Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48421
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorCih-Su Wangen
dc.contributor.author王慈甦zh_TW
dc.date.accessioned2021-06-15T06:56:09Z-
dc.date.available2011-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-09
dc.identifier.citationChapter 1
1. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature (London) 421, 241
(2003).
2. S. S. Wang, E. Joselevich, A. T. Wooley, C. L. Cheung, and C. M. Lieber, Nature
(London) 394, 52 (1998).
3. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature (London) 409.
66 (2001).
4. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang,
Phys. Rev. Lett. 82, 2278 (1999).
5. S. F. Yu, C. Yuen, and S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 84,
3241 (2004).
6. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, J. Appl. Phys. 97, 064315 (2005).
7. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham,
R. Saykally, and P. D. Yang, Adv. Mater. (Weinheim, Ger.) 15, 1907 (2003).
8. V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).
9. D. S. Wiersma and Lagendijk, Phys. Rev. E 54, 4256 (1996).
10. S. John and G. Pang, Phys. Rev. A 54, 3642 (1996).
11. L. Florescu and S. John, Phys. Rev. Lett. 93, 013602 (2004).
12. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys.Rev. Lett. 82, 2278 (1999).
13. R. M. Laine, S. C. Rand, T. Hinklin, and G. R. Williams, US Patent 6,656,588
(2003).
14. J. B. Baxter, F. Wu, and E. S. Aydil, Appl. Phys. Lett. 83, 3797 (2003).
15. L. S. Mende and J. L. MacManus-Driscoll, Mater. Today 10 40 (2007).
16. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
17. H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen, Opt. Express 15, 13832
(2007).
18. C. Berney and G. Danuser, Biophys. J. 84, 3992 (2003).
Chapter 2
2.1
1. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
2. F. Koenderink, A. Lagendijk, and W. L. Vos, Phys. Rev. B 72, 153102 (2005).
3. V. S. Letokhov, Zh. Eksp. Teor. Fiz. 53, 1442 (1967); Sov. Phys. JETP 26, 835
(1968).
4. D. S. Wiersma and A. Lagendijk, Phys. Rev. E 54 4256 (1996).
5. V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, Zh. Prikl. Spektrosk. 45, 847
(1986).
6. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, J. Opt. Soc. Am. B
10, 2358 (1993).
7. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature 368,
436 (1994).
8. W. L. Sha, C. H. Liu, and P. R. Alfano, Opt. Lett. 19, 1922 (1994).
9. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature 373, 203 (1995).
10. N. M. Lawandy and R. M. Balachandran, Nature 373, 204 (1995).
11. J. Martorell, R. M. Balachandran, and N. M. Lawandy, Opt. Lett. 21, 239 (1996).
12. S. John, Phys. Rev. Lett. 53, 2169 (1984).
13. P. W. Anderson, Phil. Mag. B 52, 505 (1985).
14. A. Lagendijk, M. van Albada, and M. B. van der Mark, Physica A 140, 183
19
(1986).
15. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
16. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys.
Rev. Lett. 42, 673 (1979).
17. H. Cao et al., Phys. Rev. Lett. 82, 2278 (1999).
18. X.Y.Jiang, and C. M. Soukoulis, Phys. Rev. Lett. 85,70 (2000).
19. H. Cao et al., Phys. Rev. Lett. 84, 5584 (2000).
20. C. Vanneste, and P. Sebbah, Phys. Rev.Lett. 87, 183903 (2001).
21. P. Pradhan, and N. Kumar, Phys. Rev. B 50, 9644 (1994).
22. R. M. Laine, S. C. Rand, T. Hinklin, and G. R. Williams, US Patent 6,656,588
(2003).
23. J. Dubois, and S. la Rochelle, US Patent 5,966,227 (1999).
24. R. C. Polson, and Z. V. Varden, Appl. Phys. Lett. 85, 1289 (2004).
25. R. Choe et al., Med. Phys. 32, 1128 (2005).
2.2-2.5
1. K. Seeger, Semiconducror Physics: An Introduction, 4th ed, Springer (1989).
2. C. Kittel, Introduction to Solid State Physics, 7th ed (1996).
3. C. Berney and G. Danuser, Biophys J 84, 3992 (2003).
4. L. Esaki and R. Tsu, IBM J. Res. Devel. 14, 61 (1970).
5. G. W. Gordaon, G. Berry, X. H. Liang, B. Levine, and B. Herman, Biophys J. 74,
2702 (1998).
6. C. D. Hu, Y. Chinenov, and T. K. Kerppola, Mol. Cell 9, 789 (2002).
7. J. R. Silvius and I. R. Nabi, Molec. Membr. Bio. 23, 5 (2006).
Chapter 3
1. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
2. J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, J. Vac. Sci. Technol. B 15, 554
(1997).
3. A. M. Morales and C.M. Lieber, Science 279, 208 (1998).
4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and
P. Yang, Science 292, 1897 (2001).
5. Y. Q. Zhu, W.K.Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W.
Kroto, and D. R. M. Walton, J. Mater. Chem. 8, 1859 (1998).
6. Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y, Zhou, C. Y. Wang, W. Liu, Y. B.
Li, X. P. Zhou, and G. Wang, J. Mater. Res. 16, 683 (2001).
7. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
8. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W.
B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000).
9. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, and J. J. Du,
Chem. Phys. Lett. 328, 5 (2000).
10. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (1956).
11. S. S. Brenner and G. W. Dears, Acta Met. 4, 268 (1956).
12. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y.
55
Ding, Q. L. Huang, and S. Q. Feng, Solid State Comm. 109, 677 (1999).
13. G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin,
Plenum Press, New York and London (1981).
14. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer, 2001.
15. H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen, Opt. Express 15, 13832
(2007).
16. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spec. 7, 321 (1978).
17. R. A . Strabling, and P. C. Klipstein, Growth and Characterization of
Semiconductors. (Adam Hilger: September 1989).
18. S. Perkowitz, Optical Characterization of Semiconductors: Infared, Raman, and
Photoluminescence Spectroscopy. (London; San Diego: Academic Press, 1993).
Chapter 4
1. V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).
2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature
(London) 368, 436 (1994).
3. D. S. Wiersma and A. Lagendijk, Phys. Rev. E 54, 4256 (1996).
4. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang,
Appl. Phys. Lett. 73, 3656 (1998); H. Cao, Y. G. Zhao, S. T. Ho, W. Seelig, Q. H.
Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1998).
5. S. V. Frolov, Z. V. Vardeny, and K. Yoshino, Phys. Rev. B 57, 9141 (1999); T. V.
Shahbazyan, M. E. Raikh, and Z. V. Vardeny, Phy. Rev. B 61, 13266 (2000).
6. D. Wiersma, Nature 406, 132 (2000).
7. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature (London) 421, 241
(2003).
8. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature (London) 409,
66 (2001).
9. N. E. Hsu, W. K. Huang, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
10. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, Opt. Express 14,
2372 (2006).
11. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang,
72
Phys. Rev. Lett. 82, 2278 (1999).
12. S. F. Yu, C. Yuen, and S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 84,
3241 (2004).
13. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, J. Appl. Phys. 97, 064315 (2005).
14. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham,
R. Saykally, and P. D. Yang, Adv. Mater. (Weinheim, Ger.) 15, 1907 (2003).
15. J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, Opt. Lett. 31, 3173 (2006).
16. H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen, Opt. Express 15, 13832
(2007).
17. L. J. Tzeng, C. L. Cheng, and Y. F. Chen, Opt. Lett. 33, 569 (2008).
18. T. H. Lin, T. T. Chen, C. L. Chung, H. Y. Lin, and Y. F. Chen, Opt. Express 17,
4342 (2009).
19. C. Berney and G. Danuser, Biophys. J. 84, 3992 (2003).
20. J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, J. Phys. Chem. C
111, 693 (2007).
21. H. Nakajima, T. Mori, and M. Watanabe, J. Appl. Phys. 96, 925 (2004).
22. G. Wakefield, J. Stott, and J. Hock, SÖFW J. 131, 46 (2005).
23. S. Z. Fan, X. Y. Zhang, Q. P. Wang, C. Zhang, Z. P. Wang, and R. J. Lan, J. Phys.
D: Appl. Phys. 42, 015105 (2009).
73
24. A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, J. Crystal Growth
282, 131 (2005).
25. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spec. 7, 321 (1978).
26. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G.
Parthasarathy, and S. R. Forrest, J. Appl. Phys. 84, 4096 (1998).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48421-
dc.description.abstract本篇論文的主要研究在於製備氧化鋅奈米柱與氧化鈦奈米顆粒此一新穎的半導體複合材料,並探討其在光脈衝激發下所展現的隨機雷射(Random laser)特性。我們發現,在氧化鈦奈米顆粒的幫助下,氧化鋅奈米柱於紫外波段所擁有的雷射光強度能夠被顯著地增強。其主要原因,來自於二者材料間的導、價帶位置不同, 靠著螢光共振而伴隨的能量傳遞(Fluorescence Resonance EnergyTransfer),半導體內部的載子(Carrier)遷移能夠成功地增強氧化鋅奈米柱的同調輻射(Stimulated Emission)。除此之外,氧化鈦奈米顆粒與生俱來的高折射係數(refractive index)(n~2.5),可使其完美地散射由氧化鋅奈米柱產生的紫外輻射,進一步增強在多重性散射下(Multiple Scattering),系統所得到的同調回饋(Coherent Feedback)。zh_TW
dc.description.abstractAn improvement in random lasing action at ultraviolet wavelength has beenachieved from ZnO nanorod arrays grown on sapphire substrate with the assistance of TiO2 nanoparticles. Due to the inherent nature of high refractive index of TiO2 (n ~2.5)> ZnO(n~1.9), the TiO2 nanoparticles can serve efficiently as excellent
nanoscatterers,which can promote the formation of closed-loop paths. In addition, the underlying origin of the pronounced lasing action can also be attributed to the enhanced emission arising from fluorescence resonance energy transfer (FRET) between the band edge transition of ZnO nanorods and TiO2 nanoparticles. The strategy of the lasing enhancement provided here should be very useful for the future development in designing high efficiency optoelectronic devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:56:09Z (GMT). No. of bitstreams: 1
ntu-100-R97245005-1.pdf: 4272988 bytes, checksum: 062e2b8f12a8ff272b65548cc48a4eab (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1. Introduction……………………………..
………………………….1
References of Chapter 1 …………………..
……………………………….……..4
2. Theoretical Background ……………………………………………6
2.1 The Physics of Random Laser…………………………………………………6
2.1.1 Introduction ……………………………………………………………..6
2.1.2 Emission Properties…………………………………………………….10
2.1.3 Mode Structure…………………………………………………………12
2.1.4 Definition…………………………………………………………….....15
2.1.5 Applications………………………………………………………….....16
References of Section 2.1………………………………………………………18
2.2 Band Gap Structure…………………………………………………..………20
2.3 Recombination Processes………………………………………………….…23
2.4 Quantum Confinement Effect…………………………………………….…..26
2.5 Fluorescence Resonance Energy Transfer (FRET)…………………………..28
References of Section 2.2 - 2.5…………………………………………………...31
3. Experimental Techniques………………………………………..…32
3.1 Vapor-Liquid-Solid Growth Mechanism (VLS)…………………………..…32
3.1.1 Fabrication of ZnO nanowires…………………………………………33
3.2 Vapor-Solid Growth Mechanism (V.S)…………………………………..…36
3.2.1 Fabrication of ZnO nanorods……………………………………..……37
3.3 Scanning Electron Microscopy (SEM)………………………………………40
3.4 DC Sputtering Deposition……………………………………………………42
3.5 Raman Scattering Apparatus…………………………………………………44
3.6 Photoluminescence (PL)……………………………………………………...48
3.6.1 Introduction……………………………………………………….……48
3.6.2 Neodymium Doped Yttrium Aluminum Garnet Laser (Nd: YAG)…….51
3.6.3 Carge - Coupled Device (CCD)………………………………………..52
3.6.4 Apparatus Setup……………………………………………………...…52
References of Chapter 3…………………………………….……………………54
4. Enhancement of Random Lasing Based on ZnO/TiO2
Nanocomposites………………………………..…………………..56
4.1 Introduction………………………………………………………………..…56
4.2 Experiment Details…………………………………………………………..58
4.3 Results and Discussion……………………………………………………….59
4.4 Summary…………………………………………………………………..…70
References of Chapter 4….………………………………………………………71
5. Conclusion…………………………………………………………..74
dc.language.isozh-TW
dc.title氧化鈦奈米顆粒/氧化鋅奈米柱複合材料之雷射光學性質研究zh_TW
dc.titleLasing properties of TiO2/ZnO nanocompositesen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee梁啟德,林泰源
dc.subject.keyword氧化鋅,氧化鈦,隨機&#63817,射,螢光共振能&#63870,傳遞,zh_TW
dc.subject.keywordZnO,TiO2,random lasing,fluorescence resonance energy transfer,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2011-02-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved