Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48430
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張璞曾
dc.contributor.authorTian-Shiue Yenen
dc.contributor.author嚴天斈zh_TW
dc.date.accessioned2021-06-15T06:56:31Z-
dc.date.available2015-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation[1] Centers for Disease Control and Prevention, Vital Signs, May 2011.
[2] World Health Organization. Global Surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach, 2007.
[3] A. R. A. Sovijärvi, L. P. Malmberg, G. Charbonneau, and J. Vanderschoot, “Characteristics of Breath Sounds and Adventitious Respiratory Sounds,” European Respiratory Review, vol. 77, no. 10, pp. 591-596, 2000.
[4] B. Karnath, and M. C. Boyars “Pulmonary Auscultation,” Hospital Physician, vol. 38, no. 1, pp. 22-26, Jan. 2002.
[5] P. H. Quanjer, M. D. Lebowitz, I. Gregg, M. R. Miller, and O. F. Pedersen, “Peak Expiratory Flow: Conclusions and Recommendations of a Working Party of the European Respiratory Society,” European Respiratory Journal, Suppl. 24, S2-S8, Oct. 1997.
[6] P. Sestini, E. Renzoni, M. Rossi, V. Beltrami, and M. Vagliasindi, “Multimedia Presentation of Lung Sounds as Learning Aid for Medical Students,” European Respiratory Journal, vol. 8, no. 5, pp. 783-788, May 1995.
[7] A. R. A. Sovijärvi, J. Vanderschoot, and J. E. Earis, “Standardization of Computerized Repiratory Sound Analysis” European Respiratory Review, vol. 10, no. 77, pp. 585, 2000.
[8] A. Homs-Corbera, J. A. Fiz, J. Morera, and R. Jané, “Time-Frequency Detection and Analysis of Wheezes during Forced Exhalation,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 1, pp. 182-186, Jan. 2004.
[9] A. Jain, and J. Vepa, “Lung Sound Analysis for Wheeze Episode Detection,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, British Columbia, Canada, Aug. 20-24, 2008, pp. 2582-2585.
[10] Y. Shabtai-Musih, J. Grotberg, and N. Gavriely, “Spectral Content of Forced Expiratory Wheezes During Air, He, and SF6 Breathing in Normal Humans,” Journal of Applied Physiology, vol. 72, no. 2, pp. 629–635, Feb. 1992.
[11] A. Alic, I. Lackovic, V. Bilas, D. Sersic, and R. Magjarevic, “A Novel Approach to Wheeze Detection,” International Federation for Medical and Biological Engineering Proceedings, vol. 14, part 8, pp. 963-966, 2007.
[12] S. A. Taplidou, L. J. Hadjileontiadis, and coll., “On Applying Continuous Wavelet Transform in Wheeze Analysis,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, Sep. 1-5, 2004, vol. 5, pp. 3832-3835.
[13] Chun Yu, T. C. Hsiao, T. H. Tsai, and coll., “Rapid Wheezing Detection Algorithm for Real-Time Asthma Diagnosis and Personal Health Care,” in 4th European Conference of the International Federation for Medical and Biological Engineering, Belgium, Nov. 23-27, 2008, vol. 22, part 6, pp. 264-267.
[14] J. Zhang, W. Ser, J. Yu, and T. T. Zhang, “A Novel Wheeze Detection Method for Wearable Monitoring Systems,” in Proceedings of International Symposium on Intelligent Ubiquitous Computing and Education, Washington DC, USA, May 15-16, 2009, pp. 331-334.
[15] M. Bahoura, “Pattern Recognition Methods Applied to Respiratory Sounds Classification into Normal and Wheeze Classes,” Computer in Biology and Medicine, vol. 39, Issue 9, pp.824-843, Sep. 2009.
[16] G. C. Chang, and Y. P. Cheng, “Investigation of Noise Effect on Lung Sound Recognition,” Machine Learning and Cybernetics, vol. 3, pp. 1298-1301, July 2008.
[17] M. Bahoura, and C. Pelletier, “New Parameters for Respiratory Sound Classification,” in Proceedings of IEEE Electrical and Computer Engineering Conference, Canada, May 4-7, 2003, vol. 3, pp. 1457-1460.
[18] K. E. Forkheim, D. Scuse, and H. Pasterkamp, “A Comparison of Neural Network Models for Wheeze Detection”, in Proceedings of IEEE Communication, Power, and Computing Conference, Winnipeg, Man., 1995, May 15-16, 1995, vol. 1, pp. 214-219.
[19] R.J. Riella, P. Nohama, and J.M. Maia, “Method for automatic detection of wheezing,” Brazilian Journal of Medical Research, vol. 42, no. 7, pp. 674-684, July 2009.
[20] M. Waris, P. Helistö, S. Haltsonen, A. Saarinen, and A. R. A. Sovijärvi, “A New Method for Automatic Wheeze Detection,” Technology and Health Care, vol. 6, no. 1, pp. 33-40, Jun. 1998.
[21] S. A. Taplidou, and L. J. Hadjileontiadis, “Wheeze detection based on time-frequency analysis of breath sounds,” Computers in Biology and Medicine, vol. 37, no. 8, pp. 1073-1083, 2007.
[22] S. Alsmadia, Y. P. Kahyab, “Design of a DSP-based instrument for real-time classification of pulmonary sounds,” Computers in Biology and Medicine, vol. 38, Issue 1, pp. 53-61, Jan. 2008.
[23] N. Meslier, G. Charbonneau, J-L. Racineux, “Wheezes,” European Respiratory Journal, vol. 8, pp. 1942-1948, 1995.
[24] S. Reichert, R. Gass, C. Brandt, and E. Andrès, “Analysis of Respiratory Sounds: State of the Art,” Clinical Medicine Insights. Circulatory, Respiratory and Pulmonary Medicine, vol. 2, pp. 45-58, May 2008.
[25] Qiu, Y., Whittaker, A.R., Lucas, M. and Anderson, K., “Automatic wheeze detection based on auditory modelling,” in Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 219, no. 3, pp. 219-227, 2005.
[26] L. Vannuccini, J. E. Earis, P. Helistö, B. M. G. Cheetham, and M. Rossi, A. R. A. Sovijärvi, and J. Vanderschoot, “Capturing and Preprocessing of Respiratory Sounds,” European Respiratory Review, vol. 77, no. 10, pp. 616-620, 2000.
[27] Xilinx Inc, “MicroBlaze Processor Reference Guide- Embedded Development Kit,”2010.
[28] Xilinx Inc, 'PLBV46 Slave Single (v1.00a),' 2008.
[29] IBM Corporation, “128-bit Processor Local Bus : Architecture Specifications (V4.6),” July 2004.
[30] G. A. Yi, “A software toolkit for respiratory analysis,” MIT Computer Sound and Artificial Intelligence Laboratory, vol.1, pp. 215–216, 2004.
[31] Xilinx Inc, 'LogiCORE IP : Fast Fourier Transform (v7.1),' 2011.
[32] C. Tomasi, and R. Manduchi, “Bilateral Filtering for Gray and Color Images,” in Proceedings of the 6th International Computer Vision Conference, Bombay, India, Jan. 4-7, 1998, pp. 839-846.
[33] A. Gabiger, M. Kube, and R. Weigel, “A Synchronous FPGA Design of a Bilateral Filter for Image Processing,” in Proceeding of the 35th Annual Conference of the IEEE Industrial Electronics, Nov. 3-5, 2009, pp.1990-1995.
[34] B. S. Lin, H. D. Wu, F. C. Chong, and S. J. Chien, “Wheeze recognition based on 2D bilateral filtering of spectrogram,” Biomedical Engineering-Application - Basis& Communications, vol. 18, pp.128–137, 2006.
[35] S. W. Yang, M. H. Sheu, H. H. Wu, H. E. Chien, P. K. Weng, and Y. Y. Wu, “VLSI architecture design for a fast parallel label assignment in binary image,” in Proceedings of International Symposium on Circuits and Systems, Kobe, Japan, May 23-26, 2005,vol. 3, pp. 2393-2396.
[36] D. R. Lee, S. H. Jin, P. C. Thien, and J. W. Jeon, “FPGA based connected component labeling,” in Proceedings of International Symposium on Circuits and Systems, Seoul, Korea, Oct. 17-20, 2007, pp. 2313-2317.
[37] C. Cortes, and V. Vapnik., “Support-Vector Network,” Machine Learning, vol. 20, pp. 273–297, 1995.
[38] C. J. C. Burges, “ A Tutorial on Support Vector Machines for Pattern Recognition, ” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.
[39] C. C. Chang, and C. J. Lin, “LIBSVM : a Library for Support Vector Machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, issue 3, pp. 27:1-27:27, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48430-
dc.description.abstract哮鳴音是許多呼吸道疾病診斷的指標,哮鳴音的偵測可以協助醫生對這類患有慢性呼吸道疾病的病患進行長時間的監測,以預防緊急狀況的發生。本文提出一個使用現場可編程邏輯閘陣列(Field Programmable Gate Array, FPGA)的快速哮鳴音偵測可攜式平台,利用FPGA可以硬體加速來達到快速偵測的特性,更可以讓我們的哮鳴偵測系統能夠進一步地製作成系統晶片(System on Chip, SoC),甚至能與其他生理訊號偵測系統整合成更先進及更複雜的系統晶片。
本系統首先將聲音切割成每兩秒為一個處理單位,並藉由短時傅立葉轉換(Short-Time Fourier Transform, STFT)來求出哮鳴音的時間與頻率上的相關性,並針對時頻圖做雙邊濾波(2D Bilateral Filter)、邊緣偵測(Edge Detection)、多閾值影像分割(Multi-threshold Segementation)、影像形態學處理(Morphological Processing)、以及影像標記(Image Labelling)來萃取出哮鳴音特徵,並以支持向量機(Support Vector Machines)對哮鳴音的特徵進行分類訓練,我們便可以利用訓練好的支持向量機模型對哮鳴音及正常呼吸音進行辨識。
在使用Xilinx ML605開發平台實現後,本系統可以達到51.97MHz的處理速度,偵測系統的效能(Performance)達到0.912,使我們可以在短時間內偵測哮鳴並達到快速監測哮鳴的目的。
zh_TW
dc.description.abstractWheezes have often been treated as an important indicator to diagnose the obstructive pulmonary diseases. A rapid wheezing detection system may help physicians to analyze and to long-term monitor the patients’ situations. This thesis proposes a portable wheezing detection system based on Field Programmable Gate Array (FPGA). It accelerates wheezes detection. It could flexibility function as a single process system or be integrated with other biomedical signal detection system.
Firstly, the sound signal is segmented into units of 2 seconds. Then short-time Fourier transform was used to look into the relationship between the time and frequency components of the sound data. Thereafter, we continued processing the spectrogram by 2D bilateral filtering, edge detection, multi-threshold image segmentation, morphological image processing and image labeling to extract the wheezes features according to Computerized Respiratory Sound Analysis (CORSA) standards. Then these features were used to train Support Vector Machines (SVMs) and built the classification models. Finally, this trained model is used to distinguish to detect wheeze for new coming sound data.
This system runs on Xilinx ML605 platform. Experiment results show a high performance of 0.912 in analysis of wheeze recognition in hardware. The detection process is good for 51.97 MHz clock frequency. It is good for high speed classification for wheeze.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:56:31Z (GMT). No. of bitstreams: 1
ntu-100-R97945032-1.pdf: 7360466 bytes, checksum: 036cc27c58c54c33519f1e1e3f00f66a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Objective 2
1.3 Thesis Organization 4
CHAPTER 2 BACKGROUND 5
2.1 Characteristics of the Respiratory Sounds 5
2.1.1 Respiratory Sounds: Normal and Adventitious Sound 6
2.1.2 Main Features of the Wheeze 10
2.2 Related Wheezing Sound Analysis Methods 12
2.2.1 The Continuity of the Peak Checking Methods 12
2.2.2 Feature Extraction and Pattern Recognition Methods 13
2.2.3 Image of the Spectrogram Processing Method 15
2.3 Breath Sound Recording 16
2.3.1 Technique of the Breath Sound Recording 16
2.3.2 Breath Sound Recording System 20
CHAPTER 3 METHODOLOGY 21
3.1 Overall System Architecture 21
3.1.1 Wheezing Detection Algorithm Process Flow 21
3.1.2 SOPC Hardware Architecture 23
3.1.3 MicroBlaze Architecture 24
3.1.4 Processor Local Bus (PLB) 26
3.1.5 Proposed Wheezing Sound Detection System 30
3.1.6 System Validation through Hardware Co-Simulation 34
3.2 Preprocessing Breath Sound Data and STFT 36
3.2.1 Frame Blocking of the Input Breath Sound 36
3.2.2 Introduction of Short–Time Fourier Transform 38
3.2.3 Implementation of STFT 40
3.3 Bilateral Filter 47
3.3.1 Algorithm of the Bilateral Filter 48
3.3.2 Implementation of the Bilateral Filter 50
3.4 Forming Wheezing Mask 63
3.4.1 Basic Ideas of the Multi-threshold Image Segmentation 63
3.4.2 Image Labeling and Image Properties Extraction 65
3.4.3 Implementation of Multi-threshold Image Segmentation 70
3.4.4 Edge Detection 85
3.4.5 Image Closing and Opening 87
3.4.6 Implementation of Wheezing Mask Forming 88
3.5 Support Vector Machines 93
3.5.1 Kernel Methods 93
3.5.2 Support Vector Machines Classification 96
CHAPTER 4 RESULTS AND DISCUSSION 101
4.1 Wheezing Sound Detection Results 101
4.2 Implementation Result of the Wheezing Detection SIP 110
CHAPTER 5 CONCLUSION 114
REFERENCES 115
dc.language.isoen
dc.title基於FPGA的快速哮鳴音偵測系統zh_TW
dc.titleAn FPGA System for Rapid Wheezing Detectionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor林伯星
dc.contributor.oralexamcommittee林志隆,林伯?
dc.subject.keyword哮鳴音偵測,現場可編程邏輯閘陣列,FPGA,時頻圖影像處理,支持向量機,zh_TW
dc.subject.keywordRapid wheezing detection,Field Programmable Gate Array,FPGA,Spectrogram image processing, Support Vector Machines,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
7.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved