請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48590完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon Wang) | |
| dc.contributor.author | Chih-Da Chang | en |
| dc.contributor.author | 張致達 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:03:32Z | - |
| dc.date.available | 2013-01-17 | |
| dc.date.copyright | 2011-01-17 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-01-05 | |
| dc.identifier.citation | [1] J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135-2140 (2005).
[2] G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S.Murugan, J. S.Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Advances in Optics and Photonics 1, 107–161 (2009). [3] L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13394-13353 (2008). [4] X. Jiang, L. Tong, G. Vienne, and X. Guo, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006). [5] X. Jiang, Q. Song, L. Xu, J. Fu and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007). [6] X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Optics Letters 32, 1710-1712 (2007). [7] T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt. 38, 6845–6848 (1999). [8] J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006). [9] A. Ishikura, Y. Kato, and M. Miyauchi, “Taper splice method for single-mode fibers,” Appl. Opt. 25, 3460–3465 (1986). [10] K. Morishita and D. Yamamoto, “Fused fiber couplers wavelength-flattened by arc discharge”, in Proc. IEEE/LEOS Workshop on Fibres and Optical Passive Components (WFOPC), Mondello (Palermo), Italy, pp. 187-191, June 22-24, 2005. [11] J.D. Love, W.M. Henry, W.J. Stewart, R.J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE PROCEEDINGS-J. 138, 343-354 (1991). [12] T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992). [13] G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258-2263 (2004). [14] L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, “Ultralow loss single-mode silica tapers manufactured by a microheater,” Appl. Opt. 49, 2441-2445 (2010). [15] S. Mononobe and M. Ohtsu, “Fabrication of a Pencil-Shaped Fiber Probe for Near-Field Optics by Selective Chemical Etching,” J. Lightwave Technol. 14, 2231-2235 (1996). [16] L. H. HABER, R. D. SCHALLER, J. C. JOHNSON, and R. J. SAYKALLY, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214, 27-35 (2004). [17] S. Patanea, E. Cefalıa, A. Arenaa, P.G. Gucciardib, and M. Allegrini, “Wide angle near-field optical probes by reverse tube etching,” Ultramicroscopy 106, 475–479 (2006). [18] R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 17,160-162 (1999). [19] T. Alder, A. Stöhr, R. Heinzelmann, and D. Jäger, “High-Efficiency Fiber-to-Chip Coupling Using Low-Loss Tapered Single-Mode Fiber,” IEEE Photonics Technol. Lett. 12, 1016-1018 (2000). [20] A. D. Yablon and R. Bise, “Low-Loss High-Strength Microstructured Fiber Fusion Splices Using GRIN Fiber Lenses,” IEEE Photonics Technol. Lett. 17, 118-120 (2004). [21] P. Pal and W. H. Knox, “Low loss fusion splicing of micron scale silica fibers,” Opt. Express 16, 11568-11673 (2008). [22] P. Wang, L. Zhang, Z. Yang, F. Gu, and L. Tong, “Fusion Spliced Microfiber Closed-Loop Resonators,” IEEE Photonics Technol. Lett. 22, 1075-1077 (2010). [23] Y. Li and L. Tong, “Mach–Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33, 303-305 (2008). [24] 吳正文, “以電融法研製光纖耦合器之研究,” 國立台灣大學電機工程學研究所博士論文, 1995. [25] Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34, 2369-2371 (2009). [26] P. Nath, “Non-intrusive refractometer sensor,” J. Phys. 74, 661-668 (2010). [27] A. J. Perkins, “The refractive index of anhydrous hydrogen fluoride,” J. Phys. Chem. 68, 654-655 (1964). [28] L. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005). [29] 陳柏志, “精細元件電弧接合技術之開發與特性硏究,” 國立台灣大學機械工程學研究所碩士論文, 2001. [30] G. Brambilla, F. Xu and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42, 517-519 (2006). [31] 張家壽, “應用改良式抽絲法實現微小分波多工器之開發及分析,” 國立台灣大學光電工程學研究所碩士論文, 2007. [32] S. M. Chuo, J. H. Chen, and L. A. Wang, “Feasibility study of making patterned optical devices based on microfibers for optical interconnect applications,” IEEE Photon. Technol. Lett. 22, 395-397 (2010). [33] G. Brambilla, “Optical fibre nanotaper sensors,” Optical Fiber Technology, (Article in Press). [34] T. Fukazawa, A. Sakai and T. Baba, 'H-Tree-Type Optical Clock Signal Distribution Circuit Using a Si Photonic Wire Waveguide,' Jpn. J. Appl. Phys. 41, L1461-L1463 (2002). [35] G. Kakarantzas, T. Dimmick, T. Birks, R. Le Roux, and P. Russell, 'Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,' Opt. Lett. 26, 1137-1139 (2001). [36] Y. Jung, G. Brambilla, and D. Richardson, 'Optical microfiber coupler for broadband single-mode operation,' Opt. Express 17, 5273-5278 (2009). [37] P. Wua, C. Suia, and B. Yeb, 'Modelling nanofiber Mach-Zehnder interferometers for refractive index sensors,' J. Mod. Optic. 56(21), 2335-2339 (2009). [38] L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48590 | - |
| dc.description.abstract | 微奈米導光線具有體積小且漸逝波大的特性,有潛力被廣泛應用在各種光學感測器或是微光學元件中。其中,要將光源從一般通訊用單模光纖導引入微奈米導光線並同時維持低的耦合損耗是一件困難的事。在本文中,我們使用氫氟酸動態蝕刻法將一般單模光纖加工成漸細光纖角錐,用來降低單模光纖到微奈米導光線的耦合損耗。我們可以藉由步進馬達來達成光纖角錐長度的控制,因為越長的光纖角錐具有越低的耦合損耗。我們成功地製造了損耗低於1.4dB的光纖角錐。
此外,我們發展了一套電弧融接系統,先利用凡德瓦力操控導光線,並成功的融接了2微米直徑的導光線。此電弧融接法可以維持低於1.1dB的耦合損耗,相較於一般常用的漸逝場耦合法,電弧融接法的耦合損耗通常更低。因為耦合損耗的降低,我們進而使用2微米的導光線製造1x2耦合器和Mach-Zehnder干涉儀。耦合器的分光比分布可以從47/53到91/9,並實現接近1:1的分光比;而經由頻譜的量測與比對,可確認我們製作的的確是Mach-Zehnder干涉儀。 | zh_TW |
| dc.description.abstract | A micro-nano optical wire (MNOW) has some attractive properties such as small size and large evanescent field; therefore it is potentially useful for fabricating micro optical sensors and micro optical devices. However, it is not easy to couple light to an MNOW from a conventional single mode fiber (SMF) with low loss. In this thesis work, we fabricate a fiber taper by using dynamic HF wet etching method to reduce the coupling loss between an SMF and an MNOW. Because the coupling loss becomes lower when the taper is longer, we can obtain the control of fiber taper length via a high-precision stepping motor.
We also develop an arc splicing system to connect two MNOWs with 2μm diameter after manipulation of MNOWs into place by using van der Waal’s force. The splicing loss, which is the same with coupling loss in splicing case, is smaller than 1.1dB, and the coupling loss by using splicing technique is often smaller than the one of evanescent coupling. Such low loss tapers enable us to make two kinds of MNOW based devices, 1x2 coupler and Mach-Zehnder interferometer (MZI). The coupling ratios of couplers can be varied from 47/53 to 91/9 and a near 1:1 coupling ratio can be realized. The measured spectra confirm optical characteristics of the devices are indeed of MZIs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:03:32Z (GMT). No. of bitstreams: 1 ntu-99-R97941057-1.pdf: 2442073 bytes, checksum: 658a7c0665bc09586f77ca887726e1ec (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Statement of Contributions v Contents vi List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.3 Organization of the Thesis 4 Chapter 2 Fabrication of Fiber Tapers 5 2.1 Overview 5 2.2 Experimental Setup 5 2.3 Lengths of Fiber Tapers 10 2.3.1 Upward moving case 11 2.3.2 Downward moving case 12 2.3.3 Visual Observation of Light Scattering from Tapers with Different Length 20 2.4 Preservation of Fiber Tapers 22 2.5 Summary 22 Chapter 3 Optical Properties of Fiber Tapers and MNOWs 23 3.1 Overview 23 3.2 Real-Time Measurement 23 3.3 Cutback Method and Simulation 28 3.4 Summary 35 Chapter 4 Arc Splicing between Two MNOWs 36 4.1 Overview 36 4.2 Arc Discharging Device 36 4.3 Arc Splicing 41 4.4 Measurement of Splicing Loss 46 4.5 Simulation of Evanescent Coupling and Spliced MNOW 49 4.6 Summary 55 Chapter 5 MNOW Based Micro Optical Devices 56 5.1 Overview 56 5.2 Couplers 57 5.2.1 Fabrication of Coupler 57 5.2.2 Simulation and Experimental Results 63 5.3 Mach-Zehnder Interferometer (MZI) 69 5.3.1 Fabrication of Mach-Zehnder Interferometer (MZI) 69 5.3.2 Calculated and Experimental Results 73 5.4 Summary 78 Chapter 6 Conclusions and Future Work 79 6.1 Conclusions 79 6.2 Future Work 80 REFERENCES 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 耦合器 | zh_TW |
| dc.subject | Mach-Zehnder干涉儀 | zh_TW |
| dc.subject | 電弧融接 | zh_TW |
| dc.subject | 微奈米導光線 | zh_TW |
| dc.subject | 光纖角錐 | zh_TW |
| dc.subject | micro-nano optical wire | en |
| dc.subject | Optical fiber taper | en |
| dc.subject | arc splicing | en |
| dc.subject | coupler | en |
| dc.subject | Mach-Zehnder interferometer | en |
| dc.title | 低損耗光纖角錐和電弧融接技術應用於微奈米導光線及微光學元件製作 | zh_TW |
| dc.title | Low Loss Fiber Tapers and Arc Splicing Technique Applied to the Fabrication of Micro/Nano Optical Wire and Micro Optical Fiber Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王維新(Way-Seen Wang),曹恆偉(Hen-Wai Tsao) | |
| dc.subject.keyword | 光纖角錐,微奈米導光線,電弧融接,耦合器,Mach-Zehnder干涉儀, | zh_TW |
| dc.subject.keyword | Optical fiber taper,micro-nano optical wire,arc splicing,coupler,Mach-Zehnder interferometer, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
