QPC reservoirs . . . . . . . . . . . . . . . . 58
4.6.2 Inclusion of the effect of thermal bosonic environment . . . . . 73
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5 Non-Markovian finite-temperature two-times correlation functions
of system operators
79
5.1 DERIVATIONS OF EVOLUTION EQUATIONS . . . . . . . . . . . 82
5.2 EVOLUTION EQUATION FOR THERMAL BOSONIC MODELS . 88
5.2.1 Conditions for the QRT to hold . . . . . . . . . . . . . . . . . 91
5.3 Application to a thermal spin boson model with L 6= L+ . . . . . . . . 92
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6 Conclusion
101
7 Appendix A: Derivation of the QBM Master Equation 114
dc.language.isoen
dc.subject非馬可夫zh_TW
dc.subject糾纏zh_TW
dc.subject傳輸性質zh_TW
dc.subject關聯函數zh_TW
dc.subjectCorrelation Functionsen
dc.subjectNon-Markovian Dynamical Processesen
dc.subjectEntanglementen
dc.subjectTransport Propertiesen
dc.title非馬可夫開放性物理系統的動力行為: 糾纏,傳輸性質和關聯函數的研究zh_TW
dc.titleNon-Markovian Dynamical Processes Of Open Quantum Systems:
Studies On Entanglement, Transport Properties and Correlation Functions
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee朱仲夏,蘇正耀(Zheng Yao Su),高英哲(Ying-Jer Kao),陳岳男(Yueh-Nan Chen),陳柏中(Po-Chung Chen)
dc.subject.keyword非馬可夫,糾纏,傳輸性質,關聯函數,zh_TW
dc.subject.keywordNon-Markovian Dynamical Processes,Entanglement,Transport Properties,Correlation Functions,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2010-11-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
2.57 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved