請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48387完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信希(Hsin-Hsi Chen) | |
| dc.contributor.author | Ming-Hung Hsu | en |
| dc.contributor.author | 許名宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:54:51Z | - |
| dc.date.available | 2011-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-10 | |
| dc.identifier.citation | Al-Khalifa, H.S., and Davis, H.C., 2006. Measuring the Semantic Value of Folksonomies. Innovations in Information Technology, 1-5.
Anderson, P., 2007. What is Web 2.0? Ideas, technologies and implications for education. Technical report, JISC. Bao, S., Wu, X., Fei, B., Xue, G., Su, Z., and Yu, Y., 2007. Optimizing Web Search Using Social Annotations. Proceedings of the 16th International Conference on World Wide Web. ACM Press, New York, 501-510. Baeza-Yates, R., and Ribeiro-Neto, B., 1999. Modern Information Retrieval. Addison Wesley. Berger, A., and Lafferty, J., 1999. Information Retrieval as Statistical Translation. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York, 222-229. Bischoff, K., Firan, C. , Nejdl, W., and Paiu, R., 2008. Can all Tags be used for Search? Proceedings of the 17th ACM Conference on Information and Knowledge Management, ACM Press, New York, 193-202. Chirita, P.A., Costache, S., Nejdl, W., and Handschuh, S., 2007. P-tag: large scale automatic generation of personalized annotation tags for the Web. Proceedings of the 16th International Conference on World Wide Web (WWW’07). New York: ACM Press, 845-854. Clough, P., Muller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., and Hersh, W., 2006. The CLEF 2005 cross-language image retrieval track. In Proceedings of the 2005 Cross Language Evaluation Forum, LNCS. Collins-Thompson, K., and Callan, J., 2005. Query Expansion Using Random Walk Models. Proceedings of the 14th Conference on Information and Knowledge Management, ACM Press, New York, 704-711. Craswell, N., and Szummer, M., 2007. Random Walks on the Click Graph. Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York, 239-246. Ding, L., Finin, T., Joshi, A., Pan, R., Scott Cost, R., Peng, Y., Reddivari, P., Doshi, V.C., and Sachs, J., 2004. Swoogle: A Search and Metadata Engine for the Semantic Web. Proceedings of the 13th Interional Conference on Information and Knowledge Management, ACM Press, New York.. Dmitriev, P.A., Eiron, N., Fontoura, M., and Shekita, E., 2006. Using Annotations in Enterprise Search. Proceedings of the 15th International Conference on World Wide Web. ACM Press, New York, 811-817. Draper, N.R. and Smith, H. 1998. Applied Regression Analysis. Wiley-Interscience, ISBN 0-471-17082-8 Dubinko, M. Kumar, R., and Magnani, J., 2006. Visualizing Tags over Time. Proceedings of the 15th International Conference on World Wide Web. ACM Press, New York, 193-202. Dwork, C., Kumar, R., Naor, M., and.Sivakumar, D., 2001. Rank Aggregation Methods for the Web. Proceedings of the 10th International Conference on World Wide Web. ACM Press, New York, 613-622. Gemmis, M., Lops, P., Semeraro, G., and Basile, P., 2008. Integrating Tags in a Semantic Content-based Recommender. Proceedings of the 2008 ACM Conference on Recommender Systems. ACM Press, New York, 163-170. Golder, S.A., and Huberman, B.A., 2006. Usage patterns of Collaborative Systems. Journal of Information Science 32(2), 198-208. Guan, Z., Bu, J., Mei, Q., Chen, J.C., and Wang, C., 2009. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. Proceedings of the 32th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’09). New York: ACM Press, 540-547. Guo, J., Cheng, X., Shen, H., and Bai, S., 2009. Exploring Collaboratively Annotated Data for Automatic Annotation. Content Analysis in Web 2.0 Workshop of the 18th International Conference on World Wide Web. Halpin, H., Robu, V., and Shepherd, H., 2007. The Complex Dynamics of Collaborative Tagging. Proceedings of the 16th International Conference on World Wide Web. ACM Press, New York, 211-220. Hammond, T., Hannay, T., Lund, B., and Scott, J., 2005. Social Bookmarking Tools (I): A General Review. D-Lib Magazine 11(4). Hassan-Montero, Y., and Herrero-Solana, V., 2006. Improving Tag Cloud by Visual Information Retrieval Interfaces. Proceedings of International Conference on Multidisciplinary Information Sciences and Technologies. Heymann, P., Koutrika, G., and Garcia-Molina, H., 2008a. Can Social Bookmarking Improve Web Search? Proceedings of the 1st ACM International Conference on Web Search and Data Mining. ACM Press, New York, 195-205. Heymann, P., Ramage, D., and Garcia-Molina, H., 2008b. Social Tag Prediction. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York, 531-538. Hsu, M.-H. and Chen, H.-H., 2008. Tag Normalization and Prediction for Effective Social Media Retrieval. Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, IEEE Computer Society, 770-774. Ivanov, I., Vajda, P., Goldmann, L, Lee, J.-S., and Ebrahimi, T., 2010. Object-based Tag Propagation for Semi-Automatic Annotation of Images. Proceedings of 11th ACM SIGMM International Conference on Multimedia Information Retrieval (MIR 2010), ACM Press, New York, 497-506. Joachims, T., 1999. Making Large-scale Support Vector Machine Learning Practical. Advances in Kernel Methods: Support Vector Learning (pp. 169-184). MIT Press Joachims, T., 2002. Optimizing search engines using click-through data. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02) (pp. 133-142). New York: ACM Press. Jones, K. S., and Willet, P., 1997. Readings in Information Retrieval, San Francisco: Morgan Kaufmann, ISBN 1-55860-454-4. Kendall, M., 1938. A New Measure of Rank Correlation, Biometrika, 30, 81-89. Kim, H.-L., Decker, S., and Breslin J. G., 2010. Representing and sharing folksonomies with semantics. Journal of Information Science, 36(1), 57-72. Kim, S.B., Seo, H.C., and Rim, H.C., 2004. Information retrieval using word senses: root sense tagging approach. In Proceedings of the 27th Annual International ACM SIGIR Conference, 2004, 258-265. Lenat, D.B., 1995. Cyc: A Large-scale Investment in Knowledge Infrastructure. Communications of the ACM, 38(11), 33-38. Li, R., Bao, S., Fei, B., Su, Z., and Yu, Y., 2007. Towards Effective Browsing of Large Scale Social Annotations. Proceedings of the 16th International Conference on World Wide Web. ACM Press, New York, 943-952. Li, X., Guo, L., and Zhao, Y., 2008. Tag-based Social Interest Discovery. Proceedings of the 17th International Conference on World Wide Web (WWW’08). ACM Press, New York, 675-684. Lieberman, H., Liu, H., Singh, P., and Barry, B, 2004. Beating Common Sense into Interactive Applications. AI Magazine 25(4), 63-76. Liu, D., Hua, X.-S., Yang, L., Wang, M., and Zhang, H.-J., 2009. Tag Ranking. Proceedings of the 18th International Conference on World Wide Web. ACM Press, New York, 351-360. Liu, H., and Lieberman, H., 2002. Robust photo retrieval using world semantics. In Proceedings of the LREC Workshop on Creating and Using Semantics for Information Retrieval and Filtering, 2002, Canary Islands. Liu, H., and Singh, P., 2004. ConceptNet: A Practical Commonsense Reasoning Toolkit. BT Technology Journal 22(4) (2004), 211-226. Liu, S., Liu, F., Yu, C.T., and Meng, W., 2004. An effective approach to document retrieval via utilizing WordNet and recognizing phrases. Proceedings of the 27th Annual International ACM SIGIR Conference, 266-272. Mathes, A., 2004. Folksonomies - Cooperative Classification and Communication through Shared Metadata. UIC Technical Report, available at http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html Miller, G. A.: WordNet: an on-line lexical database. Special Issue of International Journal of Lexicography, 1990. Mishne, G., 2006. AutoTag: a Collaborative Approach to Automated tag Assignment for Weblog posts. Proceedings of the 15th International Conference on World Wide Web. Moldovan, D.I., and Mihalcea, R., 2000. Using WordNet and Lexical Operators to Improve Internet Searches. IEEE Internet Computing 4(1) (2000) 34-43. Neter, J., Wasserman, W., Kutner, M.H., 1990. Applied linear statistical models : regression, analysis of variance, and experimental designs (3rd edition). IRWIN, Illinois. ISBN 0-256-08338-X. Oreilly, T., 2007. What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software. Communications & Strategies, No. 1, p. 17, First Quarter 2007. Pedro, D., and Pazzani, M., 1997. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103–137. Pedro, J. S. and Siersdorfer, S., 2009. Ranking and Classifying Attractiveness of Photos in Folksonomies. Proceedings of the 18th International Conference on World Wide Web. ACM Press, New York, 771-780. Plangprasopchok, A. and Lerman, K., 2009 Constructing Folksonomies from User-Specified Relations on Flickr. Proceedings of the 18th International Conference on World Wide Web. ACM Press, New York, 781-790. Porter, M. F., 1980. An Algorithm for Suffix Stripping. Journal of Program, July 1980, 14(3), 130-137. Robertson, S. E., Walker, S., Hancock-Beaulieu, M., Gull, A., and Lau, M., 1993. Okapi at TREC. Text REtrieval Conference, NIST, 21–30. Robertson, S. E., Walker, S., Beaulieu, M. M., Gatford, M., Payne, A., 1996. Okapi at TREC-4. Text REtrieval Conference, NIST, 73-96. Rodgers, J. L. and Nicewander, W. A., 1988. Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66. Russell, T., 2006. Folksonomy over Time. Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries. ACM Press, New York, 364-364. Salton, G., and Buckley, C., 1988. On the Use of Spreading Activation Methods in Automatic Information Retrieval. Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York, 147-160. Shepitsen, A., Gemmell, J., Mobasher, B., and Burke, R., 2008. Personalized Recommendation in Social Tagging Systems Using Hierarchical Clustering. Proceedings of the 2008 ACM conference on Recommender systems. ACM Press, New York, 259-266. Sigurbjornsson, B., and Zwol, R, 2008. Flickr Tag Recommendation based on Collective Knowledge. Proceedings of the 17th International Conference on World Wide Web. ACM Press, New York, 327-336. Smith, G., 2007. Tagging: People-powered Metadata for the Social Web. ISBN 9780321550149. New Riders Publishing, Thousand Oaks, CA, USA. Song, Y., Zhang, L. and Giles, C. L., 2008. A sparse Gaussian processes classification framework for fast tag suggestions. Proceeding of the 17th Conference on Information and Knowledge Management (CIKM’08). New York: ACM Press, 93-102. Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.-C., and Giles, C. L., 2008. Real-time Automatic Tag Recommendation. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York, 515-522. Soper, H. E., Young, A. W., Cave, B. M., Lee, A., and Pearson, K., 1917. On the distribution of the correlation coefficient in small samples. Appendix II to the papers of 'Student' and R. A. Fisher. A co-operative study, Biometrika, 11, 328-413. doi:10.1093/biomet/11.4.328. Specia, L., and Motta, E., 2007. Integrating Folksonomies with the Semantic Web. Workshop on the Semantic Web: Research and Applications, ESWC 2007, LNCS Vol. 4519/2007, 624-639. Suchanek, F. M., Vojnovic, M., and Gunawardena, D., 2008. Social tags: meaning and suggestions, Proceeding of the 17th Conference on Information and Knowledge Management (CIKM’08). New York: ACM Press, 223-232. Tsoumakas, G., Katakis, I., and Vlahavas, I., 2010. Mining Multi-label Data, Data Mining and Knowledge Discovery Handbook, O. Maimon, L. Rokach (Eds.). Springer, 2nd edition, 2010. Wang, J., and Davison B. D., 2008. Explorations in Tag Suggestion and Query Expansion. Proceedings of the CIKM 2008 Workshop on Search in Social Media (SSM 2008). ACM Press. Wu, X., Zhang, L. and Yu, Y., 2006. Exploring Social Annotations for the Semantic Web. Proceedings of the 15th International Conference on World Wide Web. ACM Press, New York, 417-426. Xu, S., Bao, S., Cao, Y., and Yu, Y., 2007. Using Social Annotations to Improve Language Model for Information Retrieval. Proceedings of the 16th Conference on Information and Knowledge Management, ACM Press, New York, 1003-1006. Xu, Z., Fu, Y., Mao, J., and Su, D., 2006. Towards the Semantic Web: Collaborative Tag Suggestions. Collaborative Web Tagging Workshop of the 15th International Conference on World Wide Web. Yanbe, Y., Jatowt, A., Nakamura, S., and Tanaka, K., 2007. Can Social Bookmarking Enhance Search in the Web? Proceedings of the 2007 Conference on Digital Libraries, 107–116. Yang, L., Wu, L., and Yu, N., 2009. Learning to Tag. Proceedings of the 18th International Conference on World Wide Web. ACM Press, New York, 361-370. Zhai, C. and Lafferty, J., 2004. A study of smoothing methods for language models applied to information retrieval. Transactions on Information Systems. ACM Press, New York, pp. 179-214. Zhou, D., Manavoglu, E., Li, J., Giles, C. L., and Zha, H., 2006. Probabilistic Models for Discovering E-Communities. Proceedings of the 15th International Conference on World Wide Web. ACM Press, New York, 173-182. Zhang, M.L. and Zhou, Z.H., 2007. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038-2048. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48387 | - |
| dc.description.abstract | 在現今的網路世界,社群標記已成為一種風行的機制,能夠讓使用者們去組織所需要的資源。這些急速增加的使用者標記吸引了豐富的學術研究,其目標包含分析使用者的標記行為和所使用的標籤,以及如何將標記好的標籤加以利用。雖然現今社群標記有許多可能的相關應用已成為眾多學者關心的研究議題,「冷啟動」(cold-start)這個問題卻大大地限制了它的實用性,特別是對於網路上頻繁出現的新興資源而言,冷啟動所造成的負面影響更是嚴重。
有鑑於網頁是社群書籤系統中最主要的社會媒體,在此論文中,我們對於網頁自動化標籤預測以及標籤擴充做了綜合性的研究。首先我們將探討一個社群書籤系統中,關於標籤的使用法所呈現的穩定化(stabilizing)過程。接著我們提出一個二階段式、有效且有效率的標籤預測方法;當有少量的使用者標記可供利用時,此方法能夠善用使用者標籤以改進標籤預測的品質。實驗結果顯示,我們所提出的方法能夠有效地為目標網頁預測適當的標籤。 除了此二階段的標籤預測方法,我們也提出一個整合標籤預測與網路搜尋的架構,稱為OBR。在使用開放目錄計劃(Open Directory Project,簡稱ODP)的資料所獲得的實驗結果顯示,此OBR架構能夠顯著地提昇典型的檢索模型(例如,BM25)的效能。 為了檢索另一種類型且廣為流傳的社會媒體,圖片,我們也引入一個新穎的、以知識本體為基礎的方法,以擴充目標圖片的文字標記。此方法利用了在概念網(ConceptNet),目前最大的常識知識庫,之中所定義的概念與概念之間的空間關係。實驗結果顯示,我們所提出的標記擴充方法能夠強化以文字為基礎的圖片檢索模型效能。 為了探索能夠改進目前標籤預測、標籤擴充方法的可能方向,我們也嘗試提出一個動態估計標籤相關性的架構,並評估其可行性。雖然目前這個架構只是個初步嘗試,其企圖在於偵測使用者的興趣隨著時間推移而發生的變化,我們所得到的實驗結果仍代表此架構能夠微幅地改進標籤擴充的效能。然而,此架構所耗費的大規模計算量,將是未來必須尋求改進的目標之一。 | zh_TW |
| dc.description.abstract | Nowadays social annotation has become a popular manner for Web users to manage demanded resources. The rapidly-increasing amount of annotations attracts rich research on tagging analysis and applicability of social tags. Although there are many potential applications of social annotation, the cold-start problem limits its applicability, especially critical for new resources on the Web.
In this dissertation, we study comprehensively automatic tag prediction/expansion for Web pages which are major media in social bookmarking. At first, we explore the stabilizing phenomenon of tag usage in a social bookmarking system. Then we propose a two-stage tag prediction approach, which is both efficient and effective. When a few user annotations are available, the proposed approach is able to utilize user tags to further improve prediction quality. In the first stage - content-based ranking (CBR), candidate tags are selected and ranked to generate an initial tag list. In the second stage - random-walk re-ranking (RWR), we introduce a random-walk model which utilizes tag co-occurrence information to re-rank the initial list. The re-ranking stage conceptually performs generalization for top tags in initial ranking. The experimental results show that our algorithm effectively proposes appropriate tags for target Web pages. In addition to the effective two-stage approach to tag prediction, we also present a framework, named OBR, to effectively and robustly incorporate tag prediction into general Web search. The experimental results on the ODP (Open Directory Project) dataset validate that the OBR framework significantly enhances BM25, a classical retrieval model. For retrieving another type of popular social media, images, we introduce a novel knowledge-based approach to expand tags or text descriptions of target images. This approach utilizes entity-entity spatial relations defined by Concept, which is the largest commonsense knowledge base. The experimental results show that the proposed expansion approach can enhance text-based image retrieval. To explore potential directions for advancing present tag expansion methods, we also investigate a framework for dynamic estimation of tag-tag correlation. While this framework is a preliminary study to reveal changes in users’ interests, the experimental results indicate that it enhances the performance of tag expansion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:54:51Z (GMT). No. of bitstreams: 1 ntu-100-F91922107-1.pdf: 803578 bytes, checksum: ce97e53059632ab7c848a73ff9b1a775 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 審定書 i
誌謝 iii 中文摘要 v Abstract vii List of Tables xii List of Figures xiii Chapter 1 Introduction 1 1.1 Social Media and Social Tagging 1 1.2 Characteristics of Social Tagging 3 1.3 Applications of Social Tags 4 1.4 Motivation of Tag Prediction 6 1.5 Research Goal of this Study 7 Chapter 2 Research on Social Tagging 9 2.1 Analysis of Social Tagging 9 2.2 Applications of Social Tagging in Information Retrieval 11 2.3 Approaches to Tag Expansion and Prediction 12 Chapter 3 Analyses of Tags for Social Bookmarking 15 3.1 Introduction 15 3.2 The Data and Preprocessing 15 3.3 Growth of Tag Set and Tag List 16 3.4 Content coverage 19 3.5 Emergence of New Tags 21 3.6 Summary 21 Chapter 4 Tag Prediction for Social Bookmarking 23 4.1 Introduction to the Framework 23 4.2 Two-stage Tag Prediction Method 23 4.2.1 Content-based tag ranking (CBR) 23 4.2.2 Random-walk re-ranking (RWR) 28 4.3 Experiment Setup 30 4.4 Experiment Results on Tag Prediction 33 4.4.1 Experiment results of content-based ranking 33 4.4.2 Results of random-walk re-ranking 38 4.4.3 Case study 41 4.5 Summary 42 Chapter 5 Web Search with Tag Prediction 45 5.1 Introduction 45 5.2 Framework 45 5.3 Retrieval with Predicted Tags 46 5.4 Experiments on Web page retrieval 48 5.4.1 Experiment Setup 48 5.4.2 Experiment Results of Web page Retrieval 49 5.5 Summary 54 Chapter 6 Tag Expansion for Image Retrieval 57 6.1 Introduction 57 6.2 Tag Expansion Based on Commonsense Knowledge 58 6.2.1 ConceptNet 58 6.2.2 Tag Expansion for Images 58 6.3 Image Retrieval with Expanded Tags 60 6.4 Experiment on Image Retrieval 61 6.4.1 Experiment Setup 61 6.4.2 Experiment Results and Discussions 61 6.5 Application: Query Suggestion using WordNet and ConceptNet 64 6.5.1 Complementarity of ConceptNet and WordNet 64 6.5.2 Experiment Data 68 6.5.3 Results of the Intrinsic Comparison 68 6.5.4 Experiment on Query Suggestion and Further Analysis 72 6.6 Summary 76 Chapter 7 Trend Detection in Social Tagging for Tag Expansion 79 7.1 Introduction 79 7.2 Data Preparation 80 7.3 Temporal Correlation and Emerging Trend 81 7.3.1 Temporal Correlation Estimation 81 7.3.2 Detecting Emerging Trends 83 7.3.3 Experiment on Tag Expansion 84 7.3.4 Experiment Results and Discussions 85 7.4 Summary 89 Chapter 8 Conclusions and Future Work 91 8.1 Conclusions 91 8.2 Future Works 92 References 95 | |
| dc.language.iso | en | |
| dc.subject | 社群標記 | zh_TW |
| dc.subject | 網路搜尋 | zh_TW |
| dc.subject | 標籤擴充 | zh_TW |
| dc.subject | 標籤預測 | zh_TW |
| dc.subject | 網路書籤 | zh_TW |
| dc.subject | 社會媒體 | zh_TW |
| dc.subject | Social Bookmarking | en |
| dc.subject | Web Search | en |
| dc.subject | Social Media | en |
| dc.subject | Social Tagging | en |
| dc.subject | Tag Expansion | en |
| dc.subject | Social Annotation | en |
| dc.subject | Tag Prediction | en |
| dc.title | 自動化標籤擴充及預測於社會媒體檢索之應用 | zh_TW |
| dc.title | Automatic Tag Expansion and Prediction for Social Media Retrieval | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王新民,鄭卜壬,曾文顯,張俊盛,梁婷,盧文祥 | |
| dc.subject.keyword | 社會媒體,社群標記,網路書籤,標籤預測,標籤擴充,網路搜尋, | zh_TW |
| dc.subject.keyword | Social Annotation,Social Bookmarking,Social Media,Social Tagging,Tag Expansion,Tag Prediction,Web Search, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 784.74 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
