請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48416完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林曉武 | |
| dc.contributor.author | Wei-Cheng Wang | en |
| dc.contributor.author | 王煒誠 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:55:58Z | - |
| dc.date.available | 2013-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-09 | |
| dc.identifier.citation | 中文部份
陳金良(1995)台灣西南陸棚陸坡沉積物硫酸鹽還原作用與有機碳之沉降通量。國立台灣大學海洋研究所碩士論文。 楊燦堯(2010)台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(3/4)台灣西南海域海水與沉積物之氣體化學組成。中央地質調查所報告第99-30-F號。 駱守凡(2008)海洋自生重晶石在台灣西南海域泥火山沉積物之分佈。國立成功大學地球科學所碩士論文。 英文部份 Aloisi, G., Wallmann, K., Bollwerk, S. M., Derkachev, A., Bohrmann,G. and Suess, E., 2003. Geochimica et Cosmochimica Acta, 68, 1735–1748. Berner, R.A., 1980. Early diagenesis: a theoretical approach. Princeton University Press, Princeton, NJ, p.241. Bernstein, R.E., Byrne, R.H., Betzer, P.R. and Greco, A.M., 1992. Morphologies and transformations of celestite in seawater: the role of acantharians in the strontium and barium geochemistry. Geochimica et Cosmochimica Acta, 56, 3273–3279. Bernstein, R.E., Byrne, R.H., and Schijf, J., 1998. Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Research I, 45, 491–505. Bishop, J.K.B., 1988. The barite-opal-organic carbon association in oceanic particulate matter. Nature, 311, 341–343. Borowski, W.S., Paull, C.K., and Ussler, W., 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24, 655-658. Borowski, W.S., Paull, C.K., and Ussler, W., 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensititivity to under lying methane and gas hydrates. Marine Geology, 159, 131-154. Bouderau, B.P., 1997. Diagenetic models and their impletation: modeling transport and reactions in aquatic sediments. Springer, Berlin, Heidelberg, NY, 414. Canifield, D.E., Raiswell, R., Westrich J.T., Reaves C.M. and Berner R.A., 1986.The use of chromium reduction in the anaylsis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54, 149-155. Castellini, D.G., Dickens, G.R., Snyder, G.T. and Ruppel, C.D., 2006. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chemical Geology, 226, 1-30. Chuang, P.C., Yang, T. F., Lin, S., Lee, H.F., Lan, T.F., Hong, W.L., Liu, C.-S., Chen, J.C., and Wang, Y., 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 903-920. Chuang, P.C., T. F. Yang, W.L. Hong, S. Lin, C.-H. Sun, A. T. Lin, J.C. Chen, Y. Wang, and S.H. Chung, 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10, 497-510. Cornwell, J.D. and Morse, J.W., 1987. The characterization of iron sulfide minerals in marine sediment. Marine Chemistry, 22, 193-206. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M. J., Chen, M.C., Stark, C.P., Lague, D., and Lin, J.C., 2003, Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648-651. Dehairs, F., Chesselet, R. and Jedwab, J., 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters, 49, 528–550. Dehairs, F., Stroobants, N. and Goeyens, L., 1991. Suspended barite as a tracer of biological activity in the Southern Ocean. Marine Chemistry, 335, 399–410. Dehairs, F., Baeyems, W. and Goeyens, L., 1992. Accumulation of suspended barite at mesopelagic depths and export production in the Southern Ocean. Science, 258, 1332–1335. Dickens, G.R., O’Neil, J.R., Rea, D.K. and Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10, 965-971. Dickens, G.R., 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65, 529–543. Dickens, G.R., 2003. Rethinking the global carbon cycle with a large, dynamic and micro bialy mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213,169-183. Dymond, J., Suess, E. and Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7, 163–181. Dymond, J., Collier and McManus, J., 1997. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans? Paleoceanography, 12, 586–593. Feely, R.A., Lewison M., Massoth, G.L., Robert-Baldo, G., Lavelle J.W., Byrne, R.H., Von-Damm, K.L. and Curl, H.C., 1987. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. Journal of Geophysical Research, 92, 11,347–11,363. Feely, R.A., Geiselman, T.L., Backer, E.T., Massoth, G.J. and Hammond, S.R., 1990. Distribution and composition of hydrothermal plume particles from the ASHES vent field at Axial volcano, Juan de Fuca Ridge. Journal of Geophysical Research, 95, 12855–12873. Goldberg, E.D. and Arrhenius, G., 1958. Chemistry of pelagic sediments. Geochimica et Cosmochimica Acta, 13, 153–212. Kennett, J.P., Cannariato, K.G., Hendy, I.L., and Behl, R.J., 2003. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. American Geophysical Union, Washington, D.C., p.54. Special Publications. Kokot, S., King, G., Keller, H.R., and Massart, D.L., 1992. Application of chemometrics for the selection of microwave digestion procedures. Anal. Chim. Acta, 268, 89-94. Kusakabe, M., Mayeda, S. and Nakamura, E., 1990. S, O, and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading-axis at 18°N. Earth and Planetary Science Letters, 100, 275–282. Kvenvolden, K. A., 1988. Methane hydrates and global climate. Global Biochemical Cycles, 2, 221–229. Lin, S. and Morse, J.W., 1991. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediment. American Journal of Science, 291, 55-89. Lin, S., Huang, K.M. and Chen, S.K., 2002. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment. Deep-Sea Research, 49, 1837-1852. Liu, C.-S., Schnurle, P., Wang, Y., Chung, S.-H., Chen, S.-C., and Hsiuan, T.-H., 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 615-644. McManus, J., Berelson, W.M., Hammond, D.E. and Klinkhammer, G.P., 1999. Barium cycling in the North Pacific: Implications for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography, 14, 53-61. McQuay, E.L., Torres, M.E., Collier, R.W., Huh, C.A. and McManus, J., 2008. Contribution of cold seep barite to the barium geochemical budget of a marginal basin. Deep-Sea Research I, 55, 801–811. Milkov, A.V. and Sassen. R., 2002. Economic geology of offshore gas hydrate accumulation s and provinces. Marine and Petroleum Geology, 19, 1-11. Moore, W.S. and Stakes, D., 1990. Ages of barite-sulfide chimneys from the Mariana Trough. Earth and Planetary Science Letters, 100, 265–274. O’Dell, J.W., Pfaff, J.D., Gales, M.E. and Mckee, G.D., 1984. The determination of inorganic anions in water by ion Chromatography. Method 300.0, US EPA 600/4.84.017, p.5. Paytan, A. and Griffith, E. M., 2007. Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54, Issues 5-7 687-705. Paull, C.K., Ussler, III W. and Dillon, W.P., 1991. Is the extent of glaciations limited by marine gas-hydrates. Geophysical Research Letters, 18, 432-434. Riedinger, N., Kasten, S., Groger, J., Franke, C. and Pfeifer, K., 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters, 241, 876-887. Rodriguez, N. M., Paull, C. K., and Borowski, W. S., 2000. Zonation of authigenic carbonates within gas hydrate–bearing sedimentary sections on the Blake Ridge: offshore southeastern North America. In: Paull, C. K., Matsumoto, R., Wallace, P. J., and Dillon, W. P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 164. Sanchez-Vidal, A., Collier, R.W., Calafat, A., Fabres, J. and Canals, M., 2005. Particulate barium fluxes on the continental margin: a study from the Alboran Sea (Western Mediterranean). Mar. Che, 93, 105-117. Sandra, A., Almut, H. and Hans, J.B., 2009. Evolution of organic matter degration in Cretaceous black shales inferred form authigenic barite:A reaction-transport model. Geochimica et Cosmochimica Acta, 73, 2000-2022. Sahling, H., Rickert, D., Lee, R.W., Linke, P., and Suess, E., 2002. Macrofaunal community structure and sulfide flux at gas hydrate eposits from the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series, 231, 121-138. Schenau, S.J. and Delange G.J., 2000. A novel chemical method to quantify fish debris in marine sediments. American Society of Limnoogy and Oceanography, Inc.,45, 963-971. Schenau, S.J., Prins, M.A., de Lange, G.J. and Monnin, C., 2001. Barium accumulation in the Arabian Sea: controls of barite preservation in marine sediments. Geochimica et Cosmochimica Acta, 65, 1545–1556. Suess, E., 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288, 260-263. Snyder, G.T., Dickens, G.R. and Castellini, D.G., 2007. Labile barite contents and dissolved barium concentrations on Blake Ridge:New perspectives on barium cycling above gas hydrate systems. Journal of Geochemical exploration, 95, 48-65. Torres, M. E., 1996. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127, 125–139. Turekian, K.K. and Wedepohl, K.H., 1961. Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull, 72, 175-192. Turekian K. K. and Tausch, E. H., 1964. Barium in deep-sea sediments of the Atlantic Ocean. Nature, 201, 696–697. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48416 | - |
| dc.description.abstract | 準確量測天然氣水合物上層甲烷遷移之時間與尺度,是了解天然氣水合物遷移所產生相關變化之重要依據。傳統測量甲烷通量的方法,例如甲烷濃度隨深度之變化、硫酸鹽還原速率等,只能得知現今甲烷的通量,無法探究過去甲烷通量大小與改變。一般古海洋常用之方法如碳-14和浮游生物殼體氧同位素等量測方法,則因為老碳與硫污染影響,不適用於天然氣水合物甲烷通量之研究。自生重晶石在硫酸鹽-甲烷反應帶的富集,則可作為現今與過去甲烷通量變化的良好指標,並藉以推估甲烷通量穩定持續的時間長短,更且藉由自生重晶石多次富集的出現與否,探討甲烷通量的時序變化,以充分了解甲烷移棲的歷史,進而了解甲烷通量變化與天然氣水合物賦存及氣候變遷的關係。
本研究於台灣西南海域不同甲烷通量區域採集沉積物岩心樣品,分析其間隙水與沉積物中鋇離子含量,探討自生重晶石的垂直分佈與富集。藉由鋇離子擴散通量模式計算,估算自生重晶石富集時間,以探討研究區域內甲烷通量的時序變化。本研究亦進一步探討間隙水中鋇離子與甲烷和硫酸鹽之間的相互關係。研究結果顯示,台灣西南海域沉積物中發現多種不同類型的自生重晶石富集,包括單一峰值、多個峰值以及沒有峰值等數種。同一岩心中,多個自生重晶石的富集,顯示了本研究區域甲烷通量的大小在過去與現今不同時期有明顯的改變,且自生重晶石富集時間約為一至八千年,顯示甲烷通量曾改變且呈現多次的變化,且部份測站在硫酸鹽-甲烷反應帶並未發現自生重晶石富集峰,故冰期/間冰期海平面上升下降可能並非唯一會造成天然氣水合物穩定帶與甲烷通量改變之控制因素。在活動大陸邊緣地層活動頻繁的海域,活躍的板塊運動產生之活動可能也是造成甲烷通量改變的重要因素。 | zh_TW |
| dc.description.abstract | Accurate determination the duration and time of methane migration above the gas hydrate layer is important in better understanding mechanism(s) driving methane migration and its association with climatic change. Difficulty arises from interference by old carbon in methane and sulfur in proper analyzing carbon and oxygen isotopic value rendering the traditional methods such as carbon-14 or planktonic oxygen records untrustworthy. Diffusion model through determination peak concentration of barium sulfate precipitation has been successfully employed to calculate time and length of methane migration in this study.
This thesis study barium sulfate peak(s) accumulated in the continental margin sediments in order to understand mechanism(s) controlling methane migration in sediments offshore southwestern Taiwan. Pore water and sediment barium concentrations were analyzed. Barium fluxes were calculated in order to estimate duration of barite accumulation in sediment. Downward sulfate and upward methane flux as well as barium in sediment were also evaluated to better understand authigenic barite precipitation. Results showed that different types of barite peaks existed in our study area, a single barite peak, multiple peaks and no visible barium sulfate peak. The appearances of more than one barite peaks demonstrated that multiple stages of methane vents may have occurred at present and/or in the past at different geological time at sites in our study region. Diffusion model calculation demonstrated that duration of barite accumulation may require about one to eight thousand years. The appearances of both multiple barite peaks as well as no barite peak associated with the present SMTZ in the study area indicated that methane gas venting may not controlled by a single general process such as sea level changes but by the local active tectonic activities. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:55:58Z (GMT). No. of bitstreams: 1 ntu-100-R97241409-1.pdf: 4371356 bytes, checksum: 3260f885e0d886fa66eb3c16bee1e377 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致 謝 I
中文摘要 II 英文摘要 III 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2海洋沉積物中重晶石的來源 3 1.3自生重晶石的形成與甲烷通量的關係 6 1.4台灣西南海域地質構造 9 1.5研究目的 10 第二章 樣品採集與分析方法 11 2.1樣品採集 11 2.1.1採樣位置 11 2.1.2採樣方法 11 2.2樣品前處理 15 2.3分析方法 15 2.3.1沉積物鋇與鋁分析 15 2.3.2間隙水鋇分析 17 2.3.3間隙水硫酸鹽濃度 18 2.3.4沉積物酸可萃取硫及黃鐵硫含量 18 2.3.5沉積物有機碳及碳酸鈣含量 18 2.3.6沉積物含水量、孔隙率、統體密度 19 第三章 研究結果 23 3.1硫酸鹽、甲烷與鋇離子濃度 23 3.2表層沉積物海洋重晶石含量 25 3.3沉積物總鋇與總鋁含量 25 3.4沉積物總鋇與總鋁含量之比值 26 3.5沉積物黃鐵硫與酸可萃取硫含量 27 3.6沉積物有機碳與碳酸鈣含量 28 第四章 討論 38 4.1硫酸鹽、甲烷與鋇離子通量之區域性變化及三者之間的相互關係 38 4.2影響鋇離子通量之因素 53 4.3自生重晶石富集 56 4.4自生重晶石富集峰的累積時間 63 第五章 結論 67 第六章 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | 自生重晶石 | zh_TW |
| dc.subject | barite | en |
| dc.subject | methane | en |
| dc.title | 台灣西南海域沉積物之自生重晶石富集與甲烷移棲之關係 | zh_TW |
| dc.title | The use of diagenetic barite enrichment in modeling duration of methane migration in sediments offshore Southwestern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊燦堯,溫良碩,曾鈞懋 | |
| dc.subject.keyword | 自生重晶石,甲烷, | zh_TW |
| dc.subject.keyword | barite,methane, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
