請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48597
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李繼忠 | |
dc.contributor.author | Wen Kang | en |
dc.contributor.author | 康文 | zh_TW |
dc.date.accessioned | 2021-06-15T07:03:52Z | - |
dc.date.available | 2011-08-22 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-19 | |
dc.identifier.citation | 1. Ahern TE, Bird RC, Church Bird AE et al: Expression of the oncogene c-erbB-2 in canine mammary cancers and tumor- derived cell lines, Am J Vet Res 57:693-696, 1996.
2. Amorim I, Lopes CC, Faustino AMR et al: Immunohistochemical expression of calveolin-1 in normal and neoplastic canine mammary tissue, J Comp Path 143:39-44, 2010. 3. Brodey RS, Goldschmidt MA, Roszel JR: Canine mammary gland neoplasms, J Am Anim Hosp Assoc 19:61-90, 1983. 4. Chang CC, Tsai MH, Liao JW et al: Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant mammary gland tumors, J Am Vet Med Assoc 235:391–396, 2009. 5. Dore M, Lanthier I, Sirois J: Cyclooxygenase-2 expression in canine mammary tumors, Vet Pathol 40:207-212, 2003. 6. Dorn CR, Taylor DON, Schneider R et al: Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County, J Natl Cancer Inst 40:307-318, 1968. 7. Estrela-Lima A, Araujo MS, Costa-Neto JM et al: Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates, BioMed Central Cancer 10:256-269, 2010. 8. Gilbertson SR, Kurzman ID, Zachrau RE et al: Canine mammary epithelial neoplasms: biological implications of morphologic characteristics assessed in 232 dogs, Vet Pathol 20:127-142, 1983. 9. Hammer AS, Williams B, Dietz HH and Hamilton-Dutoit SJ: High-throughput Immunophenotyping of 43 Ferret Lymphomas Using Tissue Microarray Technology, Vet Pathol 44:196–203, 2007. 10. Hedvat CV, Hedge A, Chaganti RS et al: Application of Tissue Microarray Technology to the Study of Non-Hodgkin’s and Hodgkin’s Lymphoma, Hum Pathol 33(10): 968-974, 2002. 11. Hellmen E: The pathogenesis of canine mammary tumours, Cancer J 9:282-286, 1996 12. Hoefen R, Berk B: The multifunctional GIT family of proteins, J Cell Sci 119: 1469-1475, 2006. 13. Karayannopoulou M, Kaldrymidou E, Constantinidis TC et al: Histological grading and prognosis in dogs with mammary carcinomas: application of a human grading method, J Comp Pathol 133:1-7, 2005. 14. Klopfleish R, Schutze M, Gruber AD: Loss of p27 expression in canine mammary tumors and their metastases, Res Vet Sci 88 :300–303, 2010. 15. Klopfleish R, Schutze M, Linzmann H: Increased Derlin-1 Expression in Metastases of Canine Mammary Adenocarcinomas, J Comp Path 142:79-83, 2010. 16. Kononen J, Bubendorf L, Kallioniemi A et al: Tissue microarrays for high-throughput molecular profiling of hundreds of specimens, Nat Med 4(7): 844-847, 1998. 17. Lorenzova J, Crha M, Kecova H et al: Patient survival periods and death causes following surgical treatment of mammary gland tumours depending on histological type of tumour: retrospective study of 221 cases, Acta Vet Brno 79:289-297, 2010. 18. MacEwen EG, Patnaik AK, Harvey HJ et al: Estrogen receptors in canine mammary tumors, Cancer Res 42:2255-2259, 1982. 19. Manabe RI, Kovalenko M, Webb DJ et al: GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration, J Cell Sci 115, 1497-1510 (2002) 20. Menon P, Yin G, Smolock EM: GPCR Kinase 2 Interacting Protein 1 (GIT1) Regulates Osteoclast Function and Bone Mass, J. Cell. Physiol. 225: 777–785, 2010. 21. Moulton JE, Rosenblatt LS, Goldman M: Mammary tumors in a colony of beagle dogs, Vet Pathol 23:741-749, 1986. 22. Queiroga FL, Perez-Alenza MD, Silvan G et al: Role of steroid hormones and prolactin in canine mammary cancer, J Steroid Biochem Mol Biol 94:181-187, 2005. 23. Rungsipipat A, Tateyama S, Yamaguchi R et al: Immunohistochemical analysis of c-yes and c-erbB-2 oncogene products and p53 tumor suppressor protein in canine mammary tumors, J Vet Med Sci 61:27-32, 1999. 24. Russo G, Zegar C and Giordano A: Advantages and limitations of microarray technology in human cancer, Oncogene 22: 6497–6507, 2003. 25. Schmidt U, Begley CG: Cancer diagnosis and microarrays, The International J Biochem Cell Biol 35: 119–124, 2003. 26. Schneider R, Dorn CR, Taylor DON: Factors influencing canine mammary cancer development and postsurgical survival, J Natl Cancer Inst 43:1249-1261, 1969. 27. Schraml P, Kononen J, Bubendorf L et al: Tissue Microarrays for Gene Amplification Surveys in Many Different Tumor Types, Clin Cancer Res 5: 1966-1975, 1999. 28. Simon R, Mirlacher M and Sauter G: Tissue microarrays in cancer diagnosis, Expert Rev Mol Diagn 3(4): 421-430, 2003. 29. Voduc D, Kenney C and Nielsen TO: Tissue Microarrays in Clinical Oncology, Semin Radiat Oncol 18:89-97, 2008. 30. Wang J, Yin G, Menon P: Phosphorylation of G Protein–Coupled Receptor Kinase 2–Interacting Protein 1 Tyrosine 392 Is Required for Phospholipase C- Activation and Podosome Formation in Vascular Smooth Muscle Cells, Arterioscler Thromb Vasc Biol 30:1976-1982, 2010. 31. Webb D, Kovalenko M, Whitmore L: Phosphorylation of serine 709 in GIT1 regulates protrusive activity in cells, Biochem Biophys Res Commun 346:1284–1288, 2006. 32. Yuzbasiyan-Gurkan V, Cao Y, Venta P et al: Loss of heterogenozygosity at the BRCA1 locus in canine mammary carcinoma, Proc Vet Cancer Soc 19:7, 1999. 33. Zatloukal J, Lorenzova J, Tichy F et al: Breed and age as risk factors for canine mammary tumours, Acta Vet Brno 74:103-109, 2005 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48597 | - |
dc.description.abstract | Mammary gland tumors are among the most common tumors of the female dog. Recent studies have shown multiple risk factors and over-expressions of proteins that are highly associated with patient prognosis and overall survival. GIT-1 is a protein that appears to be associated with the regulation of cytoskeleton dynamics during cell spreading and migration. Recent evidence suggests that GIT-1 could be involved in human Huntington’s disease due to altered membrane trafficking. The role of GIT-1 over-expression in canine mammary gland tumor is currently unknown. However, through the microarray techniques adopted in this study, immunohistochemistry (IHC) significance of 90% was noted. Our goal is to identify the significance of GIT-1 IHC staining in canine mammary gland tumor and further connect these results with their clinical prognosis. 61 cases were collected through the years of 2005 to 2009. 58 dogs (95%) came up with a positive GIT-1 staining result. The dogs were grouped according to their IHC scores. The group with the higher IHC scores (≥3) reached an median survival of 361 days, whereas the lower IHC scoring group (≤2) had a median survival of 574 days, no significance was noted (p=0.94). The patient’s GIT1 significance were also compared with its WHO modified TNM staging scores, however still no significance was achieved (p=0.117). Nevertheless, we did manage to prove that the TNM staging system provided a rough understanding of the patient’s survival (p=0.015). We conclude that there was no significance noted between IHC scorings and patient prognosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:03:52Z (GMT). No. of bitstreams: 1 ntu-100-R97643007-1.pdf: 804156 bytes, checksum: f48e8ddaee43a8f320cb353acab340c4 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………... I
致謝……………………………………………………………………………... II Abstract (Chinese)………………………………………………………………. III Abstract………………………………………………………………………….. IV Chapter I: Introduction…………………………………………………………... 1 Chapter II: Literature Review…………………………………………………… 4 2.1 Tissue Microarray………………………………………………………… 5 2.1.1 Introduction………………………………………………………… 5 2.1.2 Technology…………………………………………………………. 5 2.1.3 Application…………………………………………………………. 6 2.1.4 Application in Veterinary Medicine………………………………... 7 2.2 Canine Mammary Gland Tumor…………………………………………... 8 2.2.1 Introduction…………………………………………………………. 8 2.2.2 Common Genetic Mutations and Protein Over-expression…………. 8 2.2.3 Pathology and Tumor Behavior……………………………………... 10 2.3 G Protein-Coupled Receptor Kinase 2-Interacting Protein 1 (GIT1)……... 12 2.3.1 Introduction………………………………………………………….. 12 2.3.2 Major Functions……………………………………………………... 12 2.3.3 GIT1 Regulates Osteoclast Function and Bone Mass……………….. 13 2.3.4 Phosphorylation of GIT1 tyrosine…………………………………… 13 Chapter III: Aims…………………………………………………………………... 15 Chapter IV: Material and Methods………………………………………………… 17 4.1 Study Population…………………………………………………………... 18 4.2 Tissue Microarray Population……………………………………………... 18 4.3 GIT1 Scoring System and Grouping………………………………………. 19 4.4 Modified TNM Staging of Canine Mammary Gland Tumor……………… 19 4.5 Statistical Analysis………………………………………………………… 21 Chapter V: Result………………………………………………………………….. 23 5.1 Study Population…………………………………………………………... 24 5.2 Tissue Microarray and GIT1 Staining……………………………………... 25 5.3 GIT1 Scores and Grouping……………………………………………….... 26 5.4 TNM Staging……………………………………………………………….. 27 5.5 GIT1 Scores and TNM Staging…………………………………………….. 27 5.6 Malignancies and GIT1 Staining Significance……………………………... 28 5.7 Malignancies and Median Survival Time………………………………….. 28 5.8 Age Factors and GIT1 Staining Significance………………………………. 29 5.9 Tumor Relapse and GIT1 Staining Significance…………………………… 29 5.10 Statistical Analysis………………………………………………………... 30 Chapter VI: Discussion……………………………………………………………... 31 6.1 GIT1 and Hypothesis of Its Character in Tumor Metastasis……………….. 32 6.2 GIT1 Staining Significance and GIT1 Scoring System…………………….. 33 6.3 GIT1 Staining Significance in Other Tumor Types………………………… 35 6.4 WHO Modified Staging System……………………………………………. 36 6.5 Prognostic Indicators in Canine Mammary Gland Tumors………………… 37 6.6 TMA Techniques in Veterinary Medicine………………………………….. 38 6.7 Limitations………………………………………………………………….. 39 6.8 Future Prospects…………………………………………………………….. 40 Chapter VII: Conclusion……………………………………………………………. 41 Table and Figures….………………………………………………………………... 43 Reference……………………………………………………………………………. 55 | |
dc.language.iso | en | |
dc.title | 利用組織微陣列評估GIT-1與犬隻乳房腫瘤之相關性:2005-2009 | zh_TW |
dc.title | GIT-1 and Canine Mammary Gland Tumor - A Tissue Microarray Study (2005-2009) | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林中天 | |
dc.contributor.oralexamcommittee | 蘇璧伶,蕭宏昇,廖泰慶 | |
dc.subject.keyword | GIT1,犬隻乳房腫瘤,組織微陣列, | zh_TW |
dc.subject.keyword | GIT1,canine mammary gland tumor,tissue microarray, | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
顯示於系所單位: | 臨床動物醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 785.31 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。