Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48561
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorYi-Chen Chungen
dc.contributor.author鍾易辰zh_TW
dc.date.accessioned2021-06-15T07:02:08Z-
dc.date.available2012-01-01
dc.date.copyright2011-02-09
dc.date.issued2011
dc.date.submitted2011-01-14
dc.identifier.citation[1] Herweijer H, Wolff J. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther 2003;10:453-8.
[2] Luo D, Saltzman WM. Synthetic DNA delivery systems. Nature Biotechnology 2000;18:33-7.
[3] Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther 2002;9:1647-52.
[4] Verma IM, Somia N. Gene therapy - promises, problems and prospects. Nature 1997;389:239-42.
[5] Parkes RJ, Hart SL. Adhesion molecules and gene transfer. Advanced Drug Delivery Reviews 2000;44:135-52.
[6] Park IK, Ihm JE, Park YH, Choi YJ, Kim SI, Kim WJ, et al. Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier: Preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1). Journal of Controlled Release 2003;86:349-59.
[7] Park IK, Kim TH, Park YH, Shin BA, Choi ES, Chowdhury EH, et al. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. Journal of Controlled Release 2001;76:349-62.
[8] Park YK, Park YH, Shin BA, Choi ES, Park YR, Akaike T, et al. Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier. Journal of Controlled Release 2000;69:97-108.
[9] Kim TH, Park IK, Nah JW, Choi YJ, Cho CS. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 2004;25:3783-92.
[10] Boussif O, Delair T, Brua C, Veron L, Pavirani A, Kolbe HVJ. Synthesis of polyallylamine derivatives and their use as gene transfer vectors in vitro. Bioconjugate Chemistry 1999;10:877-83.
[11] Nimesh S, Kumar R, Chandra R. Novel polyallylamine-dextran sulfate-DNA nanoplexes: Highly efficient non-viral vector for gene delivery. Int J Pharm 2006;320:143-9.
[12] Pathak A, Aggarwal A, Kurupati RK, Patnaik S, Swami A, Singh Y, et al. Engineered polyallylamine nanoparticles for efficient in vitro transfection. Pharmaceutical Research 2007;24:1427-40.
[13] Saul JM, Wang CHK, Ng CP, Pun SH. Multilayer nanocomplexes of polymer and DNA exhibit enhanced gene delivery. Adv Mater 2008;20:19-25.
[14] Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics 2003;4:346-58.
[15] Somia N, Verma IM. Gene therapy: Trials and tribulations. Nature Reviews Genetics 2000;1:91-9.
[16] Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Ther 2000;7:31-4.
[17] Torchilin VP, Levchenko TS. TAT-liposomes: A novel intracellular drug carrier. Current Protein & Peptide Science 2003;4:133-40.
[18] Cao ZH, Tong R, Mishra A, Xu WC, Wong GCL, Cheng JJ, et al. Reversible Cell-Specific Drug Delivery with Aptamer-Functionalized Liposomes. Angewandte Chemie-International Edition 2009;48:6494-8.
[19] Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, et al. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. Journal of Controlled Release 2005;109:299-316.
[20] Liang B, He ML, Xiao ZP, Li Y, Chan CY, Kung HF, et al. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem Bioph Res Co 2008;367:874-80.
[21] Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999;6:595-605.
[22] Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. Journal of Gene Medicine 2005;7:657-63.
[23] Kim TH, Ihm JE, Choi YJ, Nah JW, Cho CS. Efficient gene delivery by urocanic acid-modified chitosan. Journal of Controlled Release 2003;93:389-402.
[24] Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. Journal of Controlled Release 2006;115:37-45.
[25] Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ, et al. Chitosan-graft-polyethylenimine as a gene carrier. Journal of Controlled Release 2007;117:273-80.
[26] Kim TH, Kim SI, Akaike T, Cho CS. Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. Journal of Controlled Release 2005;105:354-66.
[27] Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie-International Edition 2007;46:4093-6.
[28] Lee JS, Stoeva SI, Mirkin CA. DNA-induced size-selective separation of mixtures of gold nanoparticles. Journal of the American Chemical Society 2006;128:8899-903.
[29] Han MS, Lytton-Jean AKR, Mirkin CA. A gold nanoparticle based approach for screening triplex DNA binders. Journal of the American Chemical Society 2006;128:4954-5.
[30] Lytton-Jean AKR, Han MS, Mirkin CA. Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles. Analytical Chemistry 2007;79:6037-41.
[31] Bertin PA, Gibbs JM, Shen CKF, Thaxton CS, Russin WA, Mirkin CA, et al. Multifunctional polymeric nanoparticles from diverse bioactive agents. Journal of the American Chemical Society 2006;128:4168-9.
[32] Ivanova GD, Arzumanov A, Abes R, Yin H, Wood MJA, Lebleu B, et al. Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 2008;36:6418-28.
[33] Roth L, Zagon J, Ehlers A, Kroh LW, Broll H. A novel approach for the detection of DNA using immobilized peptide nucleic acid (PNA) probes and signal enhancement by real-time immuno-polymerase chain reaction (RT-iPCR). Anal Bioanal Chem 2009;394:529-37.
[34] Selvaraju SB, Kapoor R, Yadav JS. Peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) assay for specific detection of Mycobacterium immunogenum and DNA-FISH assay for analysis of pseudomonads in metalworking fluids and sputum. Mol Cell Probe 2008;22:273-80.
[35] Chen XJ, Dou SP, Liu GZ, Liu XR, Wane Y, Chen L, et al. Synthesis and in vitro characterization of a dendrimer-MORF conjugate for amplification pretargeting. Bioconjugate Chemistry 2008;19:1518-25.
[36] Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacological Reviews 2006;58:32-45.
[37] Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. Journal of Controlled Release 2009;136:54-61.
[38] Luhmann T, Rimann M, Bitterman AG, Hall H. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Bioconjugate Chemistry 2008;19:1907-16.
[39] van der Aa MAEM, Huth US, Hafele SY, Schubert R, Oosting RS, Mastrobattista E, et al. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharmaceutical Research 2007;24:1590-8.
[40] von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M. The internalization route resulting in successful gene expression depends on polyethylenimine both cell line and polyplex type. Molecular Therapy 2006;14:745-53.
[41] Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37-44.
[42] Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annual Review of Cell and Developmental Biology 2001;17:517-68.
[43] Takei K, Haucke V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends in Cell Biology 2001;11:385-91.
[44] Harris J, Werling D, Hope JC, Taylor G, Howard CJ. Caveolae and caveolin in immune cells: distribution and functions. Trends in Immunology 2002;23:158-64.
[45] Matveev S, Li XG, Everson W, Smart EJ. The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Advanced Drug Delivery Reviews 2001;49:237-50.
[46] Parton RG, Simons K. The multiple faces of caveolae. Nature Reviews Molecular Cell Biology 2007;8:185-94.
[47] Gebhart CL, Sriadibhatla S, Vinogradov S, Lemieux P, Alakhov V, Kabanov AV. Design and formulation of polyplexes based on pluronic-polyethyleneimine conjugates for gene transfer. Bioconjugate Chemistry 2002;13:937-44.
[48] Sakaguchi N, Kojima C, Harada A, Koiwai K, Kono K. The correlation between fusion capability and transfection activity in hybrid complexes of lipoplexes and pH-sensitive liposomes. Biomaterials 2008;29:4029-36.
[49] Trubetskoy VS, Loomis A, Hagstrom JE, Budker VG, Wolff JA. Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles. Nucleic Acids Res 1999;27:3090-5.
[50] Trubetskoy VS, Wong SC, Subbotin V, Budker VG, Loomis A, Hagstrom JE, et al. Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Ther 2003;10:261-71.
[51] Yuba E, Kojima C, Sakaguchi N, Harada A, Koiwai K, Kono K. Gene delivery to dendritic cells mediated by complexes of lipoplexes and pH-sensitive fusogenic polymer-modified liposomes. Journal of Controlled Release 2008;130:77-83.
[52] Chung YC, Hsieh WY, Young TH. Polycation/DNA complexes coated with oligonucleotides for gene delivery. Biomaterials 2010;31:4194-203.
[53] Bevan N, Butchers PR, Cousins R, Coates J, Edgar EV, Morrison V, et al. Pharmacological characterisation and inhibitory effects of (2R,3R,4S,5R)-2-(6-amino-2-{[(1S)-2-hydroxy-1-(phenylmethyl)ethyl]amino}-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydro-3,4-furandiol, a novel ligand that demonstrates both adenosine A(2A) receptor agonist and adenosine A(3) receptor antagonist activity. Eur J Pharmacol 2007;564:219-25.
[54] Brown RA, Spina D, Page CP. Adenosine receptors and asthma. Br J Pharmacol 2008;153:S446-S56.
[55] Thakor DK, Teng YD, Tabata Y. Neuronal gene delivery by negatively charged pullulan-spermine/DNA anioplexes. Biomaterials 2009;30:1815-26.
[56] Kurosaki T, Kitahara T, Fumoto S, Nishida K, Nakamura J, Niidome T, et al. Ternary complexes of pDNA, polyethylenimine, and gamma-polyglutamic acid for gene delivery systems. Biomaterials 2009;30:2846-53.
[57] Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 2007;32:799-837.
[58] Harada A, Kawamura M, Matsuo T, Takahashi T, Kono K. Synthesis and characterization of a head-tail type polycation block copolymer as a nonviral gene vector. Bioconjugate Chemistry 2006;17:3-5.
[59] Kurosaki T, Kitahara T, Kawakami S, Nishida K, Nakamura J, Teshima M, et al. The development of a gene vector electrostatically assembled with a polysaccharide capsule. Biomaterials 2009;30:4427-34.
[60] Anderson BC, Cox SM, Bloom PD, Sheares VV, Mallapragada SK. Synthesis and characterization of diblock and gel-forming pentablock copolymers of tertiary amine methacrylates, poly(ethylene glycol), and poly(propylene glycol). Macromolecules 2003;36:1670-6.
[61] Xu FJ, Li HZ, Li J, Zhang ZX, Kang ET, Neoh KG. Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino) ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Biomaterials 2008;29:3023-33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48561-
dc.description.abstract以單股核酸(5’-C10A20-3’)塗佈於組氨酸修飾之聚丙烯胺與去氧核醣核酸所構成之陽離子型複合粒子上,製備出可應用於基因轉殖之陰離子型複合載體。藉由粒徑電位分析儀得知該粒子於單股核酸對組氨酸修飾之聚丙烯胺比為1.5時,其表面電位為-27毫伏特,且此時的粒徑約為100奈米。並且,此載體能於人類子宮頸癌細胞株(HeLa)內呈現相當高的轉殖效率與相對低的毒性,同時,亦能防止血球凝集與血清抑制轉殖效率的發生。同時本研究也發現其轉殖效率在將所使用的單股核酸組成更替或是替換為其他種陰離子型聚電解質後便受到顯著的抑制,顯示該載體非常有可能是透過某種特殊的載體─受器的交互作用才能被細胞吞噬進而表現出轉殖效率。
為了確定該載體與細胞之間的作用方式,我們接著於研究的第二部分鑑定其載體之內化機制,透過改變塗佈於載體最外層之單股核酸的組成、分子量以及序列,我們發現其轉殖效率乃被載體上單股核酸中的腺苷酸之鹼基所調控。進一步的,透過添加相同的單股核酸以及於載體上再包覆第二層互補單股核酸,顯示該粒子與細胞膜上的腺苷酸受器有顯著的關聯性,而透過使用該受器之拮抗劑確實能使得轉殖效率有顯著的降低,此結果顯示該載體乃是先透過與細胞膜上的腺苷酸受器作用被細胞所吞噬進而表現出基因轉殖效率。此外,我們也發現影響其載體轉殖效率之細胞內化路徑為caveolae-mediated pathway,顯示載體在與細胞膜上的腺苷酸受器作用後,是經由caveolae-mediated pathway被細胞內化吞噬入細胞內,進而再將所攜帶之去氧核醣核酸釋放被細胞表現。
接著,於研究的第三部分,我們著手將使用單股核酸塗佈於陽離子型載體的技術擴大應用到其他種的陽離子型載體,以證實該技術之延伸應用性。於此,我們選擇市面上已被公認為最有效之轉殖載體商品,聚乙烯亞胺,用以製備陽離子型載體。藉由粒徑電位分析儀得知,所製備的載體於單股核酸聚乙烯亞胺比為9時,其表面電位為-50毫伏特,且此時的粒徑約為100~170奈米。且相較於未經包覆的聚乙烯亞胺載體,該載體更能有效防止血球凝集,且不會因單股核酸加入而導致聚乙烯亞胺載體崩解。於研究的第一部分,我們發現透過單股核酸包覆後的轉殖載體,其轉殖效率將有其顯著增加,此結果除了在人類子宮頸癌細胞株,於人類胚胎腎臟細胞株(HEK 293)、人類肝臟細胞株(HepG2)以及人類皮膚纖維母細胞株(Hs68)皆可被觀察到,特別是Hs68,其轉殖效率增加了四十倍之多。因此,第三部分之研究將選擇以Hs68作為檢驗載體效率之細胞株。相較於未經包覆之聚乙烯亞胺載體,載體經包覆後同樣能抵抗血球凝集。並且發現載體於細胞株(Hs68)以及生物體細胞(fibroblast-like synoviocytes)其轉殖效率有顯著的增加,同時並不會增加細胞毒性。此外,包覆單股核酸於聚乙烯亞胺載體外同樣也能夠抵抗血清吸附於載體表面抑制轉殖效率之影響。最後,透過於天竺鼠膝關節轉殖,我們發現該載體確實能於動物實驗中獲得比未經包覆的聚乙烯亞胺載體更為有效的轉殖效率。
總結,本研究開發出一種新型的轉殖載體,運用靜電吸引力包覆技術將特殊單股核酸包覆於聚電解質型的轉殖載體上,進而促進載體轉殖效率,而使用特殊的單股核酸包覆陽離子型載體之技術亦能使得載體應用於各種轉殖與治療時更為安全且有效。
zh_TW
dc.description.abstractTernary nanoparticles with negatively-charged surface were prepared by coating single-stranded oligonucleotides (5’-C10A20-3’) on histidine-conjugated polyallylamine (PAA-HIS)/DNA complexes for gene delivery. Characterization of PAA-HIS/DNA/oligonucleotide complexes demonstrated that nanoparticles possessed the negative surface charge -27 mV and size of around 100 nm when the molar ratio of oligonucleotide/PAA-HIS exceeded 1.5. The negatively charged oligonucleotide-coated PAA-HIS/DNA complexes could be entirely internalized by the living HeLa cells to exhibit high gene expression with low cytotoxicity and the resistance against erythrocyte agglutination and serum inhibition. Since the gene expression of PAA-HIS/DNA complexes was significantly inhibited by coating other polyanions and oligonucleotides, the ternary PAA-HIS/DNA/deoxyadenosine-rich oligonucleotide complexes were uptaken by specific receptor-mediated process.
In order to classify the fate of PAA-HIS/DNA/oligonucleotide, the internalization mechanism of the ternary nanoparticles was confirmed in the study of part II. Characterization of the constitution effect of the topmost layer of PAA-HIS/DNA/oligonucleotide complexes demonstrated that transfection efficiency was regulated by the nitrogenous base of adenosine on the nanoparticles. The results also showed ternary complexes were uptaken into cells and subsequently expressed genes by interacted with adenosine receptors on cellular membrane. Furthermore, the uptake of ternary complexes by caveolae-mediated pathway showed to influence the transfection efficiency.
Furthermore, in the study of part III, the application of techneuqe of assembling oligonucleotides (5’-C10A20-3’) with binay polyethylene imine (PEI)/DNA complexes used to prepare a ternary anioic gene delivery system. Characterization of PEI/DNA/oligonucleotide complexes demonstrated that nanoparticles possessed the negative surface charge -50 mV and size of around 100-170 nm when the molar ratio of oligonucleotide/PEI exceeded 9. Compared with PEI/DNA complexes, PEI/DNA/oligonucleotide complexes could completely resistant against erythrocyte agglutination because of anionic surface charge and would not disassociate during the process of forming ternary complexes. In the study of part I, the increase of transfection efficiency was also observed in the other in vitro cell line system such as HEK 293, HepG2, and Hs68. Therefore, in the study of part III, Hs68 were used to be the model cell line for the transfection efficiency experiment. The oligonucleotide-coated PEI/DNA complexes exhibited high gene expression with low cytotoxicity in the living Hs68 cells (cell line) and fibroblast-like synoviocytes (primary cells), respectively. Additionally, the deposition of a layer of oligonucleotide onto the binary PEI/DNA complexes could prevent serum inhibition during transfection process. Moreover, the ternary PEI/DNA/oligonucleotide complexes showed higher gene expression than PEI/DNA complexes in the knee of guinea pig.
Therefore, in this study, we developed a novel gene delivery carrier which coating oligonucleotides by electrostatic attraction to increase the transection efficiency. The technology of coating specific oligonucleotides on cationic binary DNA complexes could facilitate the use of nanoparticles for safe and efficient gene delivery and eventual therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:02:08Z (GMT). No. of bitstreams: 1
ntu-100-F93549002-1.pdf: 7838106 bytes, checksum: 601ad86e3888aff44b60c529db755e3c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract III
List of contents V
List of Tables VIII
List of Figures IX
Abbreviation XIV
Chapter 1 Introduction 1
1.1 Motivation 1
Chapter 2 Literature Review 3
2.1 Gene delivery vectors 3
2.1.1 Polymer-based gene delivery systems 3
2.2 DNA hybridization 5
2.3 Endocytic route 7
2.4 Experimental design 8
2.5 Flowchart of experiment 9
Chapter 3 Materials and Methods 10
3.1 Materials 10
3.2 Experimental apparatus 13
3.3 Solution preparation 14
3.3.1 Phosphate buffered saline (PBS) 14
3.3.2 MTT reagent 14
3.3.3 4% paraformaldehyde 14
3.3.4 Trypsin 15
3.3.5 HEPES PBS (HBS) 15
3.3.6 Endocytic routes inhibitor stock solution 15
3.4 Synthesis of PAA-HIS 16
3.5 Preparation of polyplexes 16
3.5.1 Binary complexes 16
3.5.2 Ternary complexes 17
3.5.3 Quaternary oligonucleotide-coated PAA-HIS/DNA complexes 17
3.6 Cells 18
3.6.1 Cell line 18
3.6.2 Synovial cells 18
3.7 Cellular toxicity 19
3.7.1 Cell lines 19
3.7.2 Synovial cell 19
3.7.3 Endocytosis inhibitors 19
3.7.4 MTT colorimetric assay 19
3.8 Transfection efficiency assay 20
3.8.1 Oligonucleotide-coated PAA-HIS/DNA complexes under various oligonucleotide/PAA-HIS molar ratios 20
3.8.2 Transfection studies of oligonucleotide 20
3.8.3 Temperature-dependent oligonucleotide-coated PAA-HIS/DNA complexes gene expression 21
3.8.4 Transfection studies with endocytosis inhibitors 22
3.8.5 Oligonucleotide-coated PEI/DNA complexes under various oligonucleotide/PEI molar ratios 22
3.8.6 In vivo transfection study 23
3.9 Cellular uptake 24
3.9.1 Oligonucleotide-coated PAA-HIS/DNA complexes 24
3.9.2 Cellular uptake studies with endocytosis inhibitors 24
3.10 Erythrocyte agglutination study 25
3.11 The serum inhibition to the transfection efficiency 25
3.12 DNA condensation 25
3.13 Statistical analysis 25
Chapter 4 Results 26
4.1 Part I Polycation/DNA complexes coated with oligonucleotides for gene delivery 26
4.1.1 The physicochemical properties of oligonucleotide-coated PAA-HIS/DNA complexes 26
4.1.2 Cytotoxicity of oligonucleotide-coated polyplexes 27
4.1.3 Transfection efficiency of oligonucleotide-coated polyplexes 28
4.1.4 Cellular uptake 29
4.1.5 The effect of polyanions 30
4.1.6 Erythrocyte agglutination study 31
4.1.7 In vitro serum compatibility 32
4.2 Part II: The role of adenosine receptor and caveolae-mediated endocytosis in oligonucleotide-mediated gene transfer 33
4.2.1 Oligonucleotide-coated polycation/DNA complexes for in vitro or in vivo gene delivery system 33
4.2.2 The effect of constitution, sequence, and molecular weight of oligonucleotides on the physicochemical properties of oligonucleotide-coated PAA-HIS/DNA complexes 33
4.2.3 Inhibition effect of complementary oligonucleotides 34
4.2.4 Inhibition effect of uncomplexed oligonucleotides 35
4.2.5 Inhibition effect of nucleotides and 8-SPT 36
4.2.6 Inhibition effect of hypothermia 36
4.2.7 Effect of endocytosis inhibitors on uptake of oligonucleotide-coated PAA-HIS/DNA complexes into HeLa cells 37
4.2.8 Effect of endocytosis inhibitors on transfection efficiency of oligonucleotide-coated PAA-HIS/DNA complexes 37
4.3 Part III: The exhibition of polyethylene imine/DNA coated with oligonucleotides for gene delivery 40
4.3.1 The physicochemical properties of oligonucleotide-coated PEI/DNA complexes 40
4.3.2 Erythrocyte agglutination study 40
4.3.3 Gel retardation assay 41
4.3.4 In vitro transfection efficiency of oligonucleotide-coated polyplexes in cell line and primary cell system 41
4.3.5 In vitro cytotoxicity of oligonucleotide-coated polyplexes in cell line and primary cell system 42
4.3.6 Transfection studies with endocytosis inhibitors 43
4.3.7 In vitro serum compatibility 43
4.3.8. In vivo transfection study 44
Chapter 5 Discussion 45
5.1 Part I: Polycation/DNA complexes coated with oligonucleotides for gene delivery 45
5.2 Part II: The role of adenosine receptor and caveolae-mediated endocytosis in oligonucleotide-mediated gene transfer 49
5.3 Part III: The exhibition of polyethylene imine/DNA coated with oligonucleotides for gene delivery 53
Chapter 6 Conclusion and Perspectives 57
Reference 59
Appendix I 100
Appendix II 109
Appendix III 117
List of publication 133
dc.language.isoen
dc.subject緩衝效應zh_TW
dc.subject細胞吞噬zh_TW
dc.subject基因轉殖zh_TW
dc.subject三層式奈米粒子zh_TW
dc.subject單股核酸zh_TW
dc.subject腺&#33527zh_TW
dc.subject酸zh_TW
dc.subjectgene deliveryen
dc.subjectternary nanoparticlesen
dc.subjectoligonucleotidesen
dc.subjectadenosineen
dc.subjectbuffering capacityen
dc.subjectendocytosisen
dc.title寡核酸包覆型多層聚電解質載體於基因轉殖之應用zh_TW
dc.titlePolycation/DNA Complexes Coated with Oligonucleotides for Gene Deliveryen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee宋信文,陳三元,賴君義,徐善慧,謝銘鈞,楊銘乾
dc.subject.keyword三層式奈米粒子,單股核酸,腺&#33527,酸,緩衝效應,細胞吞噬,基因轉殖,zh_TW
dc.subject.keywordternary nanoparticles,oligonucleotides,adenosine,buffering capacity,endocytosis,gene delivery,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2011-01-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
7.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved