請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48432完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Huei Lin) | |
| dc.contributor.author | Wen-Yu Su | en |
| dc.contributor.author | 蘇文郁 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:56:36Z | - |
| dc.date.available | 2012-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-08 | |
| dc.identifier.citation | 1. Forrester JV, Dick AD, McMenamin P, Lee WR. The Eye: Basic Sciences and Practice. WB Saunders Company Ltd., 2003.
2. Snell RS and Lemp MA. Clinical Anatomy of the Eye, 2nd edition. Wiley-Blackwell 1997. 3. Cassin B. and Solomon S. Dictionary of eye terminology. Gainesville, Fla: Triad Pub. Co. 2001. 4. The retina: an approachable part of the brain 5. Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye 2008;22(10): 1214-1222. 6. Nishikawa S and Makoto T. Ultrastructure of hyaluronic acid and collagen in the human vitreous. Curr. Eye Res. 1996;15:37-43. 7. Swann DA and Constable IJ. Vitreous Structure: I. Distribution of Hyaluronate and Protein. Ophthalmol. Vis. Sci. 1972;11(3):159-163. 8. Swann DA and Constable IJ. Vitreous Structure: II. Role of Hyaluronate. Invest. Ophthalmol. Vis. Sci. 1972;11(3):164-168. 9. Duke-Elder WS. The physico-chemical properties of the vitreous body. J Physiol. 1929;68(2):155–165. 10. Black J and Hastings G. Handbook of Biomaterial Properties. Springer 1998 11. Holekamp NM. The vitreous gel: more than meets the eye. Am J Ophthalmol. 2010;149(1):32-36. 12. Noulas AV, Skandalis SS, Feretis E, Theocharis DA, Karamanos NK. Variations in content and structure of glycosaminoglycans of the vitreous gel from different mammalian species. Biomed chromatogr. 2004;18(7):457-461. 13. Sebag J. Macromolecular structure of the corpus vitreous. Prog. Polym. Sci. 1998;(23):415-446. 14. Bishop PN. Structural Macromolecules and supramolecular organisation of the vitreous gel. Progr Retin Eye Res 2000;19(3):323-344. 15. Bishop PN, Crossman MV, McLeod D. and Ayad S. Extraction and characterization of the tissue forms of collagen types II and IX from bovine vitreous. Biochem. J. 1994;299:497-505. 16. Bishop P, Ayad S, Reardon A, McLeod D, Sheehan J and Kielty C. Type VI collagen is present in human and bovine vitreous. Graefes Arch Clin Exp Ophthalmol 1996;234(11):710-771 17. Sharif-Kashani P, Hubschman JP, Sassoon D, Kavehpour HP. Rheology of the vitreous gel: Effects of macromolecule organization on the viscoelastic properties. J Biomech 2010;(in press) 18. Balazs EA, Denlinger JL. Aging changes in the vitreous. In: Aging and human visual function. New York: Alan R Liss; 1982:45–57. 19. Chiang A, Haller JA. Vitreoretinal disease in the coming decade. Curr Opin Ophthalmol 2010;21(3):197-202 20. Sebag J. Age-related changes in human vitreous structure. Gracfe's Arch Clin Exp Ophthalmol 1987;225:89-83 21. Aguayo J, Glaser BM, Mildvan A, et al. Study of vitreous liquefaction by NMR spectroscopy and imaging. Invest Ophthalmol Vis Sci. 1985;26:692–7 22. L. I. Los, R. J. van derWorp, M. J. A. van Luyn and J. M. M. Hooymans, Invest. Ophthalmol. Vis. Sci. 44, 2828 (2003). 23. D’Amico DJ. Medical progress – diseases of the retina. N Engl J Med 1994;331:95–106. 24. Ciulla TA, Danis RP, Harris A. Age-related macular degeneration: a review of experimental treatments. Surv Ophthalmol 1998;43:134–46. 25. Brinton DA, Wilkinson CP. Retinal detachment - principles andpractice. Oxford, UK: Oxford University Press; 2009. 26. Ivanisevic M, Bojic L, Eterovic D. Epidemiological of nontraumatic phakic rhegmatogenous retinal detachment. Ophthalmic Res. 2000;32(5):237-9. 27. Li X; Beijing Rhegmatogenous Retinal Detachment Study Group. Incidence and epidemiological characteristics of rhegmatogenous retinal detachment in Beijing, China. Ophthalmology 2003;110(12):2413–7. 28. Raman R, Sharma T. Management of Recurrent Retinal Detachment in Silicone Oil-Filled Eyes. Techniques in Ophthalmology 2010;8(3):122-126. 29. Manoj S, Ahuja OP, Nasir J. Epidemiological study of nontraumatic phakic rhegmatogenous retinal detachment. Indian J Ophthalmol 1986;34:29–32. 30. Maruko I, Iida T, Sekiryu, T, Saito M. Morphologic changes in the outer layer of the detached retina in rhegmatogenous retinal detachment and central serous chorioretinopathy. Am J Ophthalmol 2009;147(3):489-494. 31. Urrets-Zavalia A. Current treatment of simple retinal detachment. Advantages and inconveniences of permanent and temporary scleral buckling compared with gas expansion of the retina. Ophtalmologie 1989;3(4):292-296. 32. Martinez-Castillo V, Zapata MA, Boixadera A, Fonollosa A, Garcia-Arumi J. Pars plana vitrectomy, laser retinopexy, and aqueous tamponade for pseudophakic rhegmatogenous retinal detachment. Ophthalmology 2007;114(2):297-302 33. Hoppenbrouwers R. Cryosurgery for the treatment of retinal defects and detachment of the retina. Ophthalmologica 1971;162(1):36-40. 34. Gupta B, McHugh D. Pneumatic retinopexy for the management of impending macular hole: an optical coherence tomography study. Int Ophthalmol 2011;31(1):23-24. 35. Hwang JF, Chen SN, Lin CJ. Treatment of Inferior Rhegmatogenous Retinal Detachment by Pneumatic Retinopexy Technique. Retina (in press). 36. Tan CS, Wee K, Lim TH. Anterior chamber gas bubble following pneumatic retinopexy in a young, phakic patient. Clinical & experimental ophthalmology (inpress) 37. Lakhanpal V, Schocket SS, Elman MJ and Dogra MR. Intraoperative massive suprachoroidal hemorrhage during pars plana vitrectomy. Ophthalmology 1990;97:1114-1149.. 38. Recchia FM, Ruby AJ, Carvalho Recchia CA. Pars plana vitrectomy with removal of the internal limiting membrane in the treatment of persistent diabetic macular edema. Am. J. Ophthalmol. 2005;139:447-454. 39. Sheidow TG and Gonder JR. Cystoid Macular Edema Following Combined Phacoemulsification and Vitrectomy for Macular Hole. Retina 1998;18:510-514. 40. Foster WJ. Vitreous substitutes. Expert Rev. Ophthalmol 2008; 3:211-218. 41. Swindle KE and Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev. Ophthalmol2007;2(2):255-265. 42. Machemer R, Parel JM, Norton EW. Vitrectomy: a pars plana approach. Technical improvements and further results. Trans Am Acad Ophthalmol Otolaryngol 1972;76:462–466. 43. Gupta OP, Ho AC, Kaiser PK, et al. Short-term outcomes of 23-gauge pars plana vitrectomy. Am J Ophthalmol. 2008 Aug;146(2):193-197. 44. O’Malley C, Heintz RM Sr. Vitrectomy with an alternative instrument system. Ann Ophthalmol 1975;7:585–588. 45. Misra A, Ho-Yen G, Burton RL. 23-gauge Sutureless Vitrectomy and 20-gauge Vitrectomy: A Case Series Comparison Eye. 2009;23(5):1187-1191. 46. Baino F. Towards an ideal biomaterial for vitreous replacement: Historical overview and future trends. Acta Biomater (in press). 47. Giordano GG and Refojo MF. Silicone oils as vitreous substitutes. Prog. Polym. Sci. 1998;23:509-532. 48. Soman N, Banerjee R. Artificial vitreous replacements. Bio-Medical Materials and Engineering 2003;13(1):59-74. 49. Colthurst MJ, Williams RL, Hiscott PS, Grierson I. Biomaterials used in the posterior segment of the eye. Biomaterials 2000;21:649-65 50. Killey FP, Edelhauser HF, Aaberg TM. Intraocular sulfur hexafluoride and octofiuorocyclobutane: Effects on intraocular pressure and vitreous volume. Arch Ophthalmol1978;96:511-5. 51. Johnson TM, Johnson MW. Pathogenic implications of subretinal gas migration through pits and atypical colobomas of the optic nerve. Arch Ophthalmol 2004;122:1793-1800. 52. Chang S, Lincoff H, Coleman DJ, Fuch W, Farber M. Perfluorocarbon gases in vitreous surgery. Ophthalmology 1985;92:651–6. 53. Crittenden JJ, De Juan E, Tiedeman J. Expansion of long-acting gas bubbles for intraocular use. Arch Ophthlamol 1985;103:831–4. 54. Chirila TV, Hong Y, Dalton PD, Constable IJ, Refojo MF. The use of hydrophilic polymers as artificial vitreous. Progress in Polymer Science 1998;23(3):475-508. 55. Foulds WS. Is your vitreous really necessary? Eye 1987;1: 641-64. 56. Cibis PA, Becker B, Okun E, Canaan S. The use of liquid silicone in retinal detachment surgery. Arch. Ophthalmol, 68: 590-9, 1962. 57. Leaver PK, Grey RH, Garner A. Silicone oil injection in the treatment of massive preretinal retraction. II. Late complications in 93 eyes. Br J Ophthalmol 1979;63:361–7. 58. Leaver PK, Cooling RJ, Feretis EB, Lean JS, McLeod D. Vitrectomy and fluid/silicone-oil exchange for giant retinal tears: results at six months. Br J Ophthalmol 1984;68:432–8. 59. Gonvers M. Temporary silicone oil tamponade in the management of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol 1985;100:239–45. 60. Ando F, Miyake Y, Oshima K, Yamanaka A. Temporary use of intraocular silicone oil in the treatment of complicated retinal detachment. Graefes Arch Clin Exp Ophthalmol 1986;224:32–3. 61. Lewis H, Aarberg TM. Causes of failure after repeat vitreoretinal surgery for recurrent proliferative vitreoretinopathy. Am J Ophthalmol 1991;111:15–9. 62. Federman JL, Schubert HD. Complications associated with the use of silicone oil in 150 eyes after retina-vitreous surgery. Ophthalmology 1988;95:870–6. 63. Borislav D. Cataract after silicone oil implantation. Doc Ophthalmol 1993;83:79–82. 64. Jonas JB, Knorr HLJ, Rank RM, Budde VM. Retinal redetachment after removal of intraocular silicone oil tamponade. Br J Ophthalmol 2001;85:1203–7. 65. Jiang Y, Li X. The best timing of silicone oil removal. Zhonghua Yan Ke Za Zhi. 1997;33(1):39-41. 66. Gremillion CM, Peyman GA, Chen MS, Chang KB. Fluorosilicone oil in the treatment of retinal detachment. Br J Ophthalmol 1990;74:643–6. 67. Yamamoto S, Takeuchi S. Silicone oil and fluorosilicone. Semin Ophthalmol 2000;15:15–24. 68. Chang S, Ozmert E, Zimmerman NJ. Intraoperative perfluorocarbon liquids in the management of proliferative vitreoretinopathy. Am J Ophthalmol 1988;106:668–74. 69. Stolba U, Binder S, Velikay M, Datlinger P, Wedrich A. Use of perfluorocarbon liquids in proliferative retinopathy: results and complications. Br J Ophthalmol 1995;59:1106–10. 70. Schulman JA, Peyman GA, Blinder KJ, Alturki WA, Desai UR, Nelson Jr NC. Management of giant retinal tears with perfluoroperhydrophenanthrene (Vitreon). Jpn J Ophthalmol 1993;37:70–7. 71. Itoh R, Ijeda T, Sawa H, Kulzumi K, Yasuhara T, Yamamoto Y, et al. The use of perfluorocarbon liquids in diabetic vitrectomy. Ophthalmic Surg Lasers 1999;30:672–5. 72. Bottoni F, Sborgia M, Arpa P, De Casa N, Bertazzi E, Monticelli M, et al. Perfluorocarbon liquids as postoperative short-term vitreous substitutes in complicated retinal detachment. Graefes Arch Clin Exp Ophthalmol 1993;231:619–28. 73. Chang S, Zimmerman NJ, Iwamoto T, Ortiz R, Faris D. Experimental vitreous replacement with perfluorotributylamine. Am J Ophthalmol 1987;103:29–37. 74. Batman C, Cekic O. Effect of the long-term use of perfluoroperhydrophenenthrene on the retina. Ophthalmic Surg Lasers 1998;29:144–6. 75. Garcia-Valenzuela E, Ito Y, Abrams GW. Risk factors for retention of subretinal perfluorocarbon liquid in vitreoretinal surgery. Retina 2004;24:746–52. 76. Peyman GA, Schulman JA, Sullivan B. Perfluorocarbon liquids in ophthalmology. Surv Ophthalmol 1995;39:375–95. 77. Jonas JB, Knorr HLJ, Rank RM, Budde WM. Retinal redetachment after removal of intraocular silicone oil tamponade. Br. J. Ophthalmol 2001;85: 1203-7, 2001. 78. Leaver PK, Billington BM. Vitrectomy and fluid/silicone-oil exchange for giant retinal tears: 5 years follow-up. Graefe's Arch. Clin. Exp. Ophthalmol, 1989;227: 323-7. 79. Turner NJ, Kielty CM, Walker MG and Canfield AE. A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 2004;25:5955-5924. 80. Yoo HS, Lee EA, Yoon JI and Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 2005;26:1925–1933. 81. Allison DD and Grande-Allen KJ. Review. Hyaluronan: A Powerful Tissue Engineering Tool. Tissue Eng. 2006;12:2131-2140. 82. Balazs EA, Sweeney DB. The replacement of the vitreous body in the monkey by reconstituted vitreous and by hyaluronic acid. Bibl. Ophthalmol. 1966;70:230–232 83. Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes. J. Biomed. Mater. Res. A 2006;79:650–664. 84. Hruby K. Hyaluronic acid as vitreous body substitute in retinal detachment. Klin. Monastbl. Augenheilkd 1961;138:484–496. 85. Pruett RC, Schepens CL, Swann DA. Hyaluronic acid vitreous substitute: A six-year clinical evaluation. Arch. Ophthalmol. 1979;97:2325–2330. 86. Dalton PD, Chirila TV, Hong Y, Jefferson A. Oscillary shear experiments as criteria for potential vitreous substitutes. Polym Gels Netw 1995;3:429–44. 87. Hong Y, Chirila TV, Vijaysekaran S, Shen W, Lou X, Dalton PD. Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J. Biomed. Mater. Res. 1998;39:650–659. 88. Refojo MF. Polymers in ophthalmic surgery. J. Biomed. Mater. Res. 1971;5:113–119. 89. Hogen-Esch TE, Shah KR, Fitzgerald CR. Development of injectable poly(glyceryl methacrylate) hydrogels for vitreous prosthesis. J. Biomed. Mater. Res. 1976;10:975–976. 90. Benlian W, Zhang J, Huibin W. The development of synthetic vitreous body and its experiment on rabbits. In: Polymers and Biomaterials. Feng H, Han Y, Huang L (Eds). Elsevier Science Publishers B.V., Amsterdam, The Netherlands1991:397-400. 91. Yamauchi A. Synthetic vitreous body of PVA hydrogel. In: Polymer Gels. Fundamentals and Biomedical Applications. DeRossi D, Kajiwara K, Osada Y, Yamauchi A (Eds). Plenum Press, NY, USA 1991;127–134. 92. Maruoka S, Matsuura T, Kawasaki K et al. Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Curr. Eye Res. 2006;31:599–606. 93. Aliyar HA, Foster WJ, Hamilton PD, Ravi N. Towards the development of an artificial human vitreous. Polym. Prepr. 2003;45:469–470. 94. Foster WJ, Aliyar HA, Hamilton P, Ravi N. Internal osmotic pressure as a mechanism of retinal attachment in a vitreous substitute. J. Bioactive Compatible Polymers 2006;21:221–235. 95. Hamilton PD, Aliyar HA, Ravi N. Biocompatibility of thiol-containing polyacrylamide polymers suitable for ophthalmic applications. Polym. Prep. 2004;45:495–496. 96. Cavalieri F, Miano F, D’Antona P, Paradossi G. Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery. Biomacromolecules 2004;5:2439–2446. 97. Fernandez-Vigo J, Refojo MF, Verstraeten T. Evaluation of a viscoelastic solution of hydroxypropyl methylcellulose as a potential vitreous substitute. Retina 1990;10:148–152. 98. Fernandez-Vigo, J, Rey SAD, Concheiro A, Martinez R. Molecular weight dependence of the pharmacokinetic of hydroxypropyl methylcellulose in the vitreous. J. Ocul.Pharmacol.1990; 6(2):137–142 99. Balazs EA, Laurent TC and Jeanloz RW. Nomenclature of hyaluronic acid. Biochem. J. 1986;235:903–910. 100. Laurent TC. The biology of hyaluronan. In: Ciba Foundation Symposium 143. John Wiley and Sons, New York. 1989:1–298. 101. Neo H, Ishimaru JI, Kurita K, Goss AN. The effect of hyaluronic acid on experimental temporo- mandibular joint osteoarthrosis in the sheep. Journal of Oral Maxillofacial Surgery 1997;55:1114–1119. 102. Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Bio- materials 2002;23:4503–4513. 103. Uthman I, Raynauld JP, Haraoui B. Intra-articular therapy in osteoarthritis. Postgradual Medicine Journal 2003;79:449–453. 104. Medina JM, Thomas A, Denegar CR. Knee osteoarthritis: Should your patient opt for hyaluronic acid injection? Journal of Family Practice 2006;8:667–675. 105. Brown MB, Jones SA. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. Journal of European Academy of Dermatol- ogy and Venereology 2005;19:308–318. 106. Meyer K, Palmer JW. The polysaccharide of the vitreous humor. Journal of Biology and Chemistry 1934;107:629–634. 107. Toole BP, Wight TN, Tammi MI. Hyaluronan- cell interactions in cancer and vascular disease. Jour- nal of Biological Chemistry 2002;277:4593–4596. 108. Turley E.A, Noble PW, W. Bourguignon LY. Signaling properties of hyaluronan receptors. Journal of Biological Chemistry 2002;277:4589–4592. 109. Hascall VC, Majors AK, de la Motte CA, Evanko SP, Wang A, Drazba JA, Strong SA, Wight TN. Intracellular hyaluronan: a new frontier for inflammation? Biochimica and Biophysica Acta 2004;1673:3–12. 110. Maia J, Ferreira L, Carvalho R, Ramos MA, Gil MH. Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer. 2005;46:9604–9614. 111. Nishi KK, Jayakrishnan A. Preparation and in Vitro Evaluation of Primaquine-Conjugated Gum Arabic Microspheres. Biomacromolecules. 2004;5:1489–1495. 112. Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater. 2007;6(5):385–392. 113. Ruhela D, Riviere K, Szoka FC. Efficient Synthesis of an Aldehyde Functionalized Hyaluronic Acid and Its Application in the Preparation of Hyaluronan-Lipid Conjugates. Bioconjugate Chem. 2006;17:1360–1363. 114. Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS. The Prevention of Peritoneal Adhesions by in situ Cross-linking Hydrogels of Hyaluronic Acid and Cellulose Derivatives. Biomaterials. 2007;28:975–983. 115. Rowley J, Madlambayan G, Faulkner J, Mooney DJ, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials 1999;20:45-53. 116. Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001;101:1869–1879. 117. Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003;24:4337–4351. 118. Tememoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 2000;21:2405–2412. 119. Hou QP, De Bank PA, Shakesheff KM. Injectable scaffolds for tissue regeneration. J. Mater. Chem. 2004;14:1915–1923 120. Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS. Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog. Polym. Sci. 2008;33:167–179. 121. Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials 2007;28:134–146. 122. Rehfeldt R, Engler AJ, Eckhardt A, Ahmed F, Discher DE. Cell responses to the mechanochemical microenvironment--implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 2007;59:1329–1339. 123. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue Engineering applications. Tissue Eng. 2008;4:149–165. 124. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 2008;37:1473–1481. 125. Almdal K, Hvidt S, Dyre J, Kramer O. Towards a Phenomenological. Definition of the Tenn 'Gel'. Polymer Gels and Networks 1993;1:5-17. 126. Ross-Murphy SB. Rheological characterization of polymer gels and networks. Polym Gels Netw 1994;2: 229–237. 127. Flory PJ. Principles of polymer chemistry. Ithaca, NY: Cornell University Press, 1953. 128. Carnali JO. Gelation in physically associating biopolymer systems. Rheol. Acta 1992;31:399−412.. 129. Mortimer S, Ryan AJ, Stanford JL. Rheological behavior and gel-point determination for a model Lewis acid- initiated chain growth epoxy resin. Macromolecules 2001;34(9):2973-2980. 130. Tung C-YM, Dyne PJ. Relationship between viscoelastic properties and gelation in thermosetting systems. Journal of Applied Polymer Science 1982;27:569. 131. BouhadirKH, Hausman DS and Mooney DJ. Synthesis of Cross-Linked Poly(aldehyde guluronate) Hydrogels. Polymer 1999;40:3575-3584. 132. Jia X, Burdick JA, Kobler J, Clifton RJ, Rosowski JJ, Zeitels SM, Langer R. Synthesis and Characterization of in Situ Cross-Linkable Hyaluronic Acid-Based Hydrogels with Potential Application for Vocal Fold Regeneration. Macromolecules 2004;37:3239-3248. 133. Lee KY. Bouhadir K. Mooney DJ. Degradation behavior of covalently cross-linked poly (aldehyde guluronate) hydrogels. Macromolecules. 2000;33:97-101. 134. Rennie IG and Parsons MA. Lysozyme distribution in human lacrimal qlands and other ocular adnexa. Arch. Ophthalmol 1981;99:1850-1853. 135. International Standardization Organization, Biological Evaluation of Medical Devices. Part 5. Tests for Cytotoxicity: in vitro Methods, ISO10993-5 (1992). 136. Yoon WB, Kim BY, Park JW. Rheological characteristics of fibrinogen-thrombin solution and its effects on surimi gel. J. Food Sci. 1999; 64: 291–294. 137. Chan T, Payor S, Holden BA. Corneal thickness profiles in rabbits using ultrasonic pachometer. Invest Ophthalmol. Vis Sci 1983;24:1408-1410. 138. Donn A, Maurice DM, and Mills NL. Studies on the living cornea in vitro. II. The active transport of sodium across the epithelium. Arch Ophthalmol 1959;62:748-57. 139. Maurice DM. Clinical physiology of the cornea. Int Ophthalmol Clin 1962;2:561-72. 140. Marmor MF, Zrenner E. Standard for clinical electroretinography. Documenta Ophthalmologka. 1998;97:43-56. 141. Hasumura T, Yonemura N, Hirata A, Murata Y, Negi A. Retinal damage by air infusion during vitrectomy in rabbit eyes. Invest Ophthalmol Vis Sci. 2000;41(13):4300-4304 142. Kawaji T, Hirata A, Inomata Y, Koga T, Tanihara H. Morphological damage in rabbit retina caused by subretinal injection of indocyanine green. Graefes Arch Clin Exp Ophthalmol. 2004;242(2):158-64. Colthurst 143. Hayano S, Toshino T. Local application of polyvinylpyrrolidon (P.V.P.) for some ocular diseases. Rinsho Ganka (jpn.)1959;13:449-53 144. Nakagawa M, Tanaka M, Miyata T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res 1997;29:409-20. 145. Nayak PL. Biodegradable polymers: opportunities and challenges. J.M.S.-Rev. Macromol. Chem. Phys 1999;C39:481-505. 146. Krzystolik MG, D'Amico DJ. Complications of intraocular tamponade: silicone oil versus intraocular gas. Int Ophthalmol Clin. 2000;40(1):187-200. 147. Balakrishnan B, Mohanty M, Umashankar PR and Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005;26:6335–6342. 148. Constable IJ, Swann DA. Vitreous substitution with gases. Arch Ophthalmol 1975;93(6):416-419. 149. Friberg TR, Verstraeten TC, Wilcox DK: Effects of emulsification, purity, and fluorination of silicone oil on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1991, 32, 2030-4. 150. Machemer R, Laqua H. Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 1975;80(1):1-23. 151. Glaser BM, Cardin A, Biscoe B. Proliferative vitreoretinopathy. Ophthalmology 1987;94:327. 152. Sit AJ, Liu JH. Pathophysiology of glaucoma and continuous measurements of intraocular pressure. Mol Cell Biomech. 2009;6(1):57-69. 153. Lim KS, Wickremasinghe SS, Cordeiro MF, Bunce C, Khaw PT. Accuracy of intraocular pressure measurements in new zealand white rabbits. Invest Ophthalmol Vis Sci. 2005;46(7):2419-23. 154. Wu Q, Yeh AT. Rabbit cornea microstructure response to changes in intraocular pressure visualized by using nonlinear optical microscopy. Cornea. 2008;27(2):202-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48432 | - |
| dc.description.abstract | 眼球玻璃體(vitreous body)是一種眼球內容物,為無色透明的膠狀物質,主要成份由膠原蛋白纖維、透明質酸、葡萄氨聚糖及水所組成,人類玻璃體體積約4ml,重量約4克,佔眼球內腔體積的二分之三。玻璃體會因老化、變性退化或其它相關眼球病變而受損,包括透明質酸變性或膠原蛋白纖維析出而產生玻璃體基質液化,進而阻礙視線或產生視網膜剝離現象,嚴重時對於這部份的病變往往必須用玻璃體切除手術才能治療。
玻璃體切除術(vitrectomy) 是臨床上常用來處理眼球相關疾病的手術之一,包括了糖尿病視網膜病變(diabetic retinopathy),視網膜剝離(complex retinal detachment)或黃斑裂孔(macular hole)。患者接受玻璃體切除術,大部份的玻璃體會被移除,而人工玻璃體替代物主要是用於填充手術切除玻璃體後所留下之眼球空腔,避免眼球塌陷及幫助視網膜貼附。目前臨床使用上主要是以氣體或矽油當成人工玻璃體替代物,以氣體做為玻璃體替代物時,由於氣體的密度低於人體體液,因此患者必須在手術後保持臉部朝下的姿勢長達數天至數週之久,對患者的生活品質造成相當大的影響。為克服此一缺點,自1960年代以來,矽油(silicone oil)開始做為人工玻璃體替代物,用於某些無法維持特定姿勢的患者,例如小孩。然而許多研究指出,矽油長期植入後若未移除則可能造成長期併發症,也可能會對鄰近組織產生細胞毒性。也有相當多的研究嘗試開發出各種材料以作為人工玻璃體替代物。然而,到目前為止尚未有適合的人工玻璃體材料可以完全符合手術的需求。 在本研究中,我們使用氧化後的透明質酸及己二酸二醯肼為材料,開發出一個透明無色且可注射式的水膠做為人工玻璃體替代物。透明質酸是眼球玻璃體的主要成份之一,研究中我們利用高碘酸鈉(NaIO4)來氧化透明質酸,使透明質酸的乙醯氨基葡糖(N-acetyl-D-glucosamine)以及葡糖醛酸(D-glucuronic acid)開環而形成醛基(aldehyde group),並藉由傅立葉轉換紅外線光譜分析儀進一步確定醛基之形成。透明質酸開環產生的醛基可與己二酸二醯肼上的胺基產生交聯反應而形成透明無色且具彈性之水膠。氧化透明質酸/己二酸二醯肼水膠具有良好的光學性質,其折射率(refractive index, RI)介於1.3420 and 1.3442之間,與人體眼球玻璃體之折射率1.3348近似,可避免眼球屈光參數改變,對患者視力的影響較小,並且有利於術後的眼底檢查和治療。此外,經流變分析結果証實,氧化透明質酸與己二酸二醯肼混合後可在低溫環境下維持液態長達8分鐘以上,有利於手術過程之注射。在注射入人體之後,由於溫度上升的影響,氧化透明質酸與己二酸二醯肼混合物可迅速形成固態水膠,避免滲漏情形發生,並緊密填充於眼球內腔。從體外生物降解測試結果顯示氧化透明質酸/己二酸二醯肼水膠可在含有濃度10,000 unit/ml溶解酵素(lysozyme)之生理食鹽水中維持至少5週以上。並且在體外生物相容性評估,以視網膜色素上皮細胞(retinal pigment epithelial cells)測試結果也証實此水膠有良好的生物相容性,且無明顯細胞毒性產生。綜合以上結果顯示,透明質酸/己二酸二醯肼水膠外觀為透明無色並具有適當的折射率,且能以注射方式進行手術,在未來應用於人工玻璃體替代物應具有良好的發展潛力。在動物實驗評估中,注射氧化透明質酸/己二酸二醯肼水膠的眼球,藉由眼球內壓力量測、角膜厚度量測、裂隙燈觀察、視網膜電圖及組織切片評估,在術後四週的結果顯示與正常眼球比較並無明顯異常情形。 綜合以上所述,本研究結果顯示氧化透明質酸/己二酸二醯肼水膠應為具有相當潛力的人工玻璃替代材料。 | zh_TW |
| dc.description.abstract | The vitreous body is a clear, transparent gelatinous substance in the vitreous cavity of the eye that is posterior to the lens and anterior to the retina. It occupies two-thirds of the ocular volume, with a weight of approx. 4 g and a volume of about 4 ml. The main components of vitreous body include water (98%), collagen fibrils, glycosaminoglycans, hyaluronic acid (HA) and other rest solutes. Specific diseases, age-related degeneration or trauma can lead to pathological changes in the vitreous body, including HA degeneration and collagen precipitation, which result in liquefaction of the matrix [5]. A degenerated or liquefied vitreous body will lead to floater formation and eventually result in posterior vitreous detachment and possible retinal detachment.
Among clinical treatments, pars plana vitrectomy (PPV) is one of the most important surgeries for treating a number of ocular-related diseases, including diabetic retinopathy, complex retinal detachment (for example, due to trauma) and macular hole, during PPV, the vitreous body is cut and aspirated, and then is typically replaced with a vitreous substitute, such as gas (air, perfluropropane or sulfur hexafluoride) or silicone oil. Vitreous substitutes are used to fill vitreous cavity and help reattach the retina after vitrectomy surgery. Postoperatively, a vitreous substitute can keep the retina in position while the adhesion between the retina and the retinal pigment epithelium (RPE) cells are formed. Gases, which are lighter than water, are useful for flattening a detached retina and keeping it attached while healing occurs. However, it is frequently necessary to maintain a face-down position following surgery for a week or more when gas is used. Since the 1960s silicone oil is sometimes used instead of gases to keep retina attached postoperatively in complicated retinal detachments, or in patients unable to position postoperatively (e.g., children), but long-term complications can occur if the silicone oil is not removed later. Besides, silicone oil also seems to be cytotoxic to ocular tissues, such as corneal endothelial cells In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3–8 min, depending on the operational temperature. The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In the animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness, electroretinography (ERG) and histological examination showed no significant abnormal biological reactions for 4 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:56:36Z (GMT). No. of bitstreams: 1 ntu-100-D91548009-1.pdf: 47680448 bytes, checksum: 64daf45dcf910c41ecb65bc4ff5fb9fd (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii CHINESE ABSTRACT iii ENGLISH ABSTRACT v LIST OF TABLES xiii LIST OF FIGURES xiv CHAPTER 1 INTRODUCTION 1.1 Anatomy of the eye 2 1.2 The vitreous body 5 1.2.1 Physical properties of the vitreous 5 1.2.2 Composition of the vitreous 7 1.3 Posterior segment ocular disorders 10 1.3.1 Vitreous pathologies 10 1.3.2 Retina detachment 10 1.3.3 Treatment of retina detachment 12 1.3.4 Vitrectomy 14 1.4 Current Vitreous substitutes 16 1.4.1 The role of vitreous substitute 16 1.4.2 Vitreous substitutes currently used in clinical practice 17 1.4.2.1 Vitreous substitute with gases 17 1.4.2.2 Vitreous substitute with liquids 19 1.4.3 Criteria for ideal vitreous substitute 22 1.5 Purpose of study 24 CHAPTER 2 THEORETICAL BASIS 2.1 Literature review of current developed vitreous substitutes 26 2.1.1 Semisynthetic polymer 26 2.1.1.1 Hyaluronic acid 26 2.1.1.2 Gellan Gum/Hyaluronic acid gel 27 2.1.1.3 Gelatin and collagen 27 2.1.2 Synthetic polymer 28 2.1.2.1 Poly(1-vinyl-2-pyrrolidone) 28 2.1.2.2 Poly(2-hydroxyethyl methacrylate) 29 2.1.2.3 Poly(glyceryl methacrylate) 29 2.1.2.4 Poly(vinyl alcohol) 30 2.1.2.5 Poly(acrylamide) 31 2.1.2.6 Poly(vinyl alcohol methacrylate) 32 2.1.2.7 Hydroxypropyl methylcellulose 32 2.2 Hyaluronic acid and oxidation of Hyaluronic acid 33 2.2.1 Chemical structure of hyaluronic acid 34 2.2.2 Oxidation Hyaluronic acid 36 2.3 Injectable hydrogel 38 2.4 Rheological properties of injectable hydrogel 40 CHAPTER 3 MATERIALS AND METHODS 3.1 Materials 44 3.2 Preparation of oxidated hyaluronic acid 44 3.2.1 Fourier transform infrared (FT-IR) analysis 45 3.2.2 Determination of oxidation degree 45 3.3 Preparation and characteration of oxi-HA/ADH hydrogel 46 3.3.1 Preparation of oxi-HA/ADH hydrogel 46 3.3.2 Refractive index of oxi-HA/ADH hydrogel 47 3.3.3 Rheological evaluation of oxi-HA/ADH hydrogel 47 3.3.4 In-vitro degradation experiments of oxi-HA/ADH hydrogel 48 3.3.5 Swelling experiments of oxi-HA/ADH hydrogel 49 3.4 Cytotoxicity evaluations of oxi-HA/ADH hydrogel 50 3.4.1 Culture of RPE cells and preparation of extraction medium 50 3.4.2 Water-soluble tetrazolium-8 assay for cell viability evaluation 51 3.4.3 Lactate dehydrogenase (LDH) assay for cytotoxicity evaluation 52 3.4.4 Live/Death cells staining 52 3.5 In vivo study of oxi-HA/ADH as vitreous substitute 54 3.5.1 oxi-HA/ADH vitreous substitute injection 54 3.5.2 Intraocular pressure measurement 55 3.5.3 Cornea thickness measurement 56 3.5.4 Slit-lamp microscopy 56 3.5.5 Electroretinography (ERG) test 56 3.5.6 Histological evaluation 58 3.6 Statistical Analysis 58 CHAPTER 4 RESULTS 4.1 Characterization of oxi-HA 60 4.1.1 Fourier transform infrared spectroscopy (FTIR) analysis 60 4.1.2 TNBS assay for determination of oxidation degree 63 4.2 Characterization of oxi-HA/ADH hydrogel 65 4.2.1 Refractive index (RI) of the oxi-HA/ADH hydrogel 65 4.2.2 Rheological properties of the oxi-HA/ADH hydrogel 67 4.2.3 In vitro degradation and swelling index of the oxi-HA/ADH hydrogel 70 4.3 Cytotoxicity of the oxi-HA/ADH Hydrogel 73 4.3.1 WST-8 assay for cell viability evaluation 74 4.3.2 LDH assay for cell cytotoxicity evaluation 75 4.3.3 Live/Dead cell staining 76 4.4 In vivo study of oxi-HA/ADH as vitreous substitute 78 4.4.1 Intraocular pressure measurement 78 4.4.2 Cornea thickness measurement 80 4.4.3 Slit-lamp observation 81 4.4.4 Electroretinography (ERG) test 83 4.4.5 Histological evaluation 88 CHAPTER 5 DISSCUSION 91 CHAPTER 6 CONCLUSIONS 99 REFERENCE 101 Appendix A Resume 116 Appendix B Publication List 117 | |
| dc.language.iso | en | |
| dc.subject | 己二酸二醯肼 | zh_TW |
| dc.subject | 玻璃體 | zh_TW |
| dc.subject | 玻璃體替代物 | zh_TW |
| dc.subject | 可注射式 | zh_TW |
| dc.subject | 水膠 | zh_TW |
| dc.subject | 透明質酸 | zh_TW |
| dc.subject | Hyaluronic acid | en |
| dc.subject | Adipic acid dihydrazide | en |
| dc.subject | Vitreous | en |
| dc.subject | Vitreous substitute | en |
| dc.subject | Injectable | en |
| dc.subject | Hydrogel | en |
| dc.title | 可注射式氧化透明質酸/己二酸二醯肼水膠做為人工玻璃體之應用 | zh_TW |
| dc.title | The Injectable Oxidated Hyaluronic Acid/Adipic Acid Dihydrazide Hydrogel as a Vitreous Substitute | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 姚俊旭(Chun-Hsu Yao),陳悅生(Yueh-Sheng Chen),董國忠(Guo-Chung Dong),陳克華(Ko-Hua Chen) | |
| dc.subject.keyword | 玻璃體,玻璃體替代物,可注射式,水膠,透明質酸,己二酸二醯肼, | zh_TW |
| dc.subject.keyword | Vitreous,Vitreous substitute,Injectable,Hydrogel,Hyaluronic acid,Adipic acid dihydrazide, | en |
| dc.relation.page | 118 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 46.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
