請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48529完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林讚標 | |
| dc.contributor.author | Chun-Lin Huang | en |
| dc.contributor.author | 黃俊霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:00:41Z | - |
| dc.date.available | 2011-02-09 | |
| dc.date.copyright | 2011-02-09 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-01-24 | |
| dc.identifier.citation | BAI, J., L. A. PENNILL, J. NING, S. W. LEE, J. RAMALINGAM et al., 2002 Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12: 1871-1884.
BAK, S., F. E. TAX, K. A. FELDMANN, D. W. GALBRAITH and R. FEYEREISEN, 2001 CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101-111. BAKKER, E. G., C. TOOMAJIAN, M. KREITMAN and J. BERGELSON, 2006 A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18: 1803-1818. BARBIER, P., 1989 Genetic variation and ecotypic differentiation in the wild rice specis Oryza rufipogon. II. Influence of the mating system and life-history traits on the genetic structure of populations. Jpn. J. Genet. 64: 273-285. BECRAFT, P. W., S.-H. KANG and S.-G. SUH, 2001 The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response. Plant Physiol. 127: 486-496. BENJAMINI, Y., and Y. HOCHBERG, 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B Met. 57: 289-300. BERGELSON, J., M. KREITMAN, E. A. STAHL and D. TIAN, 2001 Evolutionary dynamics of plant R-genes. Science 292: 2281-2285. BERRI, S., P. ABBRUSCATO, O. FAIVRE-RAMPANT, A. BRASILEIRO, I. FUMASONI et al., 2009 Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biol. 9: 120. BRYAN, G. T., K.-S. WU, L. FARRALL, Y. JIA, H. P. HERSHEY et al., 2000 A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12: 2033-2046. BUCKLER IV, E. S., J. M. THORNSBERRY and S. KRESOVICH, 2001 Molecular diversity, structure and domestication of grasses. Genet. Res. 77: 213-218. CAICEDO, A. L., S. H. WILLIAMSON, R. D. HERNANDEZ, A. BOYKO, A. FLEDEL-ALON et al., 2007 Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 3: e163. CAO, Y., P. GUO, Y. XU and B. ZHAO, 2005 Simultaneous detection of NO and ROS by ESR in biological systems, pp. 77-83 in Methods in enzymology, edited by P. LESTER and C. ENRIQUE. Academic Press. CATANZARITI, A.-M., P. N. DODDS, T. VE, B. KOBE, J. G. ELLIS et al., 2010 The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol. Plant-Microbe Interac. 23: 49-57. CHEN, L., S. HAMADA, M. FUJIWARA, T. ZHU, N. P. THAO et al., 2010a The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7: 185-196. CHEN, L., K. SHIOTANI, T. TOGASHI, D. MIKI, M. AOYAMA et al., 2010b Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol. 51: 585-595. CHERN, M., H. A. FITZGERALD, P. E. CANLAS, D. A. NAVARRE and P. C. RONALD, 2005 Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant-Microbe Interac. 18: 511-520. CHIU, R.-J., C.-C. CHIEN and S.-Y. LIN, 1965 Physiologic races of Pyricularia oryzae in Taiwan, pp. 245-255 in The rice blast disease proceedings symposium, edited by C.-C. TU, C.-W. TSAI, C.-C. CHIEN, W.-H. TSAI and Y.-C. CHANG. Taiwan Agricultural Research Institute Special Publication No. 32. CHU, Z., B. FU, H. YANG, C. XU, Z. LI et al., 2006 Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor. Appl. Genet. 112: 455-461. CLARK, A. G., 1990 Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol. 7: 111-122. COUCH, B. C., I. FUDAL, M.-H. LEBRUN, D. THARREAU, B. VALENT et al., 2005 Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170: 613-630. DANGL, J. L., and J. D. G. JONES, 2001 Plant pathogens and integrated defence responses to infection. Nature 411: 826-833. DAVLETOVA, S., L. RIZHSKY, H. LIANG, Z. SHENGQIANG, D. J. OLIVER et al., 2005 Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17: 268-281. DE MEAUX, J., and T. MITCHELL-OLDS, 2003 Evolution of plant resistance at the molecular level: ecological context of species interactions. Heredity 91: 345-352. DESLANDES, L., J. OLIVIER, N. PEETERS, D. X. FENG, M. KHOUNLOTHAM et al., 2003 Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. USA 100: 8024-8029. DIAMOND, J., 2002 Evolution, consequences and future of plant and animal domestication. Nature 418: 700-707. DIEVART, A., M. DALAL, F. E. TAX, A. D. LACEY, A. HUTTLY et al., 2003 CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15: 1198-1211. DODDS, P. N., G. J. LAWRENCE, A.-M. CATANZARITI, T. TEH, C.-I. A. WANG et al., 2006 Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. USA 103: 8888-8893. DONG, X., 2004 NPR1, all things considered. Curr. Opin. Plant Biol. 7: 547-552. DUAN, S., B. LU, Z. LI, J. TONG, J. KONG et al., 2007 Phylogenetic analysis of AA-genome Oryza species (Poaceae) based on chloroplast, mitochondrial, and nuclear DNA sequences Biochem. Genet. 45: 113-129. EULGEM, T., and I. E. SOMSSICH, 2007 Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10: 366-371. FAIGON-SOVERNA, A., F. G. HARMON, L. STORANI, E. KARAYEKOV, R. J. STANELONI et al., 2006 A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18: 2919-2928. FAY, J. C., and C.-I. WU, 2000 Hitchhiking under positive darwinian selection. Genetics 155: 1405-1413. FLOR, H. H., 1971 Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275-296. FU, Y. X., and W. H. LI, 1993 Statistical tests of neutrality of mutations. Genetics 133: 693-709. FUJIWARA, T., S. MAISONNEUVE, M. ISSHIKI, M. MIZUTANI, L. CHEN et al., 2010 Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J. Biol. Chem. 285: 11308-11313. FUKUTA, Y., L. A. EBRON and N. KOBAYASHI, 2007 Genetic and breeding analysis of blast resistance in elite indica-type rice (Oryza sativa L.) bred in International Rice Research Institute. Jpn. Agr. Res. Q. 41: 101-114. GÓMEZ-GÓMEZ, L., and T. BOLLER, 2000 FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003-1011. GASSMANN, W., M. E. HINSCH and B. J. STASKAWICZ, 1999 The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 20: 265-277. GODIARD, L., L. SAUVIAC, K. U. TORII, O. GRENON, B. MANGIN et al., 2003 ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 36: 353-365. HALL, T. A., 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98. HUDSON, R. R., K. BAILEY, D. SKARECKY, J. KWIATOWSKI and F. J. AYALA, 1994 Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136: 1329-1340. HUDSON, R. R., A. G. SAEZ and F. J. AYALA, 1997 DNA variation at the Sod locus of Drosophila melanogaster: an unfolding story of natural selection. Proc. Natl. Acad. Sci. USA 94: 7725-7729. HULBERT, S. H., C. A. WEBB, S. M. SMITH and Q. SUN, 2001 Resistance gene complexes: evolution and utilization. Annu. Rev. Phytopathol. 39: 285-312. ISHIHARA, A., Y. HASHIMOTO, C. TANAKA, J. G. DUBOUZET, T. NAKAO et al., 2008 The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. 54: 481-495. JANG, J.-Y., C. H. CHOI and D.-J. HWANG, 2010 The WRKY superfamily of rice transcription factors. Plant Pathol. J. 26: 110-114. JIA, Y., G. T. BRYAN, L. FARRALL and B. VALENT, 2003 Natural variation at the Pi-ta rice blast resistance locus. Phytopathology 93: 1452-1459. JIA, Y., S. A. MCADAMS, G. T. BRYAN, H. P. HERSHEY and B. VALENT, 2000 Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19: 4004-4014. JIA, Y., Z. WANG, R. G. FJELLSTROM, K. A. K. MOLDENHAUER, M. A. AZAM et al., 2004 Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the United States. Phytopathology 94: 296-301. JONES, J. D. G., and J. L. DANGL, 2006 The plant immune system. Nature 444: 323-329. KAWANO, Y., L. CHEN and K. SHIMAMOTO, 2010 The function of Rac small GTPase and associated proteins in rice innate immunity. Rice 3: 112-121. KHUSH, G. S., 1997 Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35: 25-34. KIM, Y., 2006 Allele frequency distribution under recurrent selective sweeps. Genetics 172: 1967-1978. KOBE, B., and J. DEISENHOFER, 1995 Proteins with leucine-rich repeats. Curr. Opin. Struc. Biol. 5: 409-416. KOGEL, K.-H., and G. LANGEN, 2005 Induced disease resistance and gene expression in cereals. Cell. Microbiol. 7: 1555-1564. LIU, X., X. BAI, X. WANG and C. CHU, 2007a OsWRKY71, a rice transcription factor, is involved in rice defense response. J. Plant Physiol. 164: 969-979. LIU, X., F. LIN, L. WANG and Q. PAN, 2007b The in silico map-based cloning of Pi36, a rice CC-NBS-LRR gene which confers race-specific resistance to the blast fungu. Genetics 176: 2541-2549. LIU, X. Q., X. Q. BAI, Q. QIAN, X. J. WANG, M. S. CHEN et al., 2005 OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res. 15: 593-603. LONDO, J. P., Y.-C. CHIANG, K.-H. HUNG, T.-Y. CHIANG and B. A. SCHAAL, 2006 Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 103: 9578-9583. MARTIN, G. B., A. J. BOGDANOVE and G. SESSA, 2003 Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54: 23-61. MAYNARD-SMITH, J., and J. HAIGH, 1974 The hitch-hiking effect of a favorable gene. Genet. Res. 23: 23-35. MCDONALD, J. H., and M. KREITMAN, 1991 Adaptive protein evolution at the Adh locus in Drosophila Nature 351: 652 - 654. MEYERS, B. C., A. KOZIK, A. GRIEGO, H. KUANG and R. W. MICHELMORE, 2003 Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15: 809-834. MIKI, D., R. ITOH and K. SHIMAMOTO, 2005 RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138: 1903-1913. MIKKELSEN, M. D., C. H. HANSEN, U. WITTSTOCK and B. A. HALKIER, 2000 Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 275: 33712-33717. MITTLER, R., S. VANDERAUWERA, M. GOLLERY and F. VAN BREUSEGEM, 2004 Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490-498. MIZUTANI, M., and D. OHTA, 2010 Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 61: 291-315. MOLDENHAUER, K. A. K., and J. H. GIBBONS, 2003 Rice morphology and development, pp. 103-127 in Rice: origin, history, technology, and production, edited by C. W. SMITH and R. H. DILDAY. John Wiley & Sons, Inc., Hoboken, New Jersey. MONDRAGÓN-PALOMINO, M., B. C. MEYERS, R. W. MICHELMORE and B. S. GAUT, 2002 Patterns of positive selection in the complete NBS-LRR Gene family of Arabidopsis thaliana. Genome Res. 12: 1305-1315. MONOSI, B., R. J. WISSER, L. PENNILL and S. H. HULBERT, 2004 Full-genome analysis of resistance gene homologues in rice. Theor. Appl. Genet. 109: 1434-1447. MORISHIMA, H., Y. SANO and H. I. OKA, 1984 Differentiation of perennial and annual types due to habitat conditions in the wild rice Oryza perennis. . Plant Syst. Evol. 144: 119-135. MOU, Z., W. FAN and X. DONG, 2003 Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944. MUR, L. A. J., P. KENTON, R. ATZORN, O. MIERSCH and C. WASTERNACK, 2006 The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140: 249-262. NANDA, A. K., E. ANDRIO, D. MARINO, N. PAULY and C. DUNAND, 2010 Reactive oxygen species during plant-microorganism early interactions. J. Integr. Plant Biol. 52: 195-204. NAVARRO, L., C. ZIPFEL, O. ROWLAND, I. KELLER, S. ROBATZEK et al., 2004 The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135: 1113-1128. NEI, M., 1987 Molecular evolutionary genetics. Columbia University, New York. NIMCHUK, Z., T. EULGEM, B. F. HOLT III and J. L. DANGL, 2003 Recognition and response in the plant immune system. Annu. Rev. Genet. 37: 579-609. NORDBORG, M., and H. INNAN, 2002 Molecular population genetics. Curr. Opin. Plant Biol. 5: 69-73. OKA, H. I., 1988 Origin of cultivated rice. Japan Scientific Societies Press, Tokyo/Elsevier, Amsterdam. ONO, E., H. L. WONG, T. KAWASAKI, M. HASEGAWA, O. KODAMA et al., 2001 Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 98: 759-764. PASSARDI, F., C. PENEL and C. DUNAND, 2004 Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 9: 534-540. PENG, Y., L. E. BARTLEY, X. CHEN, C. DARDICK, M. CHERN et al., 2008 OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. Plant 1: 446-458. POSADA, D., and K. A. CRANDALL, 1998 MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818. PRZEWORSKI, M., 2002 The signature of positive selection at randomly chosen loci. Genetics 160: 1179-1189. QIU, D., J. XIAO, W. XIE, H. LIU, X. LI et al., 2008 Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol. Plant 1: 538-551. QU, S., G. LIU, B. ZHOU, M. BELLIZZI, L. ZENG et al., 2006 The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172: 1901-1914. RADWANSKI, E. R., and R. L. LAST, 1995 Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7: 921-934. RAKSHIT, S., A. RAKSHIT, H. MATSUMURA, Y. TAKAHASHI, Y. HASEGAWA et al., 2007 Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice Theor. Appl. Genet. 114: 731-743. ROSE, L. E., P. D. BITTNER-EDDY, C. H. LANGLEY, E. B. HOLUB, R. W. MICHELMORE et al., 2004 The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166: 1517-1527. ROSS, C. A., Y. LIU and Q. J. SHEN, 2007 The WRKY gene family in rice (Oryza sativa). J. Integr. Plant Biol. 49: 827-842. ROSSMAN, A. Y., R. J. HOWARD and B. VALENT, 1990 Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 82: 509-512. ROZAS, J., J. C. SANCHEZ-DELBARRIO, X. MESSEGUER and R. ROZAS, 2003 DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. RUEPP, A., A. ZOLLNER, D. MAIER, K. ALBERMANN, J. HANI et al., 2004 The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucl. Acids Res. 32: 5539-5545. RYBKA, K., M. MIYAMOTO, I. ANDO, A. SAITO and S. KAWASAKI, 1997 High resolution mapping of the indica-derived rice blast resistance genes II. Pi-ta2 and Pi-ta and a consideration of their origin. Mol. Plant-Microbe Interac. 10: 517-524. RYU, H.-S., M. HAN, S.-K. LEE, J.-I. CHO, N. RYOO et al., 2006 A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 25: 836-847. SCHÜRMANN, P., and B. B. BUCHANAN, 2008 The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid. Redox Signal. July: 1235-1274. SCHEER, J. M., and C. A. RYAN, 2002 The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc. Natl. Acad. Sci. USA 99: 9585-9590. SCHULZE, B., T. MENTZEL, A. JEHLE, K. MUELLER, S. BEELER et al., 2010 Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285: 9444-9451. SHEN, J., H. ARAKI, L. CHEN, J.-Q. CHEN and D. TIAN, 2006 Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 172: 1243-1250. SHIU, S.-H., and A. B. BLEECKER, 2001 Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98: 10763-10768. SHIU, S.-H., W. M. KARLOWSKI, R. PAN, Y.-H. TZENG, K. F. X. MAYER et al., 2004 Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16: 1220-1234. SONG, W.-Y., G.-L. WANG, L.-L. CHEN, H.-S. KIM, L.-Y. PI et al., 1995 A receptor kinase-like protein encoded by the rice disease resistance Gene, Xa21. Science 270: 1804-1806. SPOEL, S. H., Z. MOU, Y. TADA, N. W. SPIVEY, P. GENSCHIK et al., 2009 Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137: 860-872. STAHL, E. A., G. DWYER, R. MAURICIO, M. KREITMAN and J. BERGELSON, 1999 Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400: 667-671. STERGIOPOULOS, I., H. A. VAN DEN BURG, B. ÖKMEN, H. G. BEENEN, S. VAN LIERE et al., 2010 Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc. Natl. Acad. Sci. USA 107: 7610-7615. STUKENBROCK, E. H., S. BANKE, M. JAVAN-NIKKHAH and B. A. MCDONALD, 2007 Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Mol. Biol. Evol. 24: 398-411. SUN, X., Y. CAO, Z. YANG, C. XU, X. LI et al., 2004 Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37: 517-527. SUZUKI, H., 1975 Meteorological factors In epidemiology of rice blast. Annu. Rev. Phytopathol. 13: 239-256. SWOFFORD, D. L., 2002 PAUP*: phylogenetic analysis using parsimony (and other methods) 4.0 Beta Sinauer Associates, Massachusetts, Sunderland. TAJIMA, F., 1989 Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. TAMELING, W. I. L., and M. H. A. J. JOOSTEN, 2007 The diverse roles of NB-LRR proteins in plants. Physiol. Mol. Plant Pathol. 71: 126-134. TANG, T., J. LU, J. HUANG, J. HE, S. R. MCCOUCH et al., 2006 Genomic variation in rice: genesis of highly polymorphic linkage blocks during domestication. PLoS Genet. 2: e199. TANG, T., and S. SHI, 2007 Molecular population genetics of rice domestication. J. Integr. Plant Biol. 49: 769-775. THOMPSON, J. D., T. J. GIBSON, F. PLEWNIAK, F. JEANMOUGIN and D. G. HIGGINS, 1997 The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25: 4876-4882. TORRES, M. A., and J. L. DANGL, 2005 Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8: 397-403. VALENT, B., L. FARRALL and F. G. CHUMLEY, 1991 Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127: 87-101. VAUGHAN, D. A., H. MORISHIMA and K. KADOWAKI, 2003 Diversity in the Oryza genus. Curr. Opin. Plant Biol. 6: 139-146. WANG, Z. X., M. YANO, U. YAMANOUCHI, M. IWAMOTO, L. MONNA et al., 1999 The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19: 55-64. WATTERSON, G. A., 1975 On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7: 256-276. WONG, H. L., T. SAKAMOTO, T. KAWASAKI, K. UMEMURA and K. SHIMAMOTO, 2004 Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 135: 1447-1456. YAMADA, M., 1985 Pathogenic specialization of rice blast fungus in Japan. Jpn. Agr. Res. Q. 19: 178-183. YANG, S., Z. FENG, X. ZHANG, K. JIANG, X. JIN et al., 2006 Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol. Biol. 62: 181-193. ZEIGLER, R. S., S. A. LEONG and P. S. TENG, 1994 Rice blast disease. Commonwealth Agricultural Bureau International, Wallingford, UK. ZHANG, Y., and L. WANG, 2005 The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol. Biol. 5: 1. ZHANG, Z.-L., M. SHIN, X. ZOU, J. HUANG, T.-H. HO et al., 2009 A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. Plant Mol. Biol. 70: 139-151. ZHOU, B., S. QU, G. LIU, M. DOLAN, H. SAKAI et al., 2006 The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant Microbe Interac. 19: 1216-1228. ZHOU, T., Y. WANG, J.-Q. CHEN, H. ARAKI, Z. JING et al., 2004 Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics 271: 402-415. ZHU, Q., and S. GE, 2005 Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol. 167: 249-265. ZHU, Q., X. ZHENG, J. LUO, B. S. GAUT and S. GE, 2007 Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: Severe bottleneck during domestication of rice. Mol. Biol. Evol. 24: 875-888. ZIPFEL, C., and G. FELIX, 2005 Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol. 8: 353-360. ZIPFEL, C., S. ROBATZEK, L. NAVARRO, E. J. OAKELEY, J. D. G. JONES et al., 2004 Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48529 | - |
| dc.description.abstract | Pi-ta為水稻抗病(R)蛋白質,可專一性的辨識稻熱病病原菌的致病因子AVRpita,啟動抗病反應。此研究分析36個亞洲野生稻O. rufipogon的Pi-ta基因序列,經排列比較的結果,可以分成兩類基因群:H1及H2;藉由與外群非洲野生稻O. barthii比較,可推論H1衍生自H2。已知Pi-ta的第918胺基酸為決定對AVRpita的辨識專一性,由最大似然樹的結果,H1與水稻的Pi-ta分在同一個支序內,在第918胺基酸同樣為具有抗病性的丙胺酸,而H2則全都為不具抗病性的絲胺酸,以此胺基酸的差異分成抗病/不抗病主要的兩群進行相關的分析。H1以稻熱病病原菌IK81-25(具有AVRpita)接種,全為抗病,而H2有部分呈現不符合預期的結果,可能有不同的抗病(R)基因及致病因子(Avr)基因交互作用所造成。
由Pi-ta序列建構的基因樹結構、序列的變異明顯減小、高πnon/πsyn值及變異的相關地理分佈,推測野生稻的Pi-ta可能受到重複的選汰清除(recurrent selective sweep)及功能限制(functional constraint)的作用,而非單純族群擴張的結果。我們推論H1的為近期受到選汰清除作用,可能發生於早期稻米馴化的時期,稻熱病病原菌由小米轉移至野生稻或水稻後,因具有抗病的功能而被保留下來。而H2為更早期的選汰清除作用的結果,並受到功能限制的作用,而呈現出其低序列變異的特徵。 另外,我們運用微陣列分析具有Pi-ta基因的野生稻,在接種稻熱病病原菌後早期表現及抑制的基因。似接受器激酶(receptor-like kinase),細胞色素P450及WRKY轉錄因子為主要調節的基因類別;其它與抗病功能相關的基因,例如參與活性氧累積,訊息傳遞鏈及色胺酸的合成的基因亦有明顯的變化。未來需再進一步的實驗,來驗証這些廣泛調節基因功能及交互作用,這將有助於我們更了解水稻對抗生物逆境的機制。 | zh_TW |
| dc.description.abstract | Rice blast disease is caused by the fungal pathogen Magnaporthe grisea. The resistant response is triggered by a physical interaction between the protein products of the host R (Resistance) gene Pi-ta and the pathogen Avr (Avirulence) gene AVRpita. The genotype variation and resistant/susceptible phenotype at the Pi-ta locus of wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), was surveyed in 36 locations worldwide to study the molecular evolution and functional adaptation of the Pi-ta gene. The low nucleotide polymorphism in the Pi-ta gene of O. rufipogon was similar to that of O. sativa, but greatly differed from what has been reported for other O. rufipogon genes. The haplotypes can be subdivided into two divergent haplogroups named H1 and H2. H1 is derived from H2, with nearly no variation and at a low frequency. H2 is common and the ancestral form. The LRR domain has a high πnon/πsyn ratio and the low polymorphism of Pi-ta gene might cause primarily by recurrent selective sweep and constraint by other putative physiological function. Meanwhile, we provide data to show the amino acid, Ala-918, of H1 in the leucine-rich repeat (LRR) domain has close relationship with resistant phenotype. H1 might arise recently during rice domestication, and associate with the scenario of the blast pathogen host shift from Italian millet to rice.
To identify early induced and repressed defense genes involved in broad-spectrum resistance to rice blast, microarray is used to compare differentially expressed in AVRpita-resistant and -susceptible wild rice O. rufipogon. Receptor-like kinase (RLK), cytochrome P450, and WRKY transcription factor are the majority gene families induced. In addition, some genes that participate in ROS, signal transduction, and tryptophan pathway are discussed. Further functional validation and analysis of these genes will enhance our understanding of the molecular mechanism of broad-spectrum resistance in rice. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:00:41Z (GMT). No. of bitstreams: 1 ntu-100-D92b42001-1.pdf: 1486768 bytes, checksum: 18b7c37b7e6736ea48fd1c2263c23bfd (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 IV
ABSTRACT V Section I:Molecular Evolution of Pi-ta Gene Resistant to Rice Blast in Wild Rice (O. rufipogon) 1 INTRODUCTION 2 MATERIALS AND METHODS 5 Plant materials---------------------------------------------------------------------------- 5 Polymerase chain reaction (PCR) and sequencing--------------------------------- 5 Assessment of disease phenotypes----------------------------------------------------- 6 Data analysis------------------------------------------------------------------------------- 7 RESULTS 8 Levels and patterns of nucleotide variations in the Pi-ta gene------------------- 8 Tests of positive selection---------------------------------------------------------------- 10 Assessment of disease phenotypes----------------------------------------------------- 11 DISSCUSSION 12 Admixtures between Oryza specie----------------------------------------------------- 12 The variation of Pi-ta genes may primarily caused by recurrent selective sweep-------------------------------------------------------------------------------------- 13 Evolutionary history and distribution of the Pi-ta gene resistant to rice blast---------------------------------------------------------------------------------------- 16 Table 1.1 Accessions of O. rufipogon (OR), O. barthii (OB), and O. sativa (OS) and their AVRpita-dependent resistance phenotypes---------- 19 Table 1.2 Primers used for amplification and sequencing of the Pi-ta gene---- 20 Table 1.3 Polymorphism and neutral test of different groups of the Pi-ta gene------------------------------------------------------------------------------- 21 Table 1.4 Summary of the McDonald-Kreitman test------------------------------- 22 Table 1.5 The nonsynonymous over synomymous polymophism and divergence of Pi-ta gene of wild rice---------------------------------------- 23 Table 1.6 Summary Tajima’s D values of reference loci--------------------------- 24 Fig. 1.1 Summary of DNA variations in the 4.3-kb Pi-ta region of O. rufipogon, O. barthii, and O. sativa----------------------------------------- 25 Fig. 1.2 Maximum-likelihood tree of the complete DNA sequence of Pi-ta alleles----------------------------------------------------------------------------- 26 Fig. 1.3 Sliding window analyses-------------------------------------------------------- 27 Fig. 1.4 Disease reaction to Magnaporthe grisea IK81-25 (AVRpita) on wild rice and rice cultivars--------------------------------------------------------- 28 Fig. 1.5 Geographic distributions of the surveyed haplogroups of the O. rufipogon and O. bathii accessions------------------------------------------ 29 Section II 30 Characterization of Defense Response Genes of Incompatible Interaction in Wild Rice O. rufipogon with Pi-ta Gene INTRODUCTION 31 MATERIALS AND METHODS 33 Leaf materials for microarray analysis---------------------------------------------- 33 Annotation of significantly regulated genes----------------------------------------- 34 RESULTS AND DISSCUSSION 34 Metabolism reprogramming and protein-protein interaction are dominant following infection by rice blast----------------------------------------------------------- 34 Receptor-like kinases (RLKs) are the majority induced genes------------------ 35 Reactive oxygen species (ROS) might be accumulated---------------------------- 37 Enzymes in tryptophan pathway and cytochrome P450s might catalyze specific metabolites--------------------------------------------------------------------- 38 OsRac4 and OsNPR1 might play the pivotal role in biotic stress--------------- 39 WRKYs might be crucial transcription factors for defense genes expression-------------------------------------------------------------------------------- 40 Table 2.1 Partial list of significantly induced and repressed genes (fold change >2 or < -2) in the incompatible interaction between wild rice and rice blast-------------------------------------------------------------- 42 Fig. 2.1 Numbers of genes expression in the incompatible interaction between wild rice O. rufipogon and rice blast M. grisea based on MIPS functional catalogue--------------------------------------------------- 43 LITERATURE CITED 45 | |
| dc.language.iso | en | |
| dc.subject | 微陣列分析 | zh_TW |
| dc.subject | 抗病 | zh_TW |
| dc.subject | 野生稻 | zh_TW |
| dc.subject | 稻熱病 | zh_TW |
| dc.subject | Pi-ta基因 | zh_TW |
| dc.subject | 多型性 | zh_TW |
| dc.subject | rice blast | en |
| dc.subject | microarray | en |
| dc.subject | Disease resistance | en |
| dc.subject | polymorphism | en |
| dc.subject | wild rice | en |
| dc.subject | Pi-ta gene | en |
| dc.title | 野生稻抗病基因Pi-ta分子演化及其相關誘導防禦基因之研究 | zh_TW |
| dc.title | Molecular Evolution and Related Defense Response of Pi-ta Gene in Wild Rice (Oryza rufipogon) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何國傑,鄭石通,黃士穎,江友中,陳凱儀 | |
| dc.subject.keyword | 抗病,野生稻,稻熱病,Pi-ta基因,多型性,微陣列分析, | zh_TW |
| dc.subject.keyword | Disease resistance,wild rice,rice blast,Pi-ta gene,polymorphism,microarray, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
