請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48375
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊杉 | |
dc.contributor.author | Chih-Yung Chan | en |
dc.contributor.author | 詹志陽 | zh_TW |
dc.date.accessioned | 2021-06-15T06:54:25Z | - |
dc.date.available | 2013-08-22 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-19 | |
dc.identifier.citation | Ackland, G.J., Jones, A.P., (2006) “Applications of local crystal structure measures in experiment and simulation,” Physical. Review. B, Vol. 73, 054-104.
Ashby, M.E., (1970) “The deformation of plastically non-homogeneous materials,” Philosophical Magazine, Vol. 21, 399-424. Baskes, M.I. (1992). “Modified embedded-atom potentials for cubic materials and impurities,” Physical Review B, Vol. 46, 2727-2742. Christopher, D., Smith, R., Richter, A. (2001). “Atomistic modeling of nanoindentation in iron and silver,” Nanotechnology, Vol. 12, 372-383. Cormier, J., Rickman, J.M., and Delph, T.J. (2001). “Stress calculation in atomistic simulations of perfect and imperfect solids,” Journal of Applied Physics, Vol. 89, No. 1, 99-104. Cousland, S. McK. (1970). “Cottrell-Stokes ratios and stacking fault energies”, Phys. Stat. Sol, Vol. 37, 159. De Guzman, M.S., Neubauer, G., Flinn, P., Nix, W.D., (1993) “The Role of Indentation Depth on the Measured Hardness of Materials,” Thin Films: Stresses and Mechanical Properties IV, 613-618. Durst, K., Backes, B., Goken, M., (2005) “Indentation size effect in metallic materials: Correcting for the size of the plastic zone,” Scripta Materialia, Vol. 52, 1093-1097. Ercolessi, F., and Adams, J.B. (1994). “Interatomic potential from first-priciples calculations: the force-matching method,” Europhysics Letter, Vol. 26, 583-588. Feng, G., Nix, W.D., (2004) “Indentation size effect in MgO,” Scripta Materialia, Vol. 51, 599-603. Fischer-Cripps, A.C. (2002). Nanoindentation, Springer-Verlag, New York, US. Fleck, N.A., Hutchinson, J.W., (1993) “A phenomenological theory for strain gradient effects in plasticity,” Journal of the Mechanics and Physics of Solids, Vol. 41, 1825-1857. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., (1994) “Strain gradient plasticity: Theory and experiment,” Acta Metallurgica et Materialia, Vol. 42, 475-487. Fleck, N.A., Hutchinson, J.W., (1999) “Strain Gradient Plasticity,” Advances in Applied Mechanics, Vol. 33, 295-361. Gannepalli, A, Mallapragada, S.K. (2002). “Atomistic studies of defect nucleation during nanoindentation of Au (001),” Physical Review B, Vol. 66,104103. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W., (1999a) “Mechanism-based strain gradient plasticity-- I. Theory,” Journal of the Mechanics and Physics of Solids, Vol. 47, 1239-1263. Herbert, E. G., Pharr, G. M., Oliver, W. C., Lucas, B. N., Hay, J. L. (2001). “On the measurement of stress–strain curves by spherical indentation,” Thin Solid Films, Vol. 398 –399, 331–335. Hirth, J.P., Lothe, J. (1982). Theory of Dislocations, 2nd edition, John Wiley & Sons, Inc. Holian, B. L., DeGroot, A. J., Hoover, W. G., and Hoover, C. G. (1990). “Time-reversible equilibrium and nonequilibrium isothermal-isobaric simulations with centered-difference Stoermer algorithms,” Physical Review A, Vol. 41, No. 8, 4552-4553. Hua, J., Hartmaier, A., (2010) “Determining Burgers vectors and geometrically necessary dislocation densities from atomistic data,” Modelling and Simulation in Materials Science and Engineering 18. Huang, Y., Zhang, F., Hwang, K.C., Nix, W.D., Pharr, G.M., Feng, G. (2006) “A model of size effects in nano-indentation,” Journal of the Mechanics and Physics of Solids, Vol 54, 1668-1686. Huang, Y., Feng, X., Pharr, G.M., Hwang, K.C. (2007) “A nano-indentation model for spherical indenters,” Modelling Simul. Mater. Sci. Eng. 15 S255. Hull, D., and Bacon, D. J. (2001). Introduction to dislocations, Elsevier Science & Technology Books, New York, USA. Jeng, Y.R., Tan, C.M. (2004a). “Theoretical study of dislocation emission around a nanoindentation using a static atomistic model,” Physical Review B, Vol. 69, 104109. Jeng, Y.R., Tan, C.M. (2004b). “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol. 123, 767-774. Johnson, K.L., (1970) “The correlation of indentation experiments,” Journal of the Mechanics and Physics of Solids, Vol. 18, 115-126. Knap, J., Ortiz, M. (2003). “Effect of indenter-radius size on Au (001) nanoidentation,” Physical Review Letters, Vol. 90, 226102. Kechner, C.L., Plimpton, S.J., Hamilton, J.C. (1998). “Dislocation nucleation and defect structure during surface indentation,” Physical Review B, Vol. 58, 11085-11088. Lee, Y., Park, J.Y., Kim, S.Y., Jun, S., Im, S. (2005). “Atomistic simulations of incipient plasticity under Al (111) nanoindentation,” Mechanics of Materials, Vol. 37, 1035-1048. Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S. (2002). “Atomistic mechanisms governing elastic limit and incipient plasticity in crystals,” Nature, Vol. 418, 307-310. Liao, F., Girshick, S. L., Mook, W. M., Gerberich, W. W. and Zachariah, M. R. (2005). “Superhard nanocrystalline silicon carbide films”, Appl. Phys. Lett. Vol. 86, 171913. Liang, H., Woo,C.H., Huang, H., Ngan, A.H.W. and Yu, T.X. (2004). “Crystalline Plasticity on Copper (001), (110), and (111) Surfaces during Nanoindentation,” Computer modeling in Engineering & Sciences, Vol. 6, No.1. Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M., Nix, W.D. (2003). “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation,” Journal of the Mechanics and Physics of Solids, Vol. 51, 901-920. Miller, R.E., and Acharya, A. (2004). “A stress-gradient based criterion for dislocation nucleation in crystals,” Journal of the Mechanics and Physics of Solids, Vol. 52, 1507-1525. Nix, W.D., Gao, H., (1998) “Indentation size effects in crystalline materials: a law for strain gradient plasiticity,” Journal of the Mechanics and Physics of Solids, Vol. 46, 411-425. Nix, W.D., Greer, J.R., Feng, G., Lilleodden, E.T., (2005) “Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation,” Thin Solid Films, Vol. 515, 3152-3157. Nye, F., (1953) “Some geometrical relations in dislocated crystals,” Acta Metallurgica, Vol 1, Issue 2, 153-162. Oliver, W.C., Pharr, G.M. (1992). “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7, No. 6, 1564-1583. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2002). Numerical Recipes in C++: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK. Rodriquez de la Fuente, O., Zimmerman, J.A., Gonzalez, M.A., de la Fiquera, de la, Hamilton, J.C., Pai, W.W., and Rojo, J.M. (2002). “Dislocation Emission around Nanoindentation on a (001) fcc Metal Surface Studied by Scanning Tunneling Microscopy and Atomistic Simulations,” Physical Review Letters, Vol. 88, 0361011 Sawa, T., Akiyama, Y., Shimamoto, A., Tanaka, K. (1999). “Nanoindentation of a 10 nm thick,” Journal of Materials Research, Vol. 14, 2228–2232. Smith, R., Christopher, D., Kenny, S.D., Richter, A., Wolf, B. (2003). “Defect generation and pileup of atoms during nanoindentation of Fe single crystal,” Physical Review B, Vol. 67, 245405. Stelmashenko, N.A., Walls, M.G., Brown, L.M., Milman, Yu.V., (1993) “Microindentations on W and Mo oriented single crystals: An STM study,” Acta Metallurgica et Materialia, Vol. 41, 2855-2865. Stillinger, F. H. and Weber, T. A. (1985). “Computer-simulation of local order in condensed phases of silicon,” Physical Review B, Vol. 31, 5262-5271. Swadener, J. G., Rho, J.Y., Pharr, G.M., (2001) “Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone,” Journal of Biomedical Materials Research, Vol. 57 1 1097-4636. Swadener, J.G., George, E. P., Pharr, G.M., (2002) “The correlation of the indentation size effect measured with indenters of various shapes,” Journal of the Mechanics and Physics of Solids, Vol. 50, 681-694 Tabor, D., (1951) “The Hardness of Metals,” Oxford: Clarendon, British. Tadmor, E.B., Miller, R., Phillips, R. (1999). “Nanoindentation and incipient plasticity,” Journal of Materials Research, Vol. 14, No. 6, 2233-2250. Taylor, G.I., (1934) “The Formation of Emulsions in Definable Fields of Flow.” Proc. R. Soc. Lond. A October 1, 1934 146:501-523; doi:10.1098/rspa.1934.0169 Tsui, T.Y., Vlassak, J., Nix, W.D. (1999a). “Indentation plastic displacement field: Part I. The case of soft films on hard substrates,” Journal of Materials Research, Vol. 11, No. 6, 2196-2203. Van Vliet, K.J., Li, J., Zhu, T.,Yip, S., and Suresh, S. (2003). “Quantifying the early stages of plasticity through nanoscale experiments and simulations,” Physical Review B, Vol. 67, 104105. Zimmerman, J.A., Kelchner, C.L., Klein, P.A., Hamilton, J.C., Foiles, S.M. (2001). “Surface Step Effects on Nanoindentation”, Physical Review Letter, Vol. 87, 165507. Zimmerman, J.A., Webb III, E.B., Hoyt, J.J., Jones, R.E., Klein, P.A., and Bammann, D.J. (2004). “Calculation of stress in atomistic simulation,” Modelling and Simulation in Material Science and Engineering, Vol. 12, S319-S332. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48375 | - |
dc.description.abstract | 奈米尺度下的材料力學往往會表現出與巨觀不同的現象。奈米壓印試驗是一很好分析奈米尺度下材料力學的方法。本論文使用分子動力方法(MD)模擬單晶金、單晶鋁及單晶鎳在奈米尺度的壓印試驗並探討其中尺寸效應的現象。
尺寸效應現象是一在微小尺度的材料中常常被觀察到的現象。微小的材料尺寸在受壓後會被觀察到一隨壓印子尺寸遞增而硬度遞減的現象,形成此種現象的原因一般認為是幾何必要差排所影響(Nix & Gao, 1998)。應用幾何必要差排所推導的應變梯度塑性理論可以很有效的解釋微米尺度中的尺寸效應現象,但隨著壓印子的尺寸變小,在進入奈米的尺寸中時,應變梯度塑性理論的預測會出現與實驗量測觀察不吻合之情形,因此如何有效的利用幾何必要差排於奈米尺度中的尺寸效應現象是一個極為重要的課題。 本論文利用分子動力模擬半徑25奈米以下的球形壓印子壓印單晶金、單晶鋁及單晶鎳金屬試體。使用EAM勢能(potential)來描述此三種FCC立方晶體,並應用滑動向量(slip vector)、應變梯度(strain gradient)及模擬所擷取的幾何必要差排來探討奈米尺度下的尺寸效應現象。 在本論文中首先針對不同的金屬:單晶金及單晶鋁進行較小尺寸壓印子的模擬,用以比較不同金屬在奈米尺度中的尺寸效應現象。模擬所得的結果可以觀察到在10奈米以下的尺度可以觀察到尺寸效應的現象,且金與鋁所產生的差排結構會有相當不同的現象。金所產生的差排會聚在一半球體中;鋁則會觀察到大片滑動差排往四處擴散。 接著本論文針對單晶鎳進行較大尺寸的模擬,從模擬結果中觀察到相當不同的尺寸效應,在半徑5奈米至25奈米壓印子中可以觀察到三種不同的尺寸效應現象。使用滑動向量與幾何必要差排分析,均會發現兩種方法在三種階段中均呈現三種不同的趨勢,因此可以得知在奈米尺度下的尺寸效應,壓印子尺寸會對差排形成的結構有相當大的影響,有效的應用尺寸參數即可對奈米尺度中的尺寸效應現象有良好的解釋。 | zh_TW |
dc.description.abstract | The Indentation size effect (ISE) is a phenomenon usually observed from the relation between indentation hardness and penetrated depth in micro and nano scale (Nix and Gao, 1998). In general, this phenomenon can be modeled by the theory based on geometrically necessary dislocations (GNDs) within the plastic zone underneath the contact area which was caused by indentor. However, previous studies have discussed this effect merely on the micro-indentation but the phenomenon at the nano scale. And the theory about the nano scale has not been established as accurately as about the micro scale. Thus, how these thin film materials act at nano scale need to be observed and discussed. In this thesis, the computer simulation to process a nanoindentation test with spherical indentor has been used to study the nanoindentation size effect (NISE) in nickel material. The theory of geometry necessarily dislocation was also examined by comparing with the results from molecular simulation.
A static version of classical molecular dynamics has been used to study the nanohardness and dislocation activities during the process of nanoindentation. For metals, the interatomic potential was described by the embedded atom method (EAM). With regards to EAM, the interatomic potential contains not only the pair potential between two atoms but also the embedded energy induced by the local density of electrons surrounding the atoms of interest. To simulate indentation process, first of all, a purely repulsive force relationship between spherical indenter and thin films was implemented to model the indentation process instead of modeling the indentor by atoms directly. Secondly, the mean contact pressure, obtained by dividing the indenter load by the projected contact area, characterizes the material strength beneath the indenter. Third, the GNDs calculated from the simulation systems, combined slip vector method and bond angle distribution method to extract the GNDs from the dislocations information of simulation models. The indentation simulation model consists of a thin film specimen and an indenter. The specimens were composed of face-centered cubic (FCC) crystalline Ni atoms with a size of 1000 A×1000 A×200 A. These models contained over 40 million atoms. From the simulation results, it is observed that the hardness is decreased when indenter size increased, which means the ISE phenomenon is possible to observe in the nano scale. In order to examine the ISE phenomenon in the nano scale, we extract the GNDs from the simulation results. It is observed that the GNDs are declined with the indenter radius. This result imply that the GNDs is still affect the hardness in the nano scale and it is reasonable to use the GNDs theory to interpret the ISE phenomenon. The simulation of nanoindentation on single crystal Ni to observe the ISE phenomenon is succeed to observe the ISE phenomenon in the nano scale. The hardness of material has been decreasing with the increasing of the size of spherical indentor. However, the theory model of Nix and Gao will overestimated the hardness because of the effective plastic zone range is larger than the volume confined by the volume of idealized radius. A new scale of plastic zone is proposed in this paper to successfully explain the GND model from the results of atomistic simulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:54:25Z (GMT). No. of bitstreams: 1 ntu-100-R98521603-1.pdf: 32108543 bytes, checksum: f61672f4be54dd4678a1d3957e42efc9 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目錄 VI 圖目錄 IX 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 5 1.3 章節安排 5 第2章 壓印尺寸效應理論與應用 6 2.1 幾何必要差排理論-微米尺度 6 2.1.1 角錐形壓印子 7 2.1.2 球形壓印子 11 2.2 應變梯度塑性理論 14 2.3 幾何必要差排-次微米尺度 15 2.3.1 角錐形壓印子 16 2.3.2 球形壓印子 18 2.4 幾何必要差排理論-原子尺度模擬 20 2.5 小結 22 第3章 分子動力模擬方法與實作 24 3.1 分子動力方法 24 3.2 壓印試驗模擬方法 26 3.2.1 壓印子 27 3.2.2 模擬試體 28 3.2.3 系統平衡態 30 3.2.4 壓印模擬步驟 31 3.3 尺寸效應計算方法 33 3.3.1 硬度 33 3.3.2 應變梯度 34 3.3.3 鍵結角度分布 35 3.3.4 滑動向量 37 3.3.5 幾何必要差排 38 3.4 小結 39 第4章 壓印模擬結果與討論 40 4.1 小尺寸壓印子模擬 40 4.1.1 單晶金 40 4.1.2 單晶鋁 55 4.1.3 壓印尺寸效應 70 4.1.4 討論 71 4.2 大尺寸壓印子模擬 72 4.2.1 應變梯度分析 96 4.2.2 幾何必要差排分析 99 4.2.3 討論 105 4.3 小結 106 第5章 結論與未來展望 107 5.1 總結 107 5.2 未來展望 109 參考文獻 111 附錄 原子差排結構 119 | |
dc.language.iso | zh-TW | |
dc.title | 以原子尺度模擬探討奈米壓印之尺寸效應 | zh_TW |
dc.title | Investigation of Nanoindentation Size Effect Using Atomistic Simulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪宏基,張怡玲 | |
dc.subject.keyword | 分子動力模擬,奈米壓印,幾何必要差排,尺寸效應, | zh_TW |
dc.subject.keyword | MD,Nanoindentation,GNDs,Indentation Size effect (ISE), | en |
dc.relation.page | 127 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 31.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。