請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48588完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁(Li-Jen Chen) | |
| dc.contributor.author | Tzu-Chin Wu | en |
| dc.contributor.author | 吳姿錦 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:03:26Z | - |
| dc.date.available | 2013-01-17 | |
| dc.date.copyright | 2011-01-17 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-01-06 | |
| dc.identifier.citation | Chattopadhyay, P. and R. B. Gupta, (2001). Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Industrial and Engineering Chemistry Research 40, 3530– 3539.
Chen, D. H. and S. H. Wu, (2000). Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions. Chemistry of Materials 12, 1354-1360. Cheng, W. T., C. W. Hsu, and Y. W. Chih, (2004). Dispersion of organic pigments using supercritical carbon dioxide. Journal of Colloid and Interface Science 270, 106–112. Chevalier, Y. and T. Zemb, (1990). The structure of micelles and microemulsions. Reports on Progress in Physics 53, 279-371. Chisholm, G., B. Hay, K. D. M. Harris, S. J. Kitchin, and K. M. Morgan, (1999). Effects of fluorination on the properties of organic pigments. Dyes and Pigments 42, 159-172. Debuigne, F., J. Cuisenaire, L. Jeunieau, B. Masereel, and J. B. Nagy, (2001). Synthesis of nimesulide nanoparticles in the microemulsion epikuron170 / isopropyl myristate / water / n-butanol (or isopropanol). Journal of Colloid and Interface Science 243, 90-101. Eastoe, J., B. H. Robinson, A. J. W. G. Visser, and D. C. Steytler, (1991). Rotational Dynamics of AOT Reversed Micelles in Near-critical and Supercritical Alkanes. Journal of The Chemical Society-Faraday Transactions 87, 1899-1903. Eerikainen, H., W. Watanabe, E. Kauppinen, and P. Ahonen, (2003). Aerosol flow reactor method for the synthesis of drug nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 55, 357– 360. Françoise, W. M. and G. E. Desmond, (1998). Stabilization of aqueous foams by polymer/surfactant systems: effect of surfactant chain length. Colloids and Surfaces A: Physicochemical and Engineering Aspects 141, 165. Helga, F. M., N. Garti, and A. Kamyshny, (1999). Crystallization from microemulsions - a novel method for the preparation of new crystal forms of aspartame. Journal of Crystal Growth 198/199, 1365-1370. Hong, L., J. Z. Guo, Y. Gao, and W. K. Yuan, (2000). Precipitation of Microparticulate Organic Pigment Powders by a Supercritical Antisolvent Process. Industrial & Engineering Chemistry Research 39, 4882-4887. Kamiwano, M., K. Nishi, and Y. Inoue, (1999). Dispersion Method Dispersing Apparatus Using Supercritical State. U.S. Patent 5,921,478. Kogan, A., I. Popov, V. Uvarov, S. Cohen, A. Aserin, and N. Garti, (2008). Crystallization of carbamazepine pseudopolymorphs from nonionic microemulsions. Langmuir 24, 722-733. Lawrence, M. J. and G. D. Rees, (2000). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 45, 89–121. Mather, R. R., (1999). The degree of crystal aggregation in organic pigments. Dyes and Pigments, 42, 103. Ohde, H., F. Hunt, and C. M. Wai, (1997). Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions. Journal of Colloid and Interface Science 186, 498-500. Pecora, R., (1985). In Dynamic Light Scattering: Application of Photo Correlation Spectroscopy; Plenum Press:New York and London. Philippe, B., (1996). Surface treatment of pigments. Treatment with inorganic materials. Progress in Organic Coatings 29, 39. Reuter, E., S. Silber, and C. Psiorz, (1999). The use of new blockcopolymeric dispersing agents for waterborane paints-theoretical and practical aspects. Progress in Organic Coatings 37, 161. Reverchon, E., R. Adami, I. De Marco, C. G. Laudani, and A. Spada, (2005).Pigment Red 60 micronization using supercritical fluids based techniques. J. of Supercritical Fluids 35, 76–82. Robert E. Reed-Hill, and R. Abbaschian, (1992). Physical Metallurgy Principles. PWS-Kent Pub.(Boston). Rong, G., T. Liu, and W. Yu, (1999). Phase behavior and structure of the sodium dodecyl sulfate / benzyl alcohol / water system. Langmuir 15, 624-630. Rouviere, J., J. M. Couret, M. Lindheimer, J. L. Dejardin, and R. Marrony, (1979). Structure of AOT reverse aggregates. 1. Shape and size of AOT micelles. Journal de Chimie Physique et de Physico-Chimie Biologique 76, 289-196. Shukla, A. and R. H. H. Neubert, (2005). Investigation of W/O microemulsion droplets by contrast variation light scattering. PRAMANA-Journal of Physics 65, 1097-1108. Tarnamushi, B. and N. Watanabe, (1980). The formation of molecular aggregation structures in ternary system: Aerosol OT / water / iso-octane. Colloid & Polymer Science 258, 174-178. Trotta, M., M. Gallarate, F. Pattarino, and S. Morel, (2003). Preparation of griseofulvin nanoparticles from water - dilutable microemulsion. International Journal of Pharmaceutics 254, 235-242. Van de Velde, K., V. Van Wassenhove , and P. Kiekens,(2002). Optical analyses of pigment particles in colour concentrates and polypropylene yarns. Polym. Testing, 21, 675 Wu, H. T., M. J. Lee, H. M. Lin,(2005). Nano-particle formation for pigment Red 177 via a continuous supercritical antisolvent process. Journal of Supercritical Fluids 33, 173–182. Wu, H. T., M. J. Lee, H. M. Lin, (2006a). Precipitation kinetics of pigment blue 15:6 sub-micro particles with a supercritical anti-solvent process. Journal of Supercritical Fluids 37, 220–228. Wu, H. T., M. J. Lee, and H. M. Lin, (2006b). Supercritical fluid-assisted dispersion of ultra-fine pigment red 177 particles with blended dispersants. Journal of Supercritical Fluids 39, 127–134. Wu, H. T., M. J. Lee, H. M. Lin, (2007). Ultra-fine particles formation of C.I. Pigment Green 36 in different phase regions via a supercritical anti-solvent process. Dyes and Pigments 75, 328-334. Zollinger, H., (1987). Color Chemistry, Syntheses, Properties and Applications of Organic Dyes and Pigment. New York: VCH Publisher, Inc., 85-144. 李昭仁, (1984). “化學工程手冊”, 高立出版(台北市) 呂維明、戴怡德, (1998). “粉粒體粒徑量測技術”, 國立台灣大學化工系粉粒體技術實驗室p.116 何桂泰, (2006). “利用田口實驗方法改善彩色濾光片品質”, 中原大學工業工程研究所碩士論文 林雨欣, (2009). “利用微乳液與反溶劑系統研究有機藥物之微粒化並探討系統組成對晶貌的影響”, 台灣大學化學工程學研究所碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48588 | - |
| dc.description.abstract | 有機色料是傳統工業上,產品調色、塗層等製作程序中不可或缺的原料,其中包含可溶性染料與微細顏料兩類。縮小色料顆粒尺寸,將有助於提高穩定性,同時增加色彩強度、對比及穿透度。本研究成功利用(逆)微乳液與反溶劑法,完成Red 60染料與RGB顏料之微粒化及分散製備。
Disperse Red 60實驗結果,在水/苯醇/十二烷基硫酸鈉 (water / Benzyl alcohol / SDS=92.2/8.2/15 wt%)之微乳液系統,10℃持溫30分鐘得到棒狀產物,大小約3.5*1 (=長*寬) ~5*1μm;而二甲基亞碸/環己烷/二辛基磺基丁二酸鈉 (DMSO / Cyclohexane / AOT=2/28/10 wt%)之逆微乳液系統中,10℃持溫5分鐘產物為2*0.6~5*1.3μm。與原始染料(80*15-200*30 μm)相比,微粒化效果顯著。以逆微乳液產物進行UV-可見光譜實驗,在波長650nm處,穿透率可達98.8%。此外,當增加微乳液中界面活性劑濃度,再結晶粒子尺寸會略為縮減,形成較均勻之棒狀。在溶劑擴散法中,改變三相組成為water / Benzyl alcohol / SDS=10/10.5/5 (wt%),不同溶劑添加速率下再結晶結果為10*6~30*10μm (50g/35mins)、15*2~40*4μm (100g/35mins)。 顏料Pigment Red 177經逆微乳液系統(DMSO / AOT / Heptane)分散後,顆粒聚集由269.7nm改善為201.0nm,穿透率則提高2.43倍。 製備四種不同溫度(25℃、40℃、60℃、80℃)之逆微乳液(DMSO / AOT / Cyclohexane、DMSO / AOT / Heptane),比較Pigment Green 36在其中的分散情形,我們發現粒子聚集現象會隨操作溫度提高而更為明顯。25℃操作溫度下,擺放第0、1、3、6天之粒徑分布如下:原始顏料-297.2、282.5、316.7、457.9(nm);Heptane-214.7、210.9、234.4、263.1(nm);Cyclohexane-261.6、281.5、279.2、296.4(nm)。本實驗之逆微乳液系統確實可幫助顏料分散。 在Pigment Blue 15:6的部分,我們嘗試增加逆微乳液系統(DMSO / AOT / Isooctane)中界面活性劑含量,觀察系統組成改變對於顏料分散的影響,其中wt%:2/28/20、2/28/30等兩組產物之穿透行為極為接近,而在波長500nm處穿透率可達98.9%,與原始顏料(80.9%)相比,提高約20.0-20.2%。 | zh_TW |
| dc.description.abstract | Organic colorants are essential for production of paints, inks and toners etc. The reduction of particle size would improve the stability, color strength, contrast, and transmittance. In this study, we apply two microemulsion systems (o/w、w/o) incorporated with temperature changing process and solvent diffusion process to micronize and disperse four colorants: Disperse Red 60、Pigment Red 177、Pigment Green 36、Pigment Blue 15:6.
Based on the scanning electron microscope (SEM) results, the sizes of disperse red 60 were dramatically reduced to 3.5*1(length*width)~5*1μm and 2*0.6~5*1.3μm by temperature changing process in water / Benzyl alcohol / SDS and DMSO / Cyclohexane / AOT system respectively, which the size of the original was about 80*15-200*30μm. However, the crystal morphology remained rod-like. The transmittance profiles refered that re-crystallized particles gained remarkably transmittance enhancement compared to that of the suppplied one. In solvent diffusion process, components of three phases were changed to water / Benzyl alcohol / SDS=10/10.5/5 (wt%). Sizes of particles tended to be larger from slow adding rate:10*6~30*10μm (50g/35mins)、15*2~40*4μm (100g/35mins)。 Partice sizes of pigment red 177 were reduced from 269.7nm to 201nm after processing with DMSO / AOT / Heptane microemulsion. For pigment green 36 in w/o microemulsions at four different temperatures (25℃、40℃、60℃、80℃), it was found that particles tended to aggregate as temperature increased. The results at 25℃ were listed below. Changes of particle sizes after 0、1、3、6 days of dispersion for each system are DMSO / AOT / Heptane:214.7、210.9、234.4、263.1(nm) and DMSO / AOT / Cyclohexane:261.6、281.5、279.2、296.4(nm) whereas sizes of the original pigment were 297.2、282.5、316.7、457.9(nm). These results have proved that the microemulsion method could efficiently make pigment particles dispersed. In addition, we tried to disperse pigment particles in microemulsions with variable surfactant concentrations. And similar transmittance results of pigment blue 15:6 were obtained in DMSO / AOT / Isooctane system (wt%:2/28/20、2/28/30). At 500nm wavelength, the transmittance was about 98.9% which is 20.0-20.2% raised from the original one (80.9%). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:03:26Z (GMT). No. of bitstreams: 1 ntu-99-R97549009-1.pdf: 18264510 bytes, checksum: beedd181bad1705f0b80e02c9a548f02 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 色料簡介與分類 1 1-2 顏色概說 1 1-3 有機顏料的特性 2 1-4 顏料在液晶顯示器上的應用 4 1-5 有機色料微粒化與分散目的 5 1-6 常見微粒化技術 5 1-6-1噴霧乾燥(Aerosol Flow Reactor Method) 5 1-6-2 高壓均質機(High-pressure Homogenizer) 5 1-6-3 研磨(Media milling) 6 1-7 以超臨界流體技術(Supercritical Fluid-based Technologies)製備微細顏料顆粒 6 1-7-1 超臨界溶液快速膨脹法(RES) 6 1-7-2超臨界反溶劑法(Supercritical Anti-solvent, SAS) 6 1-8 分散程序 7 1-9 本研究動機 10 第二章 文獻回顧 17 2-1微乳液技術 17 2-1-1 水/油/界面活性劑之相圖 17 2-1-2 微乳液製程 18 2-2 顏料微粒分散技術 20 第三章 研究理論 27 3-1結晶 27 3-1-1 成核理論 27 3-1-2 成核速率 28 3-1-3 晶體成長 28 3-2動態光散射理論 29 3-2-1起源 29 3-2-2光散射基本原理 29 3-2-3動態雷射光散射儀(Dynamic Light Scattering) 30 第四章 實驗設備及方法 33 4-1實驗藥品 33 4-1-1目標色料 33 4-1-2水相 34 4-1-3油相 34 4-1-4界面活性劑 35 4-1-5 其它 36 4-2實驗設備 36 4-3實驗分析儀器 37 4-3-1 掃描式熱卡計(DSC) 37 4-3-2場發射掃描式電子顯微鏡(FESEM) 37 4-3-3動態光散射粒徑/界面電位分析儀(Particle Size and Zeta Potential Analyzer) 38 4-3-4 掃描式電子顯微鏡(SEM) 38 4-3-5熱重量分析儀(TGA) 38 4-3-6 紫外光-可見光光譜儀(UV-Visible Spectrometer) 39 4-3-7 X光繞射儀(XRD) 39 4-4實驗方法與操作步驟 40 4-4-1製作不同溫度下之 DMSO / Isooctane / AOT三相圖 40 4-4-2染料溶解度實驗 40 4-4-3藉由微乳液法進行染料再結晶-Water / Benzyl alcohol / SDS 40 4-4-4藉由逆微乳液法進行染料再結晶-DMSO / Oil / AOT 41 4-4-5藉由逆微乳液法進行顏料分散-DMSO / Oil / AOT 42 4-4-6藉由反溶劑製程進行染料再結晶與顏料分散 42 4-4-7配製顏料分散溶液 42 第五章 Disperse Red 60染料微粒製備 49 5-1 製作不同溫度下之 DMSO / Isooctane / AOT相圖 49 5-2藉由(逆)微乳液法進行染料再結晶-Disperse Red 60 49 5-2-1 以Water / Benzyl alcohol / SDS為三相系統 50 1. 升降溫法與溶劑擴散法 50 2. 界面活性劑濃度 51 5-2-2 以DMSO / Oils / AOT 為三相系統 52 1. 10℃持溫時間 52 2. 界面活性劑濃度 52 3. 油相碳鏈長度 53 5-2-3結果討論 53 5-3藉由反溶劑法進行染料再結晶-Disperse Red 60 54 5-3-1 濃度效應 54 5-3-2 組成溶劑效應 54 5-4再結晶染料儀器分析結果 55 5-4-1掃描式熱卡計(DSC) 55 5-4-2 X光繞射儀(XRD) 55 第六章 顏料微粒分散結果 81 6-1藉由逆微乳液法進行顏料分散實驗 81 6-1-1 Pigment Red 177 81 6-1-2 Pigment Green 36 81 6-1-3 Pigment Blue 15:6 82 6-2藉由反溶劑法進行顏料分散實驗 83 6-2-1 Pigment Red 177 83 6-2-2 Pigment Green 36 83 6-2-3 Pigment Blue 15:6 83 第七章 結論 95 參考文獻 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | Disperse Red 60 | zh_TW |
| dc.subject | 顏料分散 | zh_TW |
| dc.subject | 反溶劑 | zh_TW |
| dc.subject | 逆微乳液 | zh_TW |
| dc.subject | 微乳液 | zh_TW |
| dc.subject | 微粒化 | zh_TW |
| dc.subject | Pigment Blue 15:6 | zh_TW |
| dc.subject | Pigment Green 36 | zh_TW |
| dc.subject | Pigment Red 177 | zh_TW |
| dc.subject | Pigment Red 177 | en |
| dc.subject | Despersion | en |
| dc.subject | Microemulsions | en |
| dc.subject | Micronization | en |
| dc.subject | Pigment Blue 15:6 | en |
| dc.subject | Pigment Green 36 | en |
| dc.subject | Disperse Red 60 | en |
| dc.title | 運用微乳液系統進行有機色料微粒之製備與分散研究 | zh_TW |
| dc.title | Crystallization and Dispersion of Micronized Organic Colorants from Microemulsions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳延平(Yan-Ping Chen),陳昱劭(Yu-Shao Chen) | |
| dc.subject.keyword | Disperse Red 60,Pigment Red 177,Pigment Green 36,Pigment Blue 15:6,微粒化,微乳液,逆微乳液,反溶劑,顏料分散, | zh_TW |
| dc.subject.keyword | Disperse Red 60,Pigment Red 177,Pigment Green 36,Pigment Blue 15:6,Micronization,Microemulsions,Despersion, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 17.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
