Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48377
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱繼輝(Kay-Hooi Khoo)
dc.contributor.authorChia-Wei Linen
dc.contributor.author林佳葳zh_TW
dc.date.accessioned2021-06-15T06:54:29Z-
dc.date.available2012-10-01
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-11
dc.identifier.citation1. A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley, CR Bertozzi, GW Hart, ME Etzler: Essentials of glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2009.
2. MM Fuster, JD Esko: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005, 5:526-42.
3. RK Yu, T Ariga: The role of glycosphingolipids in neurological disorders. Mechanisms of immune action. Ann N Y Acad Sci 1998, 845:285-306.
4. SO Kolset, M Salmivirta: Cell surface heparan sulfate proteoglycans and lipoprotein metabolism. Cell Mol Life Sci 1999, 56:857-70.
5. R Sitia, I Braakman: Quality control in the endoplasmic reticulum protein factory. Nature 2003, 426:891-4.
6. L Ellgaard, A Helenius: Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003, 4:181-91.
7. BA Vance, W Wu, RK Ribaudo, DM Segal, KP Kearse: Multiple dimeric forms of human CD69 result from differential addition of N-glycans to typical (Asn-X-Ser/Thr) and atypical (Asn-X-cys) glycosylation motifs. J Biol Chem 1997, 272:23117-22.
8. DF Zielinska, F Gnad, JR Wisniewski, M Mann: Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010, 141:897-907.
9. SA Brooks, MV Dwek, U Schachner: Functional and molecular glycobiology. Oxford, UK: BIOS Scientific Publishers Ltd; 2002.
10. DC Kilpatrick: Mannan-binding lectin and its role in innate immunity. Transfus Med 2002, 12:335-52.
11. VC Wasinger, SJ Cordwell, A Cerpa-Poljak, JX Yan, AA Gooley, MR Wilkins, MW Duncan, R Harris, KL Williams, I Humphery-Smith: Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 16:1090-4.
12. P James: Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 1997, 30:279-331.
13. V Dhingra, M Gupta, T Andacht, ZF Fu: New frontiers in proteomics research: a perspective. Int J Pharm 2005, 299:1-18.
14. S Rogers, M Girolami, W Kolch, KM Waters, T Liu, B Thrall, HS Wiley: Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 2008, 24:2894-900.
15. K Weber, M Osborn: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 1969, 244:4406-12.
16. PH O'Farrell: High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250:4007-21.
17. AJ Link, J Eng, DM Schieltz, E Carmack, GJ Mize, DR Morris, BM Garvik, JR Yates, 3rd: Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 1999, 17:676-82.
18. AH Ross, D Baltimore, HN Eisen: Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature 1981, 294:654-6.
19. RD Cummings, S Kornfeld: Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J Biol Chem 1982, 257:11235-40.
20. L Wells, K Vosseller, RN Cole, JM Cronshaw, MJ Matunis, GW Hart: Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 2002, 1:791-804.
21. JB Fenn, M Mann, CK Meng, SF Wong, CM Whitehouse: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246:64-71.
22. K Tanaka: The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew Chem Int Ed Engl 2003, 42:3860-70.
23. JJ Leary, RL Schmidt: Quadrupole mass spectrometer: An intuitive leak at the math. J Chem Educ 1996, 73:1142-1145.
24. C Steel, M Henchman: Understanding the quadrupole mass filter through computer simulation. J Chem Educ 1998, 75:1049-1054.
25. JC Schwartz, MW Senko, JE Syka: A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 2002, 13:659-69.
26. FL Brancia: Recent developments in ion-trap mass spectrometry and related technologies. Expert Rev Proteomics 2006, 3:143-51.
27. C Weickhardt, F Moritz, J Grotemeyer: Time-of-flight mass spectrometry: State-of-the-art in chemical analysis and molecular science. Mass Spectrometry Reviews 1996, 15:139-162.
28. AG Marshall, CL Hendrickson, GS Jackson: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 1998, 17:1-35.
29. A Makarov: Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 2000, 72:1156-62.
30. A Makarov, E Denisov, O Lange, S Horning: Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 2006, 17:977-82.
31. A Makarov, E Denisov, A Kholomeev, W Balschun, O Lange, K Strupat, S Horning: Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 2006, 78:2113-20.
32. DJ Pappin, P Hojrup, AJ Bleasby: Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 1993, 3:327-32.
33. M Mann, P Hojrup, P Roepstorff: Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 1993, 22:338-45.
34. P Roepstorff, J Fohlman: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 1984, 11:601.
35. KB Whitson, SR Whitson, ML Red-Brewer, AJ McCoy, AA Vitali, F Walker, TG Johns, AH Beth, JV Staros: Functional effects of glycosylation at Asn-579 of the epidermal growth factor receptor. Biochemistry 2005, 44:14920-31.
36. BL Schulz, M Aebi: Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol Cell Proteomics 2009, 8:357-64.
37. MM Chen, AI Bartlett, PS Nerenberg, CT Friel, CP Hackenberger, CM Stultz, SE Radford, B Imperiali: Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation. Proc Natl Acad Sci U S A 2010, 107:22528-33.
38. S Kamoda, K Kakehi: Evaluation of glycosylation for quality assurance of antibody pharmaceuticals by capillary electrophoresis. Electrophoresis 2008, 29:3595-604.
39. CW Damen, W Chen, AB Chakraborty, M van Oosterhout, JR Mazzeo, JC Gebler, JH Schellens, H Rosing, JH Beijnen: Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom 2009, 20:2021-33.
40. DJ Harvey: Identification of protein-bound carbohydrates by mass spectrometry. Proteomics 2001, 1:311-28.
41. H Zhang, XJ Li, DB Martin, R Aebersold: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003, 21:660-6.
42. SR Hanson, TL Hsu, E Weerapana, K Kishikawa, GM Simon, BF Cravatt, CH Wong: Tailored glycoproteomics and glycan site mapping using saccharide-selective bioorthogonal probes. J Am Chem Soc 2007, 129:7266-7.
43. HJ An, JW Froehlich, CB Lebrilla: Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 2009, 13:421-6.
44. H Narimatsu, H Sawaki, A Kuno, H Kaji, H Ito, Y Ikehara: A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J 2010, 277:95-105.
45. SA Carr, MJ Huddleston, MF Bean: Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 1993, 2:183-96.
46. E Mirgorodskaya, P Roepstorff, RA Zubarev: Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 1999, 71:4431-6.
47. JM Hogan, SJ Pitteri, PA Chrisman, SA McLuckey: Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 2005, 4:628-32.
48. F Kjeldsen, KF Haselmann, BA Budnik, ES Sorensen, RA Zubarev: Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal Chem 2003, 75:2355-61.
49. JT Adamson, K Hakansson: Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides. J Proteome Res 2006, 5:493-501.
50. Z Darula, KF Medzihradszky: Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics 2009, 8:2515-26.
51. M Mormann, H Paulsen, J Peter-Katalinic: Electron capture dissociation of O-glycosylated peptides: radical site-induced fragmentation of glycosidic bonds. Eur J Mass Spectrom (Chichester, Eng) 2005, 11:497-511.
52. MI Catalina, CA Koeleman, AM Deelder, M Wuhrer: Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Commun Mass Spectrom 2007, 21:1053-61.
53. MJ Huddleston, MF Bean, SA Carr: Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 1993, 65:877-84.
54. B Domon, CE Costello: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 1988, 5:397-409.
55. H Jiang, H Desaire, VY Butnev, GR Bousfield: Glycoprotein profiling by electrospray mass spectrometry. J Am Soc Mass Spectrom 2004, 15:750-8.
56. MA Ritchie, AC Gill, MJ Deery, K Lilley: Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures. J Am Soc Mass Spectrom 2002, 13:1065-77.
57. J Jebanathirajah, H Steen, P Roepstorff: Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 2003, 14:777-84.
58. RH Bateman, R Carruthers, JB Hoyes, C Jones, JI Langridge, A Millar, JP Vissers: A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 2002, 13:792-803.
59. R Plumb, J Castro-Perez, J Granger, I Beattie, K Joncour, A Wright: Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2004, 18:2331-7.
60. L Xiayan, C Legido-Quigley: Advances in separation science applied to metabonomics. Electrophoresis 2008, 29:3724-36.
61. JC Silva, R Denny, CA Dorschel, M Gorenstein, IJ Kass, GZ Li, T McKenna, MJ Nold, K Richardson, P Young, et al: Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 2005, 77:2187-200.
62. SJ Geromanos, JP Vissers, JC Silva, CA Dorschel, GZ Li, MV Gorenstein, RH Bateman, JI Langridge: The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 2009, 9:1683-95.
63. GZ Li, JP Vissers, JC Silva, D Golick, MV Gorenstein, SJ Geromanos: Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 2009, 9:1696-719.
64. P Olivova, W Chen, AB Chakraborty, JC Gebler: Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2008, 22:29-40.
65. M Hardman, AA Makarov: Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal Chem 2003, 75:1699-705.
66. JV Olsen, B Macek, O Lange, A Makarov, S Horning, M Mann: Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 2007, 4:709-12.
67. TP Second, JD Blethrow, JC Schwartz, GE Merrihew, MJ MacCoss, DL Swaney, JD Russell, JJ Coon, V Zabrouskov: Dual-pressure linear ion trap mass spectrometer improving the analysis of complex protein mixtures. Anal Chem 2009, 81:7757-65.
68. JV Olsen, JC Schwartz, J Griep-Raming, ML Nielsen, E Damoc, E Denisov, O Lange, P Remes, D Taylor, M Splendore, et al: A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 2009, 8:2759-69.
69. O Krokhin, W Ens, KG Standing, J Wilkins, H Perreault: Site-specific N-glycosylation analysis: matrix-assisted laser desorption/ionization quadrupole-quadrupole time-of-flight tandem mass spectral signatures for recognition and identification of glycopeptides. Rapid Commun Mass Spectrom 2004, 18:2020-30.
70. M Wuhrer, MI Catalina, AM Deelder, CH Hokke: Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2007, 849:115-28.
71. UM Demelbauer, M Zehl, A Plematl, G Allmaier, A Rizzi: Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 2004, 18:1575-82.
72. S Henning, J Peter-Katalinic, G Pohlentz: Structure elucidation of glycoproteins by direct nanoESI MS and MS/MS analysis of proteolytic glycopeptides. J Mass Spectrom 2007, 42:1415-21.
73. RG Spiro, VD Bhoyroo: Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem 1974, 249:5704-17.
74. WV Johnson, EC Heath: Evidence for posttranslational O-glycosylation of fetuin. Biochemistry 1986, 25:5518-25.
75. N Hashii, N Kawasaki, S Itoh, Y Nakajima, A Harazono, T Kawanishi, T Yamaguchi: Identification of glycoproteins carrying a target glycan-motif by liquid chromatography/multiple-stage mass spectrometry: identification of Lewis x-conjugated glycoproteins in mouse kidney. J Proteome Res 2009, 8:3415-29.
76. FS Markland: Snake venoms and the hemostatic system. Toxicon 1998, 36:1749-800.
77. SM Serrano, RC Maroun: Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 2005, 45:1115-32.
78. SG Soares, LL Oliveira: Venom-sweet-venom: N-linked glycosylation in snake venom toxins. Protein Pept Lett 2009, 16:913-9.
79. CW Lin, JM Chen, YM Wang, SW Wu, IH Tsai, KH Khoo: Terminal disialylated multiantennary complex type N-glycans carried on acutobin define the glycosylation characteristics of the Deinagkistrodon acutus venom. Glycobiology 2010.
80. C Sato, T Matsuda, K Kitajima: Neuronal differentiation-dependent expression of the disialic acid epitope on CD166 and its involvement in neurite formation in Neuro2A cells. J Biol Chem 2002, 277:45299-305.
81. T Avril, SJ North, SM Haslam, HJ Willison, PR Crocker: Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression. J Leukoc Biol 2006, 80:787-96.
82. C Sato, S Inoue, T Matsuda, K Kitajima: Development of a highly sensitive chemical method for detecting alpha2-->8-linked oligo/polysialic acid residues in glycoproteins blotted on the membrane. Anal Biochem 1998, 261:191-7.
83. C Sato, H Fukuoka, K Ohta, T Matsuda, R Koshino, K Kobayashi, FA Troy, 2nd, K Kitajima: Frequent occurrence of pre-existing alpha 2-->8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J Biol Chem 2000, 275:15422-31.
84. Z Yasukawa, C Sato, K Sano, H Ogawa, K Kitajima: Identification of disialic acid-containing glycoproteins in mouse serum: a novel modification of immunoglobulin light chains, vitronectin, and plasminogen. Glycobiology 2006, 16:651-65.
85. X Liu, L Afonso: Is permethylation strategy always applicable to protein N-glycosylation study?: A case study on the O-acetylation of sialic acid in fish serum glycans. Methods Mol Biol 2010, 600:259-68.
86. B Zhang, Q Liu, W Yin, X Zhang, Y Huang, Y Luo, P Qiu, X Su, J Yu, S Hu, et al: Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. BMC Genomics 2006, 7:152.
87. YM Wang, SR Wang, IH Tsai: Serine protease isoforms of Deinagkistrodon acutus venom: cloning, sequencing and phylogenetic analysis. Biochem J 2001, 354:161-8.
88. NN Nikandrov, M Deshimaru, A Tani, T Chijiwa, H Shibata, CC Chang, Y Fukumaki, T Ito, M Ohno: Purification, primary structures and evolution of coagulant proteases from Deinagkistrodon actus venom. Toxicon 2005, 46:907-17.
89. X Luo, H Yang, C Liang, S Jin: Structural characterization of N-linked oligosaccharides of Defibrase from Agkistrodon acutus by sequential exoglycosidase digestion and MALDI-TOF mass spectrometry. Toxicon 2010, 55:421-9.
90. R Kannagi: Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj J 2004, 20:353-64.
91. R Kannagi, M Izawa, T Koike, K Miyazaki, N Kimura: Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 2004, 95:377-84.
92. MA Comunale, M Lowman, RE Long, J Krakover, R Philip, S Seeholzer, AA Evans, HW Hann, TM Block, AS Mehta: Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res 2006, 5:308-15.
93. AS Vercoutter-Edouart, MC Slomianny, O Dekeyzer-Beseme, JF Haeuw, JC Michalski: Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics 2008, 8:3236-56.
94. S Nakahara, A Raz: Biological modulation by lectins and their ligands in tumor progression and metastasis. Anticancer Agents Med Chem 2008, 8:22-36.
95. RK Young, RM Cailleau, B Mackay, WJ Reeves: Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma. In Vitro 1974, 9:239-45.
96. SY Lin, YY Chen, YY Fan, CW Lin, ST Chen, AH Wang, KH Khoo: Precise mapping of increased sialylation pattern and the expression of acute phase proteins accompanying murine tumor progression in BALB/c mouse by integrated sera proteomics and glycomics. J Proteome Res 2008, 7:3293-303.
97. YY Chen, SY Lin, YY Yeh, HH Hsiao, CY Wu, ST Chen, AH Wang: A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis 2005, 26:2117-27.
98. MR Larsen, SS Jensen, LA Jakobsen, NH Heegaard: Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 2007, 6:1778-87.
99. G Palmisano, SE Lendal, K Engholm-Keller, R Leth-Larsen, BL Parker, MR Larsen: Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat Protoc 2010, 5:1974-82.
100. D Goldberg, M Bern, S Parry, M Sutton-Smith, M Panico, HR Morris, A Dell: Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res 2007, 6:3995-4005.
101. Y Wu, Y Mechref, I Klouckova, A Mayampurath, MV Novotny, H Tang: Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Rapid Commun Mass Spectrom 2010, 24:965-72.
102. W Driever, D Stemple, A Schier, L Solnica-Krezel: Zebrafish: genetic tools for studying vertebrate development. Trends Genet 1994, 10:152-9.
103. DJ Grunwald, JS Eisen: Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet 2002, 3:717-24.
104. LI Zon, RT Peterson: In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005, 4:35-44.
105. DR Love, FB Pichler, A Dodd, BR Copp, DR Greenwood: Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol 2004, 15:564-71.
106. I Forne, J Abian, J Cerda: Fish proteome analysis: model organisms and non-sequenced species. Proteomics 2010, 10:858-72.
107. TL Tay, Q Lin, TK Seow, KH Tan, CL Hew, Z Gong: Proteomic analysis of protein profiles during early development of the zebrafish, Danio rerio. Proteomics 2006, 6:3176-88.
108. U Gundel, D Benndorf, M von Bergen, R Altenburger, E Kuster: Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: a proteomic approach. Proteomics 2007, 7:4541-54.
109. MB Lucitt, TS Price, A Pizarro, W Wu, AK Yocum, C Seiler, MA Pack, IA Blair, GA Fitzgerald, T Grosser: Analysis of the zebrafish proteome during embryonic development. Mol Cell Proteomics 2008, 7:981-94.
110. T Ziv, T Gattegno, V Chapovetsky, H Wolf, E Barnea, E Lubzens, A Admon: Comparative proteomics of the developing fish (zebrafish and gilthead seabream) oocytes. Comp Biochem Physiol Part D Genomics Proteomics 2008, 3:12-35.
111. V Link, L Carvalho, I Castanon, P Stockinger, A Shevchenko, CP Heisenberg: Identification of regulators of germ layer morphogenesis using proteomics in zebrafish. J Cell Sci 2006, 119:2073-83.
112. EA Shrader, TR Henry, MS Greeley, Jr., BP Bradley: Proteomics in zebrafish exposed to endocrine disrupting chemicals. Ecotoxicology 2003, 12:485-8.
113. N Wang, L Mackenzie, AG De Souza, H Zhong, G Goss, L Li: Proteome profile of cytosolic component of zebrafish liver generated by LC-ESI MS/MS combined with trypsin digestion and microwave-assisted acid hydrolysis. J Proteome Res 2007, 6:263-72.
114. TM Greiling, SA Houck, JI Clark: The zebrafish lens proteome during development and aging. Mol Vis 2009, 15:2313-25.
115. SK Singh, CS Sundaram, S Shanbhag, MM Idris: Proteomic profile of zebrafish brain based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization MS/MS analysis. Zebrafish 2010, 7:169-77.
116. S Lemeer, C Jopling, J Gouw, S Mohammed, AJ Heck, M Slijper, J den Hertog: Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol Cell Proteomics 2008, 7:2176-87.
117. S Lemeer, MW Pinkse, S Mohammed, B van Breukelen, J den Hertog, M Slijper, AJ Heck: Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo. J Proteome Res 2008, 7:1555-64.
118. N Kageyama, S Natsuka, S Hase: Molecular cloning and characterization of two zebrafish alpha(1,3)fucosyltransferase genes developmentally regulated in embryogenesis. J Biochem 1999, 125:838-45.
119. LY Chang, A Harduin-Lepers, K Kitajima, C Sato, CJ Huang, KH Khoo, Y Guerardel: Developmental regulation of oligosialylation in zebrafish. Glycoconj J 2009, 26:247-61.
120. RR Bernhardt, M Schachner: Chondroitin sulfates affect the formation of the segmental motor nerves in zebrafish embryos. Dev Biol 2000, 221:206-19.
121. CG Becker, T Becker: Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J Neurosci 2002, 22:842-53.
122. Y Guerardel, LY Chang, E Maes, CJ Huang, KH Khoo: Glycomic survey mapping of zebrafish identifies unique sialylation pattern. Glycobiology 2006, 16:244-57.
123. V Link, A Shevchenko, CP Heisenberg: Proteomics of early zebrafish embryos. BMC Dev Biol 2006, 6:1.
124. A Dell, AJ Reason, KH Khoo, M Panico, RA McDowell, HR Morris: Mass spectrometry of carbohydrate-containing biopolymers. Methods Enzymol 1994, 230:108-32.
125. M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-9.
126. BM Byrne, M Gruber, G Ab: The evolution of egg yolk proteins. Prog Biophys Mol Biol 1989, 53:33-69.
127. I Chantret, SE Moore: Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 2008, 18:210-24.
128. EI Chen, D Cociorva, JL Norris, JR Yates, 3rd: Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 2007, 6:2529-38.
129. LJ Robinson, NG Karlsson, AS Weiss, NH Packer: Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation. J Proteome Res 2003, 2:556-7.
130. S Mysling, G Palmisano, P Hojrup, M Thaysen-Andersen: Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 2010, 82:5598-609.
131. I Khalaila, J Peter-Katalinic, C Tsang, CM Radcliffe, ED Aflalo, DJ Harvey, RA Dwek, PM Rudd, A Sagi: Structural characterization of the N-glycan moiety and site of glycosylation in vitellogenin from the decapod crustacean Cherax quadricarinatus. Glycobiology 2004, 14:767-74.
132. JR Brisson, E Vinogradov, DJ McNally, NH Khieu, IC Schoenhofen, SM Logan, H Jarrell: The application of NMR spectroscopy to functional glycomics. Methods Mol Biol 2010, 600:155-73.
133. HJ An, TR Peavy, JL Hedrick, CB Lebrilla: Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 2003, 75:5628-37.
134. O Ozohanics, J Krenyacz, K Ludanyi, F Pollreisz, K Vekey, L Drahos: GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom 2008, 22:3245-54.
135. HH Hsiao, H Urlaub: Pseudo-neutral-loss scan for selective detection of phosphopeptides and N-glycopeptides using liquid chromatography coupled with a hybrid linear ion-trap/orbitrap mass spectrometer. Proteomics 2010, 10:3916-21.
136. JN Wei, QC Wang, GF Liu, EL Ezell, MJ Quast: Reduction of brain injury by antithrombotic agent acutobin after middle cerebral artery ischemia/reperfusion in the hyperglycemic rat. Brain Res 2004, 1022:234-43.
137. A Varki: Diversity in the sialic acids. Glycobiology 1992, 2:25-40.
138. T Angata, A Varki: Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 2002, 102:439-69.
139. R Schauer: Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 2009, 19:507-14.
140. HW Laale: The Perivitelline Space and Egg Envelopes of Bony Fishes: A Review. Copeia 1980, 2:210-226.
141. KR Folz: Sperm binding proteins. Int. Rev. Cytol. 1995, 163:249-303.
142. RA Wallace, DW Jared: Studies on amphibian yolk. 8. The estrogen-induced hepatic synthesis of a serum lipophosphoprotein and its selective uptake by the ovary and trasformation into yolk platelet proteins in Xenopus laevis. Dev Biol 1969, 19:498-526.
143. D Bonsignorio, L Perego, L Del Giacco, F Cotelli: Structure and macromolecular composition of the zebrafish egg chorion. Zygote 1996, 4:101-8.
144. S Inoue, K Kitajima, Y Inoue, S Kudo: Localization of polysialoglycoprotein as a major glycoprotein component in cortical alveoli of the unfertilized eggs of Salmo gairdneri. Dev Biol 1987, 123:442-54.
145. K Kitajima, S Inoue: A proteinase associated with cortices of rainbow trout eggs and involved in fertilization-induced depolymerization of polysialoglycoproteins. Dev Biol 1988, 129:270-4.
146. A Seko, K Kitajima, S Inoue, Y Inoue: Identification of free glycan chain liberated by de-N-glycosylation of the cortical alveolar glycopolyprotein (hyosophorin) during early embryogenesis of the Medaka fish, Oryzias latipes. Biochem Biophys Res Commun 1991, 180:1165-71.
147. A Seko, K Kitajima, Y Inoue, S Inoue: Peptide:N-glycosidase activity found in the early embryos of Oryzias latipes (Medaka fish). The first demonstration of the occurrence of peptide:N-glycosidase in animal cells and its implication for the presence of a de-N-glycosylation system in living organisms. J Biol Chem 1991, 266:22110-4.
148. T Suzuki, K Kitajima, S Inoue, Y Inoue: N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins. Glycoconj J 1995, 12:183-93.
149. S Inoue, Y Inoue: Fertilization (activation)-induced 200- to 9-kDa depolymerization of polysialoglycoprotein, a distinct component of cortical alveoli of rainbow trout eggs. J Biol Chem 1986, 261:5256-61.
150. K Kitajima, Y Inoue, S Inoue: Polysialoglycoproteins of Salmonidae fish eggs. Complete structure of 200-kDa polysialoglycoprotein from the unfertilized eggs of rainbow trout (Salmo gairdneri). J Biol Chem 1986, 261:5262-9.
151. K Kitajima, H Sorimachi, S Inoue, Y Inoue: Comparative structures of the apopolysialoglycoproteins from unfertilized and fertilized eggs of salmonid fishes. Biochemistry 1988, 27:7141-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48377-
dc.description.abstract蛋白質醣化修飾就像是細胞表面一層美麗又危險的外衣,聯絡與調控著細胞與細胞間的繁雜作用,例如:細胞辨識、免疫細胞自我調節功能等,但在癌化的細胞中,又可能扮演著癌細胞擴散的推手。因此,瞭解蛋白質上醣化修飾對於單一蛋白質乃至於整個醣蛋白質體,都是相當重要。蛋白質醣化過程是經由一連串醣轉酶分工合作的結果,故其最終產物往往具有很大的異質性,了解醣化位置不僅對於瞭解蛋白質功能上具有重要的意義,對於分析技術也是一大挑戰。
隨著蛋白質體技術與質譜儀的發展,串聯式質譜術是個不可缺的重要工具,其中以四級柱串聯時間飛行式質譜儀 (Quadrupole/Time-of-flight, Q-TOF)以及LTQ-Orbitrap最常見,本篇論文主要目標為藉由這兩種質譜儀建立高精確性定位醣化位置的方法,針對已知蛋白序列,Q-TOF 上的母離子發掘法 (Precursor ion discovery),提供二次質譜術篩選特定醣結構的功能,並可提供可靠的醣序列與胜肽組合,其中胜肽的資訊來自於胜肽分子含有一個N-乙醯葡萄糖胺的Y1離子;對於未知序列乃至於整個醣蛋白質的定序,必須回歸到胜肽碎片離子的確認。兩個關鍵技術在本篇論文中提出,此二技術皆屬目標式質譜術,分為兩個步驟:一為在層析時間上找尋醣胜肽出現的時間點,二為使用三次直譜術進行特定胜肽序列的確認。在Q-TOF 系統上,液相層析搭配能量調控質譜術(LC-MSE)可提供快速尋找醣胜肽的方法,進一步利用新一代含有兩個碰撞反應池的Q-TOF系統,可獲得類似三次質譜術的結果,即可得到胜肽碎片離子的訊息;LTQ-Orbitrap可提供真正三次質譜術,但如何找到Y1離子進行三次質譜術,還是須經由有效Y1離子的找尋,進而進行目標式三次質譜術的分析。此二法皆可成功地應用於常用的醣蛋白標準品的序列解析;方法確立後,並成功地應用於解決帶有特殊雙唾液酸的蛇毒蛋白上未知的醣胜肽來源;推演至醣蛋白質體的規模,兩種常見的生物材料血清與癌細胞中帶有大量且關鍵的醣蛋白,經由針對醣質結構特異性所選用的特定方法萃取醣胜肽,個別應用於所建立的兩個質譜術,不僅可用於評估與解析複雜且未知的醣蛋白質體上,亦成功地提供精確定位後這些帶有特殊末端醣結構蛋白質的身分,可提供後續功能上的探討。最後推演到複雜度最高的生物個體,在發育過程中,斑馬魚魚卵帶有特殊氮及氧連結的醣蛋白結構,經由物理方式可將魚卵分為三個部份,並利用質譜術針對其每一部份的醣質體、蛋白質體與醣蛋白質體進行詳細的研究,其中在卵膜以及與受精卵的間質液中發現大量氧連接的醣胜肽片斷,此外氮連接特殊醣結構胜肽片斷也首次被發現出現在卵黃蛋白上。
此篇論文所提出的先進質譜術不僅可應用於單一醣蛋白醣化位置的分析,亦可實際應用於複雜樣品中醣化位置的解析。
zh_TW
dc.description.abstractProtein glycosylation, likely a sweet but dangerous coat on the cell surface, plays essential roles in cell-cell recognition, communication and adhesion in normal situation. However, aberrant glycosylation may result in many severe effects, such as cancer cell metastasis. Glycosylation process is a successive action of transferases, which cause the heterogeneity and uncertainty of glycan structures that may be attached to any glycosylation site. To resolve site-specific glycosylation pattern on glycoproteins is a considerable analytical challenge but is essential to provide the much needed structural details for functional studies. Experimental approach in which glycans are cleaved off may facilitate identification and sequencing of the deglycoslated peptide but information on the site-specific glycan is lost.
With the development of proteomic technologies and mass spectrometers, multi-stage tandem mass spectrometry (MS) becomes an indispensible tool for glycosylation mapping. Two hyphenated mass spectrometers, Quadrupole/Time-of-flight (Q-TOF) and LTQ-Orbitrap, are the most common tools in proteomic field. The major aim of this thesis work was to develop a practical mass spectrometry-based platform for site-specific glycosylation mapping. For the single glycoprotein with known sequnce, Precursor ion discovery (PID) function on Waters Q-TOF system provided not only a simple way for glycopeptides scouting but also a reliable combination of glycan and peptide sequence in which information on peptide was derived from the prominent Y1 ion corresponding to the peptides core carrying an N-acetylglucosamine residue. For unknown proteins or glycoproteome, further sequencing of this peptide core is necessary.
Two key techniques developed and presented here are both based on a general workflow of two sequential steps: 1) survey scouting of candidate glycopeptides or Y1 ions on the first survey, and 2) targeted multi-stage mass spectrometry for confirmation of peptide sequence. In Q-TOF system, LC-MSE provides a simple way for first survey of glycopeptides. Subsequently, the identified peptide sequences are validated by targeted pseudo-MS3, which can only be implemented on Q-TOF system equipped with dual-collision cells. The LTQ-Orbitrap mass spectrometer can provide a true MS3 function. However, the most critical consideration for glycopeptide sequencing is ability to correctly identify the right Y1 ion for MS3 analysis. Therefore, the first step of the workflow on LTQ-Orbitrap is to assign the accurate Y1 ion from HCD (higher collision energy dissociation), followed by a targeted MS3 analysis.
These two-tier workflows established were first validated by using the single well-known glycoprotein standard, fetuin. Then, the origin of unexpected proteolytic glycopeptides from the purified glycoprotein with O-acetylated disialylated N-glycan from snake venom was confirmed by both methods. For real glycoproteomic studies, the glycopeptides from two biological materials, the serum and a cancer cell line, were enriched according to its respective glycosylation profile and successfully analyzed by each MS method. The protein identities and glycan composition of most glycosylated proteins were confirmed in both cases. Finally, for sample of highest complexity, i.e. an intact fertilized zebrafish eggs, both MS3 approaches were used for more comprehensive glycoproteomic analysis. To better understand the developmental glycobiology of this important model, it is imperative to delineate the spatial-temporal distribution of the different classes of glycans and their respective protein carriers. Large amount of endogenously digested O-glycopeptides were only observed in the chorion/perivitelline compartment but not the yolk or embryos. From the latter fractions, vitellogenin was identified as the protein carrier of the unique complex type N-glycan structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:54:29Z (GMT). No. of bitstreams: 1
ntu-100-D94b46011-1.pdf: 4111420 bytes, checksum: bdc723df6a357d6e7443624af1fe583b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of contents
中文摘要 ..................... 1
Abstract .................... 2
Keywords and abbreviation index .................... 3
Chapter 1 General Introduction
1.1 Protein glycosylation .................... 4
1.2 Mass spectrometry-based proteomics .................... 7
1.3 The importance of glycopeptide analysis .................... 11
1.4 Overview of glycopeptide analysis .................... 12
1.5 Specific aims for glycopeptides analysis and sequencing .................... 13
Chapter 2 Methodologies development for single glycoprotein sequencing
2.1 Q-TOF system development ................... 14
2.2 ion-trap system development: LTQ-orbitrap system ................... 18
2.3 Materials and methods .................... 21
2.4 Results
2.4.1 Methodology development and validation .................... 25
2.4.1.1 Precursor ion Discovery (PID) mode for MS2 analysis of glycopeptides .................... 25
2.4.1.2 Pseudo-MS3 workflow development for site-specific glycosylation analysis .................. 27
2.4.1.3 Targeted MS3 approach applied on ion trap system for glycopeptides analysis ............ 33
2.4.2 The snake venom glycopeptides analysis .................... 37
Chapter 3 Applications: from biological fluid to whole organism
3.1 Glycoproteomics of mouse serum and MB157 cell line
3.1.1 Introduction .................... 50
3.1.2 Materials and Methods ................... 51
3.1.3 Results
3.1.3.1 Glycoprotemoic analysis of mouse serum by pseudo-MS3 method .................... 52
3.1.3.2 Glycoproteomic analysis of MB157 cell line by targeted MS3 method .................... 57
3.2 Glycoprotomics of zebrafish
3.2.1 Introduction .................... 60
3.2.2 Materials and Methods ..................... 61
3.2.3 Results
3.2.3.1 Proteomics and Glycomics of individual compartments of fertilized zebrafish eggs ... 65
3.2.3.2 Analysis of O-glycopeptides in chorion/ perivitelline fraction ... 71
3.2.3.3 Analysis of N-glycopeptides in yolk and embryo fraction ... 82
Chapter 4 Discussions
4.1 MS3 Methodologies .................... 91
4.2 Snake venom .................... 95
4.3 Mouse serum and MB157 ................... 97
4.4 Zebrafish ....................100
References ....................104
dc.language.isoen
dc.title醣胜肽定序之關鍵質譜技術的建立與其有效應用於高精確性醣蛋白質體分析zh_TW
dc.titleGlycopeptide sequencing by advanced mass spectrometry and its applications to high precision glycoproteomic analysis from single glycoprotein to whole organismen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee何國榮,陳玉如,蔡蔭和,黃銓珍
dc.subject.keyword醣胜&#32957,定序,質譜術,zh_TW
dc.subject.keywordPrecursor ion discovery,pseudo--&#8208,MS3 workflow,targeted MS3 workflow, glycopeptide sequencing,mass spectrometry,snake venom,mouse,MB 157,zebrafish,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2011-02-11
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved