Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48463
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君
dc.contributor.authorJun-Yi Yaoen
dc.contributor.author姚雋儀zh_TW
dc.date.accessioned2021-06-15T06:57:50Z-
dc.date.available2021-01-26
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-01-28
dc.identifier.citation1. 李青芸. 2005. 菸草微綠嵌紋病毒引起之辣椒新病害及其感染性選殖株之建構. 國立台灣大學植物病理與微生物學研究所碩士論文.
2. 徐世典、張東柱、張清安、蔡進來、蔡東簒等編. 2002. 台灣植物病害名彙. 台灣植物病理學會.
3. Adams, M. J., Antoniw, J. F., and Kreuze, J. 2009. Virgaviridae: a new family of rod-shaped plant viruses. Arch. Virol. 154:1967–1972.
4. Bald, J. G. and Goodchild, D. J. 1960. Tobacco Mosaic Virus in Nicotiana glauca. Phytopathology 50: 497-499.
5. Balmori, E., Gilmer, D., Richards, K., Guilley, H., and Jonard, G. 1993. Mapping the promoter for subgenomic RNA synthesis on beet necrotic yellow vein virus RNA 3. Biochimie 75: 517-521.
6. Baulcombe, D. C., Ratcliff, F., and Harrison, B. D. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 1558-1560.
7. Black, L. L., Green, S. K., Hartman, G. L., and Poulos, J. M. 1991. Pepper disease: A field guide. AVRDC publication 88: 91-347.
8. Bodaghi, S., Yassi, M. N. A., and Dodds, J. A. 2000. Heterogeneity in the 3’-terminal untranslated region of tobacco mild green mosaic tobamoviruses from Nicotiana glauca resulting in variants with three or six pseudoknots. J. gen. virol. 81: 577-586.
9. Bokman, S. H., Ward, W.W. 1981. Renaturation of Aequorea gree-fluorescent protein. Biochem. Biophys. Res. Commun. 101(4):1372-80.
10. Capoor, S. P. 1962. Southern sunn-hemp mosaic virus; a strain of tobacco mosaic virus. Phytopathology 52: 393-397.
11. Casper, S. J., Holt, C. A. 1996. Expression of the green fluorescent gene from a tobacco mosaic virus-based vector. Gene 173: 69-73.
12. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D. 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824.
13. Chapman, S. N., Grdzelishvili, V. Z., Dawson, W. O., and Lewandowski, D. J. 2000. Mapping of the Tobacco Mosaic Virus movement protein and coat protein subgenomic RNA promoters in Vivo. Virology 275: 177-192.
14. Choi, G. S., Kim, J. H., Ryu, K. H., Choi, J. K., Chae, S. Y., Kim, J. S., Chung, B. N., Kim, H. R. and Choi, Y. M.. 2002. First Report of Tobacco mild green mosaic virus Infecting Pepper in Korea. Plant Pathol. J. 18: 323-327.
15. Cormack, B. P., Valdivia, R. H., and Falkow, S. 1996. Facs optimized mutants of the green fluorescent protein (GFP). Gene 173: 33-38.
16. Culver, J. N., Dawson, W. O., Plonk, K., and Stubbs, G. 1995. Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 206: 724-730.
17. Culver, J. N., Lehto, K., Close, S. M., Hilf, M. E., and Dawson, W. O. 1993. Genomic position affects the expression of tobacco mosaic virus movement and coat protein gene. Proc. Natl. Acad. Sci. USA 90: 2055-2059.
18. Dawson, W. O., and Lehto, K. M. 1990. Regulation of tobamovirus gene expression. Adv. Virus. Res. 38: 307–342.
19. Dawson, W. O., Bubrick, P., and Grantham, G. L. 1988. Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology. Phytopathology 78: 783-789.
20. Dawson, W. O., Lewandowski, D. J., Hilf, M. E., Bubrick, P., and Raffo, A. J. 1989. A tobacco mosaic virus-hybrid expresses and loses and added gene. Virology 172: 285-292.
21. Desnick, R. J., Loannou, Y. A., and Eng, C. M. 1995. α−galactosidase A
deficiency: Fabry’s disease. In: Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D.
eds The merabolic bases of inherited diseases. McGraw-Hill, New York.
2741-2784.
22. DeWitt, D., Bosland, P. W., and Ludlam. 2003. Introduction. In, Pernezny, K.,
Roberts, P. D., Murphy, J. F. and Goldberg, N. P. eds. 2003. Compendium of
Pepper Disease. The American Phytopathological Society. APS PRESS
publication.
23. Dodds, J. A. 1998. Satellite tobacco mosaic virus. Annu. rev. phytopathol. 36:
295-310.
24. Dorokhov, Y. L., Ivanov, P. A., Komarova, T. V., Skulachev, M. V., and Atabekov,
J. G. 2006. An internal ribosome entry site located upstream of the
crucifer-infecting tobamovirus coat protein (CP) gene can be used for CP
synthesis in vivo. J. gen. Virol. 87: 2693-2697.
25. Donson, J., Kearney, C.M., Hilf, M. E., and Dawson, W.O. 1991. Systemic
expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc. Natl.
Acad. Sci. USA. 88: 7204-7208.
26. Edwardson, J. R., and Christie, R. G. 1997. Viruses Infecting Peppers and Other
Solanaceous Crops. Vols. 1 and 2. University of Florida Agricultural Experiment
Station, Institue of Food and agricultural Sciences, Gainesville.
27. Fauquet, C. M., Mayo, M. A., Desselberger, U., and Ball, L. A. 2005. Report of the
International Committee on Taxonomy of Viruses. Virus Taxonomy. 8: 1259.
Academic Press publication.
28. Fitchen, J., Beachy, R. N., and Hein, M. B. 1995. Plant virus expressing hybrid
coat protein with added murine epitope elicits autoantibody response. Vaccine 13: 1051-1057.
29. Fletcher, J. T. 1963. The epidemiology of tomato mosaic. IV. Persistence of virus
on clothing and glasshouse structures. Ann. appl. Boil. 52: 233.
30. Frail, A., Malpica, J. M., Aranda, M. A., Rodriguez-Cerezo, E. and Gracia-Arenal,
F. 1996. Genetic diversity in tobacco mild green mosaic tobamovirus infecting the
wild plant Nicotiana glauca. Virology 223: 148-155.
31. French, R., Janda, M., and Ahlquist, P. 1986. Bacterial gene inserted in an engineered
RNA virus: efficient expression in monocotyledonous plant cells. Science 231:
1294-1297.
32. Frolova, O. Y., Petrunia, I. V., Komarova, T. V., Kosorukov, V. S., and Sheval, E. V.
2010. Trastuzumab-binding peptide display by Tobacco mosaic virus. Virology
407: 7-13.
33. Garcia-Arenal, F. 1988. Sequence and structure at the genome 3’ end if the
U2-strain of tobacco mosaic virus, a histidine-accepting Tobamovirus. Virology
167: 201-206.
34. Grebenok, R. J. Pierson, E., Lambert, G. M., Gong, F. C., Afonso, C. L.,
Haldeman-Cahill, R., Carrington, J. C., Galbraith, D. W. 1997. Green-fluorescent
protein fusions for efficient characterization of nuclear targeting. The Plant
Journal 11: 573-586.
35. Green, S. K. 1993. Pepper virus researcher in Taiwan and other Asian country.
Council of Agriculture Plant Protection Series Proceeding of the Symposium on
Plant Virus and Virus-like Disease 1: 213-243.
36. Gultyaev, A. P., Batenburg, E. V., and Pleij, C. W. A. 1994. Similarities between
the secondary structure of satellite tobacco mosaic virus and tobamovirus RNAs. J.
Gen. Virol. 75: 2851-2856.
37. Gu, X., and Verma, D. P. S. 1997. Dynamics of phragmoplastin in living cells
during cell plate formation and uncoupling of cell elongation from the plane of
cell division. Plant Cell 15: 157-169.
38. Haas, J., Park, E. C., and Seed, B. 1996. Codon usage limitation in the expression
of HIV-1 envelope glycoprotein. Current Biology 6: 315-324.
39. Hamamoto, H., Sugiyama, Y., Nakagawa, N., Hashida, E., Matsunaga, Y. 1993. A
new tobacco mosaic virus vector and its use for the systemic production of
angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato.
Bio-Technology 11: 930-932.
40. Hanada, K., and Francki, R. I. B. 1989. Kinetic of velvet tobacco mottle virus satellite
RNA synthesis and encapsidation. Virology 170: 48-54.
41. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. 1997. Removal of a
cryptic intron and subcellular localization of green fluorescent protein are requiredto mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94:
2122-2127.
42. Helmer, G., Casadaban, M., Bevan, M., Kayes, L., and Chilton, M. 1984. A new
chimeric gene as a marker for plant transformation: The expression of Escherichia
coli  -Galactosidase in sunflower and tobacco cells. Nat. Biotechnol. 2: 520-527.
43. Helms, K. 1965. Interference between two strain of tobacco mosaic virus in leaves
of pinto bean. Virology 27: 346-50.
44. Heim, R., Cubitt, A. B., Adams, S. R., Boyd, A. E., Gross, L. A., Tsien, R. Y. 1995.
Understanding, improving and using green fluorescent proteins. Trend in Biochemical
Science 20: 448-455.
45. Heinlein, A., Epel, B. L., Padgett, H. S., and Beachy, R. N. 1995. Interaction of
Tobamovirus movement proteins with the plant cytoskeleton. Science 270:
1983-1985.
46. Hodgman, T. C. 1988. A new superfamily of replicative proteins. Nature (London)
333: 22-23.
47. Hori, K., and Watanabe, Y. 2003. Construction of a Tobamovirus vector that can
systemically spread and express foreign gene products in solanaceous plants. Plant
Biotechnol. 20: 129-136.
48. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. 1987. GUS fusions:
beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.
EMBO J. 20: 3901–3907.
49. Joelson, T., Kerblom, L. A., Oxelfelt, P., Standberg, B., Tomenius, K., and Morris
T. J. 1997. Presentation of a foreign peptide on the surface of tomato bushy stunt
virus. J. Gen. Virol. 78: 1213-1217.
50. Johnson, J. 1947. Virus attenuation and the separation of strain by specific host.
Phytopathology 37: 822-837.
51. Kelley, B. D. 2001. Biochemical engineering: bioprocessing of therapeutic proteins. Curr.
Opin. Biotechnol. 12: 173-174.
52. Knight, C. A., Silva, D. M., Dahl, D., and Tsugita, A. 1962. Two distinctive strains
of tobacco mosaic virus. Virology 16: 236-243.
53. Kohler, R. H., Zipfel, W. R., Webb, W. W., Hanson, M. R. 1997. The green
fluorescent protein as a marker to visualize plant mitochondria in vivo. The Plant
Journal 11: 613-621.
54. Koths K. 1995. Recombinant protein for medical use: the attractions and challenges. Curr.
Opin. Biotechnol. 6: 681-687.
55. Köhler, E. and Panjan, M. 1943. Das paramosaikvirus der tabakpflanze. Ber.
Dtsch. Bot. Ges. 61: 175-180. 56. Kovachecsky, I.C. 1963. Untersuchungen über das Wegeridimosaik in Bulgarien.
Journal of Phytopathology 49: 127-146.
57. Kumagai, M. H., Donson, J., Della-Cioppa, G., Harvey, D., Hanley, K., and Grill,
L. K. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived
RNA. Proc. Natl. Acad. Sci. USA 92: 1679-1683.
58. Kumagai, M. H., Turrpen, T. H., Weinzettl, N., Della-Cioppa, G., Turpen, A. M.,
Donson, J., Hilf, M. E., Grantham, G. L., Dawson, W. O., Chow, T. P., Piatak, J.
R., and Grill, L. K. 1993. Rapid high-level expression of biologically active
a-trichosanthin in transfected plants by an RNA viral vector. Proc. Natl. Acad. Sci.
USA 90: 427-430.
59. Leathers, V., Tanguay, R., Kobayashi, M., and Gallie, D. R. 1993. A
phylogenetically conserved sequence within viral 3’ untranslated RNA
pseudoknots regulates translation. Mol. Cell Biol. 13: 5331-5347.
60. Leffel, S. M., Mabon, S. A., Neal, C. 1997. Applications of green fluorescent
protein in plants. BioTechniques 23:912-918.
61. Li, C. Y. and Chang, Y. C. 2005. First identification of Tobacco mild green
mosaic virus on Capsicum annuum in Taiwan. Plant Pathology. 54: 258.
62. Lindbo, J. A. 2007. TRBO: a high-efficiency tobacco mosaic virus RNA-based
overexpression vector. Plant Physiol. 145: 1232-1240.
63. Liu, T. Y. 2000. Natural and biotech-derived therapeutic protein: What is the future?
Electrophoresis 21: 1914-1917.
64. Liu, Z., and Kearney, C. M. 2010. A tobamovirus expression vector for
agroinfection of legumes and Nicotiana. J. Biotechnol. 147: 151-159.
65. Man, M., and Epel, B. L. 2004. Characterization of regulatory elements within the
coat protein (CP) coding region of Tobacco mosaic virus affecting subgenomic
transcription and green fluorescent protein expression from the CP subgenomic
RNA promoter. J Gen Virol. 85: 1727-1738.
66. McCabe, D. E., Swain, W. F., Martinell, B. J., and Christoy, P. 1988. Stable
transformation of soybean (Glycine max) by particle acceleration. Bio Technology
6: 923-926.
67. Mccormick, A. A., Kumagai, M. H., Hanley, K., Turpen, T. H., Hakim, I., Grill, L.,
Tuse, D., Levy, S., and Levy, R. 1999. Rapid production of specific vaccines for
lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco
plants. Proc. Natl. Acad. Sci. USA 96: 703-708.
68. Mckinney, H. H. 1929. Mosaic disease in the Canary Islands, west Africa, and
Gibraltar. J. Agric. Res. 39: 557.
69. Millar, A. J., Short, S. R., Chua, N. H., and Kay, S. A. 1992. A novel circadian
phenotype based on firefly luciferase expression in transgenic plants. Plant cell 4: 1075-1087.
70. Miller, P. M., and Thornberry, H. H. 1958. A new viral disease of tomato and
pepper. Phytopathology 48: 665-670.
71. Mumford, R., Boonham, N., Tomlinson, J., and Barker, I. 2006. Advances in
molecular phytodiagnostics-new solutions for old problems. Eur. J. Plant Pathol.
116 : 1-19.
72. Mirkov, T. E., Mathew, D. M., Du Plesesis, D. H., and Dodds, J. A. 1989. Nucleotide
sequence and translation of satellite tobacco mosaic virus RNA. Virology 170: 139-146.
73. Morishima, N., Ido, T., Hamada, H., Yoshimoto, E., Mizumoto, H., Takeuchi, S.,
Kiba, A., Hikichi, Y. and Okuno, T. 2003. Infectious in vitro transcripts from a
cDNA clone of Tobacco mild green mosaic tobamovirus and its biological activity
in host and nonhost plants and in their protoplasts. J. Gen. Plant Pathol. 69:
335–338.
74. Parrella G., Verdin E., Gognalons P. and Marchoux G. 2006. Detection and
characterization of tobacco mild green mosaic virus (TMGMV) large type isolate
from trailing petunia in France. Commun Agric Appl Biol Sci. 71(3 Pt B): 1237-44.
75. Pernezny, K., Roberts, P. D., Murphy, J. F. and Goldberg, N. P. eds. 2003.
Compendium of Pepper Disease. The American Phytopathological Society. APS
PRESS publication.
76. Prasher, D. C., Eckenrode, V. J., Ward, W. W., Prendergast, F. G., and Cormier, M.
J. 1992. Primary structure of the Aequorea victoria green-fluorescent protein.
Gene 111: 229-233.
77. Rose, T. M., Henikoff, G., and Henikoff, S. 2003. CODEHOP
(COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design.
Nucleic Acids Res. 31: 3763-376.
78. Sheen J., Hwang, S., Niwa, Y., Kobayashi, H., Galbraith, D. W. 1995.
Green-fluorescent protein as a new vital marker in plant cells. Plant journal 8:
777-784.
79. Seed, B., and Sheen, J. Y. 1988. A simple phase-extraction assay for
chloramphenicol acyltransferase activity. Gene 67: 271-277.
80. Jackson, A. O., Scholthof, H. B. and Scholthof, K. G. 1996. Plant virus gene vectors for
transient expression of foreign proteins in plants. Annu. Rev. of Phytopathol. 34: 299-323.
81. Shivprasad, S., Pogue, G. P., Lewandowski, D. J., Hidalgo, J., Donson, J., Grill, L.
K., and Dawson, W. O. 1999. Heterologous sequences greatly affect foreign gene
expression in tobacco mosaic virus-based vectors. Virology 255: 312-323.
82. Siegal, A. and Wildman, S. G. 1954. Some natural relationships among strains of
tobacco mosaic virus. Phytopathology 44: 277–282. 83. Shivprasad, S., Pogue, G. P., Lewandowski, D. J., Hidalgo, J., Donson, J., Grill, L.
K., Dawson, W. O. 1999. Heterologous sequences greatly affect foreign gene
expression in Tobacco Mosaic Virus-based vector. Virology 255: 312-323.
84. Solis, I., Garcia-Arenal, F. 1990. The complete nucleotide sequence of the
genomic RNA of the tobamovirus tobacco mild green mosaic virus. Virology 177:
553-558.
85. Spitsin, S., Steplewski, K., Fleysh, N., Belanger, H., Mikheeva, T., Shivprasad, S.,
Dawson, W., Koprowski, H., and Yusibov, V. 1999. Expression of alfalfa mosaic
virus coat protein in tobacco mosaic virus (TMV) deficient in the production of its
native coat protein supports long-distance movement of a chimeric TMV. Proc.
Natl. Acad. Sci. USA 96: 2549-2553.
86. Surh, Y. J., and Lee, S. S. 1996. Capsaicum in hot chili pepper: carcinogen,
co-carcinogen or anticarcinogen? Food cosmet. toxicol. 34: 313-316.
87. Takamatsu, N., Ishikawa, M., Meshi, T., and Okada, Y. 1987. Expression of bacterial
chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA.
EMBO J. 6: 307-311.
88. Tobias, I., Rast, B., and Maat, D. Z. 1982. Tobamoviruses of pepper, eggplant, and
tobacco: comparative host reactions and serological relationships. Eur. J. Plant.
Pathol. 88: 257-268.
89. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G.
1997. The CLUSTAL_X windows interface: flexible strategies for multiple
sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:
4876-4882.
90. Usha, R., Rohll, J. B., Spall, V. E., Shanks, M., Maulie, A. J., Johnson, J. E., and
Lomonossoff, G. P. 1993. Expression of an Animal Virus Antigenic Site on the
Surface of a Plant Virus Particle. Virology 197: 366-374.
91. Valverde, R. A., and Dodds, J. A. 1986. Evidence for a satellite RNA associated naturally
with the U5 strain and experimentally with the U1 strain of tobacco mosaic virus. J. Virol.
67: 1875-1884.
92. Valverde, R. A., Heick, J. A., and Dodds, J. A. 1991. Interaction between satellite tobacco
mosaic virus, helper tobamoviruses, and their hosts. Phytopathology 81: 99-104.
93. Valverde, R. A., and Dodds, J. A. 1987. Some properties of isometric virus particle which
contain satellite RNA of tobacco mosaic virus. J. Gen. Virol. 68: 965-972.
94. Vincelli, P., and Tisserat, N. 2008. Nucleic acid-based pathogen detection in
applied plant pathology. Plant Dis. 92: 660-669.
95. Voinnet, O., Pinto, Y. M., and Baulcombe, D. C. 1999. Suppression of gene
silencing: A general strategy used by diverse DNA and RNA viruses of plants.
Proc. Natl. Acad. Sci. USA 96: 14147-1415296. Wetter, C. 1984. Antigenic relationships between isolates of mild dark-green
tobacco mosaic virus, and the problem of host –induced mutation. Phytopathology
74: 138-1312.
97. Yusibov, V., Modelska, A., Steplewski, K., Agadjanyan, M., Weiner, D., Hooper,
D. C. and Koprowski, H. 1997. Antigens produced in plants by infection with
chimeric plant viruses immunize against rabies virus and HIV-1. Proc. Natl. Acad.
Sci. USA 94: 5784-5788.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48463-
dc.description.abstract番椒作物源自南美洲,屬於茄科番椒屬(Capsicum spp.),在世界各地皆為重要經濟作物。據報導至少有8種tobamovirus能感染番椒;目前已從台灣田間分離出TMV及PMMoV,2003年本實驗室也首次在台灣分離出TMGMV-HP,為了解目前TMGMV在台對番椒為害之程度,本研究針對常見感染茄科作物之tobamovirus設計廣效性引子進行初步篩檢,再針對TMGMV及兩種台灣常見感染番椒之TMV及PMMoV分別設計專一性引子,加上植物粒線體nad5專一性引子對,研發出multiplex RT-PCR之檢測法。從宜蘭、花蓮、台北、桃園、台中等地採集番椒樣本,其中有4個樣本出現預期tobamovirus之片段,進一步以mutiplex RT-PCR檢測後,並未出現目標病毒之條帶,推測樣本可能遭受其他tobamovirus感染。雖然本次研究所採集之樣本中並未測到TMGMV,未來可利用此mutiplex RT-PCR檢測更多地方之番椒樣本,除可了解TMV及PMMoV之發生情形,更可確定TMGMV是否已對台灣之番椒造成威脅。另一方面,病毒載體已普遍應用於醫藥、基因功能研究及病毒與寄主間之基礎研究等領域。由於TMGMV尚未被報導研究作為病毒載體,因此本研究將TMGMV野生型p5-6以去除鞘蛋白基因,以及外加一段鞘蛋白subgenomic promoter等兩種不同方式,構築TMGMV表現載體pCRII-TG2和PCRII-TG3;並加入EGFP作為報導基因,構築出pCRII-TG2E及pCRII-TG3E。將TMGMV p5-6及其載體之生體外轉錄體分別接種至菸草原生質體及植株,結果顯示在菸草原生質體中能偵測出TMGMV載體的RNA累積及綠色螢光;其中pCRII-TG3能在植株中移動並表現鞘蛋白,雖然量較p5-6少。但帶有EGFP基因的pCRII-TG2E及pCRII-TG3E,在原生質體中RNA累積量變少,在單斑寄主上病徵出現時間延遲,其中pCRII-TG3E所引起之單斑周圍組織可觀察到綠色螢光,但pCRII-TG2E則無。兩載體在系統性寄主植株的接種葉中RNA累積量降低,也無法在植株上觀察到綠色螢光,顯示pCRII-TG3E失去預期的系統性移動能力。為使TMGMV載體能順利應用在相關研究上,必須將載體構築方式加以改良,以期未來能在植株上進行正常複製、移動及表現外源基因,以作為研究TMGMV與寄主植物間,或與其他病毒間交互作用之工具。zh_TW
dc.description.abstractPeppers, belonging to the genus Capsicum in the family Solanaceae, originated from South America and now become important crops worldwide. According to the literatures, there are at least 8 tobamovirus species infecting peppers. TMV and PMMoV have been isolated from the field in Taiwan. In addition, our lab first reported a pepper disease caused by TMGMV in 2003. To understand the disease incidence caused by TMGMV, the degenerate primers for pepper-infecting tobamoviruses were designed for preliminary detection. After that, we separately designed specific primers for TMGMV and two frequently found viruses in pepper (TMV and PMMoV). A multiplex RT-PCR was developed using the specific primers for these three viruses and plant mitochondria nad5 gene. Pepper samples collected from Ilan, Hualian, Taipei, Taoyuan and Taichung areas were first detected by tobamovirus degenerate primers. Four out of 108 samples were infected by tobamovirus. According to the following multiplex RT-PCR, the target viruses were not detected in these 4 samples. This result suggested that these samples may be infected by other tobamovirus. Although we did not detect TMGMV in the survey, the tobamovirus specific primers and multiplex RT-PCR can still be used in the future. Not only the occurrence of TMV and PMMoV can be investigated, but also the infection of TMGMV in peppers can be confirmed by this detection method. Viral vectors have been constructed for medical application, identifying unknown gene function and studying the interaction between virus and its host. Since TMGMV has never been reported as a viral vector, we used two different ways for vector construction. One (pCRII-TG2) is to delete most of the CP gene, and the other (pCRII-TG3) is to insert an additional CP subgenomic promoter (sgp). The EGFP gene was inserted into the viral vectors to construct pCRII-TG2E and pCRII-TG3E. RNA transcripts of TMGMV clones (p5-6) and its derived vectors were inoculated to tobacco protoplasts and plants. The results showed that TMGMV vectors could accumulate their RNAs and expressed green fluorescence in tobacco protoplasts. pCRII-TG3 could move systemically and also expressed CP in plant. On the contrary, the RNA accumulation of pCRII-TG2E and pCRII-TG3E carrying EGFP gene were lower than pCRII-TG2 and pCRII-TG3 in protoplasts, and the symptoms induced by pCRII-TG2E and pCRII-TG3E were delayed in local lesion host. The green fluorescence signal could be observed around the local lesions only in the plant inoculated by pCRII-TG3E. The RNA accumulation in the inoculated leaves of pCRII-TG2E and pCRII-TG3E were lower than that of pCRII-TG2 and pCRII-TG3 and green fluorescence failed to be observed in systemic host plant. These results indicated pCRII-TG3E lost its ability of systemic movement in this host. In the future, we have to improve the TMGMV-based vectors in order to express foreign gene in planta and to use them in studying the interaction between TMGMV and host or other viruses.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:57:50Z (GMT). No. of bitstreams: 1
ntu-100-R97633017-1.pdf: 4260071 bytes, checksum: 305459665f77b3b8f10028f41451005a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract III
壹、 前言 1
貳、 前人研究 3
一、 番椒作物之簡介 3
二、 番椒作物之常見病害 4
三、 菸草微綠嵌紋病毒之介紹 5
四、 植物病毒載體之研究 7
五、 報導基因應用於病毒移動之介紹 10
參、 材料與方法 13
一、 材料 13
(一) 實驗植物與栽種方式 13
(二) 實驗病毒 13
二、 方法 13
(一) 感染茄科植物之tobamovirus檢測方法之研發 13
(1) 感染茄科植物之Tobamovirus屬廣效性引子對之設計 13
(2) 植物全RNA之萃取 (Plant Total RNA Extraction) 14
(3) 反轉錄反應 (Reverse Transcription, RT) 15
(4) 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 15
(二) 多對引子對反轉錄聚合酶連鎖反應之研發 16
(1) Tobamovirus種專一性引子對之設計 16
(2) cDNA株製備 (cDNA Clone Preparation) 16
(3) 轉形試驗 (Transformation) 17
(4) 轉型株之篩選 17
(5) 質體之小量製備 (Minipreparation) 17
(6) 多對引子對聚合酶連鎖反應之最佳引子對比例之測試 (Multiplex PCR Primer Ratio Test) 18
(7) 多對引子反轉錄聚合酶連鎖反應 (Multiplex RT-PCR) 19
(三) 生體外轉錄體之製備(preparation, inoculation and analysis) 19
(1) 質體 DNA之中量製備(Midipreparation) 19
(2) 限制酶限制化質體 (Plasmid linearization) 20
(3) 生體外轉錄反應 (In vitro transcription) 20
(4) 植物接種與分析 20
(四) TMGMV病毒載體之構築(Construction of TMGMV vectors) 21
(1) pCRII-TG2之構築(Construction of pCRII-TG2) 21
(2) pCRII-TG3之構築(Construction of pCRII-TG3) 22
(3) pCRII-TG3E之構築(Construction of pCRII-TG3E) 22
(4) pCRII-TG2E之構築(Construction of pCRII-TG2E) 22
(五) 原生質體之製備、接種與分析(Protoplast preparation, inoculation and analysis) 22
(1) 原生質體之製備(protoplast preparation) 23
(2) 原生質體之接種(protoplast inoculation) 23
(3) 原生質體全RNA之萃取與電泳分析(Protoplast total RNA extraction and electrophoresis) 24
(4) 原生質體之RNA分析 25
a. 北方轉漬法(Northern Blotting) 25
b. 北方雜合反應(Northern Hybridization) 25
(5) 原生質體之EGFP螢光分析 26
(六) 植物接種與分析(TMGMV vector assay in planta) 26
(1) 植物接種與植物全RNA之萃取 26
(2) RNA之分析 27
(3) 蛋白質之分析 27
a. 植物全蛋白質之粗萃取 27
b. 聚丙烯醯氨凝膠電泳(SDS-PAGE) 27
c. 西方轉漬分析法(Western Blotting) 28
(4) 植物葉片之EGFP螢光分析 28
肆、 結果 29
一、 TMV、PMMoV與TMGMV感染番椒作物所引起之病徵 29
二、 以RT-PCR測試四組感染茄科Tobamovirus廣效性引子對之專一性 29
三、 以RT-PCR方式測試植物粒線體、TMV、PMMoV及TMGMV之專一性引子對之效果 30
四、 多對引子聚合酶連鎖反應之最佳引子對比例 31
五、 多組專一性引子對經反轉錄聚合酶連鎖反應可有效擴增出單一或複合感染病毒之樣品 32
六、 田間番椒作物之病毒檢測結果 32
七、 篩選出能系統性移動之具感染力TMGMV cDNA株 32
八、 以北方雜合反應分析TMGMV與改造之載體在菸草原生質體內之RNA累積情形 33
九、 TMGMV載體攜帶EGFP基因在菸草原生質體內之螢光表現情形 34
十、 TMGMV載體攜帶EGFP基因在菸草植株上之螢光表現情形 34
十一、以北方雜合反應分析TMGMV與其改造之載體在菸草植株上之 RNA累積情形 34
十二、以西方轉漬法分析TMGMV與其改造之載體在菸草植株中鞘蛋白及EGFP蛋白之表現 35
伍、討論 36
陸、參考文獻 42
柒、表 50
捌、圖 55
玖、附錄 80
dc.language.isozh-TW
dc.title菸草微綠嵌紋病毒之研究與病毒載體之構築zh_TW
dc.titleStudies on Tobacco mild green mosaic virus and construction of a TMGMV-based vectoren
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳煜焜,洪挺軒
dc.subject.keyword番椒作物,菸草嵌紋病毒屬(Tobamovirus),multiplex RT-PCR,菸草微綠嵌紋病毒(TMGMV),病毒載體,EGFP,zh_TW
dc.subject.keywordCapsicum spp.,Tobamovirus,multiplex RT-PCR,TMGMV,viral vector,EGFP,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2011-01-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved