請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48404
標題: | 具Engel條件之導算恆等式 Differential Identities with Engel Conditions |
作者: | Hung-Yuan Chen 陳弘遠 |
指導教授: | 李秋坤(Tsiu-Kwen LEE) |
關鍵字: | 質環,推廣恆等式,微分等式,Engel條件,恆心包含關係,自同構,協同中心化,推廣微分算子, Prime ring,GPI,Differential identity,Engel Condition,kernel inclusion,automorphism,cocentralizing,generalized derivation, |
出版年 : | 2011 |
學位: | 博士 |
摘要: | This thesis focuses on kernel inclusions of algebraic automorphisms, generalized derivations with Engel conditions and generalized derivations cocentralizing polynomials. In Chapter 1 we consider algebraic automorphisms with kernel inclusions. Let R be a prime ring. For an automorphism σ of R we let R(σ) def. = {x ∈ R | σ(x) = x}. Assume that σ is algebraic. We characterize the automorphism τ of R such that R(σ) ⊆ R(τ).
In Chapters 2,3 and 4 we consider certain identities with generalized derivations. Firstly, we concern generalized derivations cocentralizing polynomials. Let R be a prime ring with extended centroid C and let f(X1, . . . ,Xt) be a polynomial over C with zero constant term. Let D and G be generalized derivations of R. We characterize D,G and f(X1, . . . ,Xt) satisfying D(f(x1, . . . , xt))f(x1, . . . , xt) − f(x1, . . . , xt)G(f(x1, . . . , xt))∈ C for all x1, . . . , xt in R. Secondly, we consider certain Engel conditions on polynomials with generalized derivations. Precisely, we characterize D and f(X1, . . . ,Xt) such that the following Engel identity is satisfied: [D(f(x1, . . . , xt)), f(x1, . . . , xt)]k= 0 for all x1, . . . , xt in R. At the end, we concern a generalization of the previous two situations. Precisely, we characterize D,G and f(X1, . . . ,Xt) satisfying [D(f(x1, . . . , xt))f(x1, . . . , xt)−f(x1, . . . , xt)G(f(x1, . . . , xt)), f(x1, . . . , xt)]k= 0 for all x1, . . . , xt in R. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48404 |
全文授權: | 有償授權 |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 411.87 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。