Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫志鴻(Chih-Hong Sun)
dc.contributor.authorChia-Ni Chiangen
dc.contributor.author蔣佳霓zh_TW
dc.date.accessioned2021-06-15T06:58:03Z-
dc.date.available2014-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-01-27
dc.identifier.citation內政部建築研究所 (2001) 太陽能光電設備應用於建築物之研究與評估,內政部建築研究所計畫成果報告。
內政部建築研究所 (2005) 整合型太陽能光電板結合建築外殼之效益分析,內政部建築研究所協同研究報告。
太陽煉金術:透視全球太陽光電產業 (2006) 台北市:財訊出版。
太陽光電資訊網 (2005) http://solarpv.itri.org.tw/。[1 February 2010]
余政達與蔡宏達 (2006) 台灣地區太陽能利用之潛力評估,2006年第四屆資源與環境管理學術研討會論文集,台南:立德大學環境資源學系,99-111。
陳琦玲、林正鈁、劉滄棽 (1994) 臺灣地區平地日射量之估算分析,中華農業研究,43 (1) : 77-92。
黃國禎與徐森雄 (1982) 臺灣地區日射與日照關係之初步探討,氣象學報,28 (1) : 22-29。
黃文雄 (1978) 太陽能理論與應用,台北市:協志工業叢書出版公司。
楊素華、蔡泰成 (2005) 太陽能發展,科學發展月刊,390 : 51-55。
郭岳龍 (2001) 太陽光發電示範系統介紹與設置狀況,太陽能學刊,6 (2) : 43-48。
經濟部能源局 (2007) 能源科技研究發展白皮書,68-99。
Al-Sulaiman, F. A. and Ismail, B. (1997) Estimation of monthly average daily and hourly solar radiation impinging on a sloped surface using the isotropic sky model for Dhahran, Saudi Arabia, Renewable Energy, 11 (2): 257-262.
Almorox, J., Benoto, M., Hontoria, C. (2005) Estimation of monthly Angstrom–Prescott equation coefficients from measured daily data in Toledo, Spain, Renewable Energy, 30 : 931-936.
Ampratwum, B. D and Dorvlo, A. S. S. (1999) Estimation of solar radiation from the number of sunshine hours, Applied Energy, 63 : 161-167.
Angstrom, A. (1924) Solar and terrestrial radiation, Quart J Roy Met Soc, 50: 121-125.
Bayer, A., Boyle, D. S., Heinrich, M. R., O'Brien, P., Otway, D. J., Robbe, O. (2000) Developing environmentally benign routes for semiconductor synthesis: improved approaches to the solution deposition of cadmium sulfide for solar cell applications, Green Chemistry, 2 (2) : 79-85.
Chang, J. H. (1961) Microclimate of sugar cane, Hawaiian Planters’ Record, 56 (3) : 3-5.
Duffie, J.A. and Beckman, W. A. (1974) Solar energy thermal processes, New York : Wiley.
Elasfouri, A. S., Maraqa, R., Tabbalat, R. (1990) Shading control by neighbouring buildings: application to buildings in Ammam, Jordan, International Journal of Refrigeration, 14 (2) : 112-116.
Ertekin, C., Yaldiz, O., (2000) Comparison of some existing models for estimating global solar radiation for Antalya (Turkey), Energy Conversion and Management, 41: 311-330.
Forero, N. L., Caicedo, L. M., Gordillo, G. (2007) Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogota, Renewable Energy, 32: 2590-2602.
Hay, J. E. (1979) Calculation of monthly mean solar radiation for horizontal and inclined surfaces, Solar Energy, 23 : 301-307.
IPCC (2000) Emissions scenarios, Special report of the Intergovernmental Panel on Climate Change, United Kingdom : Cambridge University Press.
IPCC (2007) IPCC Forth Assessment Report, “Climate Change 2007-Synthesis Report”, Switzerland.
Iqbal, M. (1978) Estimation of the monthly average of the diffuse component of total insolation on a horizontal surface, Solar Energy, 20 : 101-105.
Jansen, T. J. (1985) Solar engineering technology, New Jersey: Pretice-Hall.
Jin, Z., Yezheng, W., Gang, Y. (2005) General formula for estimation of monthly average daily global solar radiation in China, Energy Conversion and Management, 46: 257-268.
Kambezidis, H. D., Psiloglou, B. E., Gueymard, C. (1994) Measurements and models for total solar irradiance on inclined surface in Athens, Greece, Solar Energy, 53 (2): 177-185.
Klein, S. A. (1977) Calculation of monthly average insolation on tilted surfaces, Solar Energy, 19 :325-329.
Klucher, T. M. (1979) Evaluation of models to predict insolation on tilted surfaces, Solar Energy, 23: 111-114.
Kumar, L., Skidmore, A. K., Knowles, E. (1997) Modelling topographic variation in solar radiation in a GIS, International Journal of Geographical Information Science, 11 (5) : 475-497.
Liu, B. Y. H and Jordan, R. C. (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy, 4 (3) : 1-19.
Liu, B. Y. H and Jordan, R. C. (1963) The long term average performance of flat-plate solar-energy collectors, Solar Energy, 7 (2) : 53-74.
Martin, C. L. and Goswami, D. Y. (2005) Solar energy pocket reference, International Solar Energy Society, London: Earthscan, 2-16.
Max, N. L. (1986) Atmospheric illumination and shadows, ACM SIGGRAPH Computer Graphics, 20 (4) :117-124.
Olofsson, W. L. and Bengtsson, V. I. (2008) Solar energy: research, technology and applications, New York: Nova Science Publishers.
Orgill, J.F. and Hollands, K. G. T. (1977) Correlation equation for hourly diffuse radiation on a horizontal surface, Solar Energy, 19: 357-359.
Pisimanis, D. and Notaridou, V. (1987) Estimating direct, diffuse and global solar radiation on an arbitrarily inclined plane in Greece, Solar Energy, 39 (3): 159-172.
Prescott, J. A. (1940) Evaporation from a water surface in relation to solar radiation, Trans. R. Soc. Sci. Austr., 64 : 114-118.
Reagan, J. A. and Acklam, D. M. (1979) Solar reflectivity of common building-materials and its influence on the roof heat gain of typical southwestern U.S.A. residences, Energy and Buildings, 2 : 237-248.
Ruth, D. W. and Chan, R. C. (1976) The relationship of diffuse radiation to total radiation in Canada, Solar Energy, 18 (2) : 153-154.
Sayigh, A. A. M. (1979) Solar Energy Application in Buildings, New York: Academic Press.
Temps, R. C. and Coulson, K. L. (1977) Solar radiation incident upon slopes of different orientations, Solar Energy, 19 (2) : 179-184.
Thevenard, D. and Haddad, K. (2006) Ground reflectivity in the context of building energy simulation, Energy and Buildings, 38: 972-980.
Tuller, S. E. (1976) The relationship between diffuse, total and extra terrestrial solar radiation, Solar Energy, 18 : 259-263.
US Energy Information Administration (2008) World Net Geothermal, Solar, Wind, and Wood and Waste Electric Power Generation (Billion Kilowatthours), 1980-2006 , International Energy Annual 2006.
Whitted, T. (1980) An improved illumination model for shaded display, Communications of the ACM, 23: 343-349.
Wu, Q., Xu, H., Zhou, W . (2008) Development of a 3D GIS and its application to karst areas, Environmental Geology , 54 : 1037-1045.
Yan, W .(2006) Integrating web 2D and 3D technologies for architectural visualization- applications of SVG and X3D VRML in environmental behavior simulation, Proceedings of the eleventh international conference on 3D web technology , ACM New York, NY , USA.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48468-
dc.description.abstract在全球氣候變遷、自然災害頻傳的今日,積極開發再生能源,減少使用破壞地球的非再生能源為全球的共同趨勢。太陽能具有不受國家地區限制以及無污染的優點,此外,太陽能發電擁有在夏季為發電尖峰的特性,恰巧成為緩解都市夏季電力緊繃的最佳選擇。然而,目前都市建築物大多將太陽光電模板設置於建築物屋頂上,此裝置面積通常至多僅能供應一層樓的用電,無法供應整棟大樓的用電量。如能善加利用都市建築物之表面進行太陽能發電,一方面減少非再生能源的消耗,一方面成為能源提供者,定能為地球的永續發展盡份心力。因此,為了增加發電量,本研究考慮建築物外牆廣大的面積,結合太陽輻射計算模式及陰影演算模式,以中央氣象局近十年之太陽輻射資料,試圖分析台北市中正區建築物外牆最適合架設太陽光電模板的方位、高度、面積及其輻射能量。以範例建物作為研究結果之展現,研究結果顯示,建築物接收的輻射量確實會因受陰影遮蔽而有所減少,而建築立面上接收之總輻射量高於屋頂之水平面。zh_TW
dc.description.abstractGlobal climate changes and natural disasters have happened frequently around the world. It has become a consensus that we should actively develop renewable energy resources and reduce the use of non-renewable energy resources of the Earth. Solar energy has no pollution and does not restrict to regions. Besides, power generated by solar energy reaches the peak in summer which becomes the best solution to ease off the high demand on electricity in summer. However at present, most photovoltaic solar panels are installed on the roofs. The power so generated can only meet one-floor’s electricity demand. Therefore, in order to increase the efficiency of the power generation, the present work took into account the exterior surfaces of buildings, and tried to find the optimum installation position of photovoltaic solar panels for buildings. In this study, we used the solar radiation data of the last decade from the Central Weather Bureau of Taiwan to construct a solar radiation calculation model and a shadow algorithm for the Zhongzheng District in Taipei city, Taiwan. The optimum orientation and height for installing photovoltaic solar panels were calculated. The research results which took a sample building for an example showed that the radiation received by vertical surfaces was reduced because of shadow effect. Besides, the total radiation received by vertical surfaces is more than that received by horizontal surface. The corresponding installation area and irradiation were also computed to provide a reference for the public and the government.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:58:03Z (GMT). No. of bitstreams: 1
ntu-100-R97228011-1.pdf: 4193348 bytes, checksum: 821ce57601338c9d641e00eaa6933188 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書 I
謝辭 II
中文摘要 III
英文摘要 IV
圖目錄 IX
表目錄 XI
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 3
1.2.1問題 3
1.2.2研究目的 3
第二章 文獻回顧 4
第一節 太陽能 4
2.1.1能源危機與太陽能應用 4
2.1.2太陽光電 6
2.1.3建築與太陽能的關係 10
第二節 太陽日照 11
2.2.1太陽運行模式 11
2.2.2太陽位置 11
2.2.3太陽入射角度 14
2.2.4日出與日落時刻 15
第三節 太陽輻射 16
2.3.1太陽輻射傳播與分類 16
2.3.2水平面太陽輻射 17
2.3.3傾斜面太陽輻射 25
2.3.4小結 28
第四節 太陽日照陰影 31
2.4.1陰影的重要性 31
2.4.2日照陰影模型 31
第五節 建築物應用太陽光電設備及國內外發展概況 33
2.5.1太陽光電設備和建築物的結合 33
2.5.2德國發展概況 36
2.5.3日本發展概況 38
2.5.4台灣發展概況 39
第六節 3D GIS發展與應用 43
2.6.1 3D GIS之發展 43
2.6.2 3D GIS之應用 47
第三章 研究方法 49
第一節 研究範圍及基礎資料 49
3.1.1研究範圍 49
3.1.2太陽輻射資料 50
第二節 研究架構 52
第三節 陰影遮蔽 54
3.3.1建立觀察點 54
3.3.2產生太陽光線 54
3.3.3計算日照累計值 55
3.3.4 空間內插 56
第四節 太陽輻射計算 57
3.4.1各輻射分量計算 57
3.4.2總輻射計算 61
第四章 研究結果與討論 64
第一節 中正區月平均水平面輻射 64
第二節 最佳架設位置分析 65
4.2.1輻射強度值 66
4.2.2最佳架設方位 68
4.2.3最佳架設高度及面積 70
第三節 產生電力分析 71
第五章 結論與建議 74
第一節 結論 74
第二節 研究限制與後續研究建議 75
5.2.1研究限制 75
5.2.2後續研究建議 75
參考文獻 77
附錄一 陰影演算程式碼 82
dc.language.isozh-TW
dc.title3D GIS在都市建築之應用-以太陽光電模板最佳架設位置為例zh_TW
dc.titleApplication of 3D GIS to Urban Buildings–A Case Study of the Optimum Position of Photovoltaic Solar Panelsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee朱子豪(Tzu-How Chu),周學政(Hsueh-Cheng Chou)
dc.subject.keyword太陽輻射,傾斜面太陽輻射,陰影演算法,三維地理資訊系統,zh_TW
dc.subject.keywordsolar radiation,radiation on inclined surfaces,shadow algorithm,3D GIS,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2011-01-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved