Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48557
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君男(Chun-Nan Lee)
dc.contributor.authorBing-Ching Hoen
dc.contributor.author何炳慶zh_TW
dc.date.accessioned2021-06-15T07:01:57Z-
dc.date.available2013-03-03
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-01-18
dc.identifier.citationAbuBakar, S., Chee, H.Y., Al-Kobaisi, M.F., Xiaoshan, J., Chua, K.B., and Lam, S.K. (1999). Identification of enterovirus 71 isolates from an outbreak of hand, foot and mouth disease (HFMD) with fatal cases of encephalomyelitis in Malaysia. Virus Res 61, 1-9.
Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2, 675-680.
Belsham, G.J., and Sonenberg, N. (2000). Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol 8, 330-335.
Beretta, L., Svitkin, Y.V., and Sonenberg, N. (1996). Rapamycin stimulates viral protein synthesis and augments the shutoff of host protein synthesis upon picornavirus infection. J Virol 70, 8993-8996.
Bohlig, L., Friedrich, M., and Engeland, K. (2010). p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Res.
Bonneau, A.M., and Sonenberg, N. (1987). Proteolysis of the p220 component of the cap-binding protein complex is not sufficient for complete inhibition of host cell protein synthesis after poliovirus infection. J Virol 61, 986-991.
Bracken, C.P., Gregory, P.A., Kolesnikoff, N., Bert, A.G., Wang, J., Shannon, M.F., and Goodall, G.J. (2008). A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68, 7846-7854.
Buck, A.H., Perot, J., Chisholm, M.A., Kumar, D.S., Tuddenham, L., Cognat, V., Marcinowski, L., Dolken, L., and Pfeffer, S. (2010). Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. Rna 16, 307-315.
Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6, 857-866.
Cameron, J.E., Yin, Q., Fewell, C., Lacey, M., McBride, J., Wang, X., Lin, Z., Schaefer, B.C., and Flemington, E.K. (2008). Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 82, 1946-1958.
Chang, L.Y. (2008). Enterovirus 71 in Taiwan. Pediatr Neonatol 49, 103-112.
Chang, L.Y., Hsiung, C.A., Lu, C.Y., Lin, T.Y., Huang, F.Y., Lai, Y.H., Chiang, Y.P., Chiang, B.L., Lee, C.Y., and Huang, L.M. (2006). Status of cellular rather than humoral immunity is correlated with clinical outcome of enterovirus 71. Pediatr Res 60, 466-471.
Chang, L.Y., Huang, L.M., Gau, S.S., Wu, Y.Y., Hsia, S.H., Fan, T.Y., Lin, K.L., Huang, Y.C., Lu, C.Y., and Lin, T.Y. (2007). Neurodevelopment and cognition in children after enterovirus 71 infection. N Engl J Med 356, 1226-1234.
Chang, Y., Lee, H.H., Chen, Y.T., Lu, J., Wu, S.Y., Chen, C.W., Takada, K., and Tsai, C.H. (2006). Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 80, 7748-7755.
Chen, S.H., Yao, H.W., Chen, I.T., Shieh, B., and Li, C. (2008). Suppression of transcription factor early growth response 1 reduces herpes simplex virus lethality in mice. J Clin Invest 118, 3470-3477.
Croce, C.M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10, 704-714.
Farre, D., Roset, R., Huerta, M., Adsuara, J.E., Rosello, L., Alba, M.M., and Messeguer, X. (2003). Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31, 3651-3653.
Fenwick, M.L. (1963). The influence of poliovirus infection of RNA synthesis in mammalian cells. Virology 19, 241-249.
Fraser, C.S., and Doudna, J.A. (2007). Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 5, 29-38.
Gingras, A.C., Svitkin, Y., Belsham, G.J., Pause, A., and Sonenberg, N. (1996). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A 93, 5578-5583.
Goldstaub, D., Gradi, A., Bercovitch, Z., Grosmann, Z., Nophar, Y., Luria, S., Sonenberg, N., and Kahana, C. (2000). Poliovirus 2A protease induces apoptotic cell death. Mol Cell Biol 20, 1271-1277.
Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W.H., Chi, J.T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., et al. (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096-1099.
Gradi, A., Svitkin, Y.V., Imataka, H., and Sonenberg, N. (1998). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S A 95, 11089-11094.
Hammond, S.M. (2006). MicroRNAs as oncogenes. Curr Opin Genet Dev 16, 4-9.
Holland, J.J. (1963). Depression of host-controlled RNA synthesis in human cells during poliovirus infection. Proc Natl Acad Sci U S A 49, 23-28.
Ho, M., Chen, E.R., Hsu, K.H., Twu, S.J., Chen, K.T., Tsai, S.F., Wang, J.R., and Shih, S.R. (1999). An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 341, 929-935.
Hou, J., Wang, P., Lin, L., Liu, X., Ma, F., An, H., Wang, Z., and Cao, X. (2009). MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183, 2150-2158.
Huang, C.C. (2001). Neurologic complications of enterovirus 71 infection in children: lessons from this Taiwan epidemic. Acta Paediatr Taiwan 42, 5-7.
Huang, C.C., Liu, C.C., Chang, Y.C., Chen, C.Y., Wang, S.T., and Yeh, T.F. (1999). Neurologic complications in children with enterovirus 71 infection. N Engl J Med 341, 936-942.
Iwasaki, A., and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5, 987-995.
Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M., and Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577-1581.
Kel, A.E., Gossling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O.V., and Wingender, E. (2003). MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31, 3576-3579.
Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37, 495-500.
Kuyumcu-Martinez, N.M., Van Eden, M.E., Younan, P., and Lloyd, R.E. (2004). Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol Cell Biol 24, 1779-1790.
Lanford, R.E., Hildebrandt-Eriksen, E.S., Petri, A., Persson, R., Lindow, M., Munk, M.E., Kauppinen, S., and Orum, H. (2009). Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection. Science 3, 3.
Le Bon, A., and Tough, D.F. (2002). Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14, 432-436.
Lee, M.S., Lin, T.Y., Chiang, P.S., Li, W.C., Luo, S.T., Tsao, K.C., Liou, G.Y., Huang, M.L., Hsia, S.H., Huang, Y.C., et al. (2010). An Investigation of Epidemic Enterovirus 71 Infection in Taiwan, 2008: Clinical, Virologic, and Serologic Features. Pediatr Infect Dis J.
Leong, W.F., and Chow, V.T. (2006). Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol 8, 565-580.
Lin, J.Y., Chen, T.C., Weng, K.F., Chang, S.C., Chen, L.L., and Shih, S.R. (2009a). Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 16, 103.
Lin, Y.W., Wang, S.W., Tung, Y.Y., and Chen, S.H. (2009b). Enterovirus 71 infection of human dendritic cells. Exp Biol Med (Maywood) 234, 1166-1173.
Liu, M.L., Lee, Y.P., Wang, Y.F., Lei, H.Y., Liu, C.C., Wang, S.M., Su, I.J., Wang, J.R., Yeh, T.M., Chen, S.H., et al. (2005). Type I interferons protect mice against enterovirus 71 infection. J Gen Virol 86, 3263-3269.
Lum, L.C., Wong, K.T., Lam, S.K., Chua, K.B., Goh, A.Y., Lim, W.L., Ong, B.B., Paul, G., AbuBakar, S., and Lambert, M. (1998). Fatal enterovirus 71 encephalomyelitis. J Pediatr 133, 795-798.
Marissen, W.E., Gradi, A., Sonenberg, N., and Lloyd, R.E. (2000). Cleavage of eukaryotic translation initiation factor 4GII correlates with translation inhibition during apoptosis. Cell Death Differ 7, 1234-1243.
Martinez-Salas, E., Pacheco, A., Serrano, P., and Fernandez, N. (2008). New insights into internal ribosome entry site elements relevant for viral gene expression. J Gen Virol 89, 611-626.
Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., et al. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34, D108-110.
McMinn, P., Lindsay, K., Perera, D., Chan, H.M., Chan, K.P., and Cardosa, M.J. (2001a). Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. J Virol 75, 7732-7738.
McMinn, P., Stratov, I., Nagarajan, L., and Davis, S. (2001b). Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis 32, 236-242.
Medzhitov, R., and Janeway, C.A., Jr. (1997). Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298.
Messeguer, X., Escudero, R., Farre, D., Nunez, O., Martinez, J., and Alba, M.M. (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18, 333-334.
Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., and Rigoutsos, I. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203-1217.
Motsch, N., Pfuhl, T., Mrazek, J., Barth, S., and Grasser, F.A. (2007). Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 4, 131-137.
Norman, K.L., and Sarnow, P. (2010). Modulation of hepatitis C virus RNA abundance and the isoprenoid biosynthesis pathway by microRNA miR-122 involves distinct mechanisms. J Virol 84, 666-670.
O'Donovan, K.J., Tourtellotte, W.G., Millbrandt, J., and Baraban, J.M. (1999). The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22, 167-173.
Perez, L., and Carrasco, L. (1992). Lack of direct correlation between p220 cleavage and the shut-off of host translation after poliovirus infection. Virology 189, 178-186.
Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, C., et al. (2004). Identification of virus-encoded microRNAs. Science 304, 734-736.
Qiu, J. (2008). Enterovirus 71 infection: a new threat to global public health? Lancet Neurol 7, 868-869.
Ramachandran, R., Fausett, B.V., and Goldman, D. (2010). Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol.
Renois, F., Jacques, J., Talmud, D., Deslee, G., Leveque, N., and Andreoletti, L. (2010). Respiratory echovirus 30 and coxsackievirus B5 can induce production of RANTES, MCP-1 and IL-8 by human bronchial epithelial cells. Virus Res 152, 41-49.
Saini, H.K., Griffiths-Jones, S., and Enright, A.J. (2007). Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A 104, 17719-17724.
Schneider, R.J., and Mohr, I. (2003). Translation initiation and viral tricks. Trends Biochem Sci 28, 130-136.
Sethupathy, P., Megraw, M., and Hatzigeorgiou, A.G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3, 881-886.
Shen, Y., Xu, W., Chu, Y.W., Wang, Y., Liu, Q.S., and Xiong, S.D. (2004). Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis. J Virol 78, 12548-12556.
Sherrin, T., Blank, T., Hippel, C., Rayner, M., Davis, R.J., and Todorovic, C. (2010). Hippocampal c-Jun-N-terminal kinases serve as negative regulators of associative learning. J Neurosci 30, 13348-13361.
Son, Y.O., Jang, Y.S., Shi, X., and Lee, J.C. (2009). Activation of JNK and c-Jun is involved in glucose oxidase-mediated cell death of human lymphoma cells. Mol Cells 28, 545-551.
Stormo, G.D. (2000). DNA binding sites: representation and discovery. Bioinformatics 16, 16-23.
Sukarieh, R., Sonenberg, N., and Pelletier, J. (2009). The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response. Am J Physiol Cell Physiol 296, C1207-1217.
Sukarieh, R., Sonenberg, N., and Pelletier, J. (2010). Nuclear assortment of eIF4E coincides with shut-off of host protein synthesis upon poliovirus infection. J Gen Virol 6, 6.
Svitkin, Y.V., Gradi, A., Imataka, H., Morino, S., and Sonenberg, N. (1999). Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J Virol 73, 3467-3472.
Tan, E.L., Tan, T.M., Chow, V.T., and Poh, C.L. (2007). Enhanced potency and efficacy of 29-mer shRNAs in inhibition of Enterovirus 71. Antiviral Res 74, 9-15.
Theofilopoulos, A.N., Baccala, R., Beutler, B., and Kono, D.H. (2005). Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23, 307-336.
Thiel, G., and Cibelli, G. (2002). Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193, 287-292.
Triboulet, R., Mari, B., Lin, Y.L., Chable-Bessia, C., Bennasser, Y., Lebrigand, K., Cardinaud, B., Maurin, T., Barbry, P., Baillat, V., et al. (2007). Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315, 1579-1582.
Umbach, J.L., and Cullen, B.R. (2009). The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23, 1151-1164.
Umbach, J.L., Kramer, M.F., Jurak, I., Karnowski, H.W., Coen, D.M., and Cullen, B.R. (2008). MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780-783.
Wang, S.M., Lei, H.Y., Huang, K.J., Wu, J.M., Wang, J.R., Yu, C.K., Su, I.J., and Liu, C.C. (2003). Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis 188, 564-570.
Wang, Y.F., Chou, C.T., Lei, H.Y., Liu, C.C., Wang, S.M., Yan, J.J., Su, I.J., Wang, J.R., Yeh, T.M., Chen, S.H., et al. (2004). A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 78, 7916-7924.
Wasserman, W.W., and Sandelin, A. (2004). Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5, 276-287.
Whitton, J.L., Cornell, C.T., and Feuer, R. (2005). Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3, 765-776.
Winter, J., Jung, S., Keller, S., Gregory, R.I., and Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228-234.
Xu, T., Zhu, Y., Wei, Q.K., Yuan, Y., Zhou, F., Ge, Y.Y., Yang, J.R., Su, H., and Zhuang, S.M. (2008). A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29, 2126-2131.
Yu, S.L., Chen, H.Y., Chang, G.C., Chen, C.Y., Chen, H.W., Singh, S., Cheng, C.L., Yu, C.J., Lee, Y.C., Chen, H.S., et al. (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13, 48-57.
Zimmerman, E.F., Heeter, M., and Darnell, J.E. (1963). RNA synthesis in poliovirus-infected cells. Virology 19, 400-408.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48557-
dc.description.abstract病毒感染過程中,病毒與宿主間具有複雜的相互作用。病毒感染過程會依賴宿主轉譯蛋白質機制,藉此完成其生命週期並進行其致病機制。而在宿主方面,會因應產生一系列免疫反應來消除病毒的傳播。微核醣核酸(miRNAs)是近來發現的一類小片段、非蛋白編碼的核醣核酸,可藉由內源性RNA干擾方式來調控廣泛的生物功能,其中包括宿主與病毒的相互作用。於本論文中,我們觀察微核醣核酸於71型腸病毒感染前後表現量的差異,挑選了兩個在病毒感染過程中扮演重要角色的微核醣核酸 (miR-141與miR-146a)。miR-141為71型腸病毒感染細胞前後差異最顯著的微核醣核酸,可作用於轉譯起始因子4E,並關閉宿主的蛋白質合成,促進轉譯機制由cap-dependent轉譯轉換至cap-independent轉譯。miR-146a為另一個細胞受病毒感染而誘發的微核醣核酸,miR-146a可藉由3’非編碼區配對,進一步抑制兩個干擾素相關的蛋白質TRAF6和IRAK1表現。據研究指出,抑制TRAF6和IRAK1的表現會降低宿主干擾素反應。綜合以上結果,我們推測71型腸病毒可能是藉由調控上述兩個微核醣核酸來關閉宿主蛋白質合成並逃避宿主的抗病毒作用,進而有利於進行病毒的複製。zh_TW
dc.description.abstractVirus processes complicated interactions with the host in virus infection. Virus relay on the host translation machinery to complete their life cycles and cause viral pathogenesis. In contrast, host utilizes immune system to eliminate virus spread. MicroRNAs (miRNAs) are a recently discovered class of small non-protein-coding RNAs that may act via endogenous RNA interference to govern a wide range of biological functions including host-virus interaction. In this thesis, we identified two miRNAs, miR-141 and miR-146a, which play significant roles in virus-host interactions. miR-141, the most up-regulated miRNA, targets the cap-dependent translation initiation factor, eIF4E, for shutoff of host protein synthesis and promotes the switch from cap-dependent to cap-independent translation. miR-146a, the other up-regulated miRNA, suppressed two interferon-associated proteins, TRAF6 and IRAK1, through pairing to their 3’ untranslated regions. It was documented that suppression of TRAF6 and IRAK1 resulted in attenuation of host interferon responses. We hypothesized that EV71 might shutoff of host protein synthesis and escape host antiviral activity through regulation of the two miRNAs, and created a beneficial environment for its replication.en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:01:57Z (GMT). No. of bitstreams: 1
ntu-100-F94424002-1.pdf: 10619690 bytes, checksum: 810768d7a939eb5c277cef4338ff696c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書………………………………………………………i
Acknowledgements...……………………………………………………ii
中文摘要…………………………………………………………………iii
Abstract…………………………………………………………………v
Abbreviations…………………………………………………………vii
Chapter 1 Introduction………………………………………………1
Chapter 2 Results………………………………………………………7
2.1 The expression of miR-141 is induced by enterovirus 71 infection………………7
2.2 eIF4E is a target of miR-141…………………………………9
2.3 MiR-141 involved in virus-induced translational switch…………………14
2.4 Silencing of miR-141 delays CPE occurrence and reduces virus production…………………15
2.5 miR-141 is partly regulated by EGR1………………………17
2.6 IRAK1 and TRAF6 are the targets of miR-146a……………22
2.7 AP1-associated signaling pathway was altered in EV71 infection…………25
2.8 miR-146a was upregulated by virus-infection-induced AP1………………………26
2.9 JNK inhibitor suppressed the EV71-infection-induced AP1 and further restored TRAF6 and IRAK1 expression……………28
Chapter 3 Discussions………………………………………………30
Chapter 4 Materials and Methods…………………………………38
4.1 Cell cultures and virus infection…………………………38
4.2 RNA extraction and miRNA profiling…………………………38
4.3 Oligonucleotide microarray analysis………………………39
4.4 Individual real-time RT-PCR…………………………………40
4.5 Western blot………………………………………………………41
4.6 Thiouridine incorporation assay……………………………41
4.7 Luciferase assay…………………………………………………42
4.8 Plasmid constructions…………………………………………42
4.9 Stable eIF4E-transfection of RD cells and antagomiR and siEGR1 transfections………………45
4.10 Metabolic labeling and immunoprecipitation……………45
4.11 Northern Blot……………………………………………………46
4.12 Plaque Assay……………………………………………………47
4.13 Chromatin immunoprecipitation assay………………………47
4.14 Interferon ELISA………………………………………………48
4.15 Sequence alignment analysis…………………………………49
4.16 JNK inhibitor treatment………………………………………49
4.17 Statistical analysis…………………………………………50
4.18 Signaling pathway analysis…………………………………50
Chapter 5 References….……………………………………………51
Chapter 6 Figures……………………………………………………65
Chapter 7 Tables……………………………………………………127
Chapter 8 Appendix…………………………………………………148

List of Figures
Figure 1 Cap-dependent and cap-independent translation initiations………………65
Figure 2 Determination of Enterovirus 71 replication time……………66
Figure 3 Observation of the virus-induced CPE with different m.o.i.……………67
Figure 4 The proportion of virus-infected cells with different m.o.i.……………68
Figure 5 The miRNA expression profiles in virus-infected cell……………………69
Figure 6 miR-141 was induced by CVB3 and PV3 infections…70
Figure 7 Determination of miR-141 expression in EV71 infection……………71
Figure 8 Determination of Pri-miR-141 expression in EV71 infection……………72
Figure 9 Determination of newly synthesized miR-141 by thiouridine incorporation assay in EV71 infection…………73
Figure 10 miR-146a was induced by EV71 infection……………74
Figure 11 Predicted miR-141 binding site within the eIF4E 3’UTR………………75
Figure 12 The effect of miR-141 on endogenous eIF4E………76
Figure 13 Endogenous eIF4E targeted by miR-141………………77
Figure 14 The effect of EV71 infection on endogenous eIF4E…………………78
Figure 15 The effect of CVB3 or PV3 infection on endogenous eIF4E……………79
Figure 16 Determination of newly synthesized eIF4E in EV71 infection by pulse labeling assay………………………………80
Figure 17 Predicted sequence of the miR-141 binding site within the eIF4E 3’UTR……………81
Figure 18 The effect of miR-141 on the luciferase activity of reporter vectors with wild-type or mutant eIF4E 3’UTR……………82
Figure 19 The effect of miR-141 on the expression of eIF4E with wild-type or mutant 3’UTR………………………83
Figure 20 The effect of miR-141 on the expression of eIF4E with wild-type or mutant 3’UTR……………………………84
Figure 21 The effect of virus infections on the expression of V5-eIF4E fusion protein……………………………85
Figure 22 The reduction of eIF4E was restored by antagomiR-141……………86
Figure 23 Shutoff of host protein synthesis was delayed by antagomiR-141…………………87
Figure 24 miR-141 specifically attenuated Cap-dependent translation…………………88
Figure 25 Expression of viral proteins was suppressed by antagomiR-141…………………89
Figure 26 Expression of viral RNA was suppressed by antagomiR-141………………………90
Figure 27 Virus-induced CPE was attenuated by antagomiR-141..…………………………91
Figure 28 The effect of antagomiR-141 on virus infection-induced CPE..…………92
Figure 29 Virus production was attenuated by antagomiR-141……………………93
Figure 30 Reduction of virus production induced by antagomiR-141 was rescued by eIF4E siRNAs……………94
Figure 31 The effect of EV71 infection on endogenous eIF4E in neural cell……………95
Figure 32 The reduction of eIF4E was restored by antagomiR-141 in neural cells………………96
Figure 33 AntagomiR-141 reduces the virus production in neural cells……………97
Figure 34 Schematic organization of miR-141…………………98
Figure 35 Identification of the regulatory elements of miR-141..…………………99
Figure 36 Identification of regulatory elements of miR-141……………100
Figure 37 EGR1 was induced by EV71 infection………………101
Figure 38 EGR1 was induced by EV71 infection………………102
Figure 39 EGR1 binding sites were determined by chromatin immunoprecipitation assays……………………103
Figure 40 EGR1 was induced by CVB3 and PV3 infections……104
Figure 41 miR-141 and miR-200c located within the same pri-miR……105
Figure 42 miR-141 and miR-200c were under EGR1 regulation………………106
Figure 43 EGR1 activates miR-141 expression… ……………107
Figure 44 EGR1 siRNAs attenuate virus propagation…………108
Figure 45 The suppression of viral protein caused by EGR1 silencing is rescued by eIF4E silencing………………………109
Figure 46 Predicted miR-146 binding sites within the TRAF6 3’UTR…………110
Figure 47 Predicted miR-146 binding sites within the IRAK1 3’UTR…………111
Figure 48 The effects of EV71 infection on endogenous TRAF6 and IRAK1……112
Figure 49 The effects of miR-146a on endogenous TRAF6 and IRAK1…………113
Figure 50 The effects of miR-146a on the luciferase activity of reporter vectors with wild-type or mutant TRAF6 3’UTR……………………………………114
Figure 51 The effects of miR-146a on the luciferase activity of reporter vectors with wild-type or mutant IRAK1 3’UTR……………………………………115
Figure 52 The effects of miR-146a on the expression of TRAF6 and IRAK1 with wild-type or mutant 3’UTR……………116
Figure 53 c-jun and c-fos expressions were induced by EV71 infection………117
Figure 54 c-jun and c-fos expressions were induced by EV71 infection…………118
Figure 55 Schematic organization of miR-146a……………119
Figure 56 The effects of AP1 (c-jun/c-fos) on the luciferase activity of miR-146a promoter vectors…………120
Figure 57 The effects of AP1 (c-jun/c-fos) on endogenous miR-146a expression………………121
Figure 58 The effects of AP1 (c-jun/c-fos) on the luciferase activity of wild-type or mutant miR-146a promoter vectors……………………………………122
Figure 59 miR-146a promoter activity was regulated by EV71 infection…………123
Figure 60 The effects of JNK inhibitor on c-jun, c-fos, TRAF6, and IRAK1 expressions in EV71 infection……………124
Figure 61 Model for the regulatory role of miR-141 in enterovirus infection……125
Figure 62 The hypothetical model for the regulatory role of miR-146a in EV71 infection………………………………………126

List of Tables
Table 1 Potential targets of miR-141…………………………127
Table 2 The expression levels of interferon α in antagomiR-141 transfectants………………130
Table 3 The altered expression of transcription factors in EV71 infection………………………131
Table 4 The expression levels of interferon α in siEGR1 transfectants………………132
Table 5 Potential hits of EV71 viral genome by EGR1 siRNAs…………………133
Table 6 Potential targets of miR-146a…………………………134
Table 7 The altered signaling pathways in EV71 infection………………144
Table 8 Primers list………………………147
dc.language.isoen
dc.subject干擾素反應zh_TW
dc.subject微核醣核酸zh_TW
dc.subject微核醣核酸141zh_TW
dc.subject微核醣核酸146azh_TW
dc.subject轉譯機制轉換zh_TW
dc.subjectMicroRNAsen
dc.subjectmiR-141en
dc.subjectmiR-146aen
dc.subjecttranslation switchen
dc.subjectinterferon responsesen
dc.title微核醣核酸於71型腸病毒感染中對病毒複製和宿主免疫反應的影響zh_TW
dc.titleThe impacts of miRNAs on viral replication and host immune responses in enterovirus 71 infectionen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee楊泮池(Pan-Chyr Yang),施信如(Shin-Ru Shih),高全良(Chuan-Liang Kao),張淑媛(Sui-Yuan Chang),俞松良(Sung-Liang Yu)
dc.subject.keyword微核醣核酸,微核醣核酸141,微核醣核酸146a,轉譯機制轉換,干擾素反應,zh_TW
dc.subject.keywordMicroRNAs,miR-141,miR-146a,translation switch,interferon responses,en
dc.relation.page150
dc.rights.note有償授權
dc.date.accepted2011-01-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
10.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved