請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48352完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李公哲(Kung-Cheh Li) | |
| dc.contributor.author | Yu-Ting Tsai | en |
| dc.contributor.author | 蔡宇庭 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:53:34Z | - |
| dc.date.available | 2014-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-11 | |
| dc.identifier.citation | Beach, S.A., Newsted, J.L., Coady, K., Giesy, J.P., 2006. Ecotoxicological evaluation of perfluorooctanesulfonate (PFOS). Rev. Environ. Contamt. 186, 133-174.
Becker, A.M., Gerstmann, S., Frank, H., 2008a. Perfluorooctane surfactants in waste waters, the major source of river pollution. Chemosphere 72, 115-121. Becker, A.M., Gerstmann, S., Frank, H., 2008b. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany. Environ. Pollut. 156, 818-820. Boulanger, B., Vargo, J.D., Schnoor, J.L., Hornbuckle, K.C., 2005. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environ. Sci. Technol. 39, 5524-5530. Brooke, D., Footitt, A., Nwaogu, T.A., 2004. Environmental risk evaluation report: Perfluorooctanesulphonate (PFOS). Environment Agency UK, <http://www.environment-agency.gov.uk/commondata/105385/pfos_rer_sept04_864557.pdf>. Calafat, A.M., Needham, L.L., Kuklenyik, Z., Reidy, J.A., Tully, J.S., Aguilar-Villalobos, M., Naeher, L.P., 2006. Perfluorinated chemicals in selected residents of the American continent. Chemosphere 63, 490-496. Cao, M.H., Wang, B.B., Yu, H.S., Wang, L.L., Yuan, S.H., Chen, J., 2010. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. J. Hazard. Mater. 179, 1143-1146. Chen, J., Zhang, P., 2006. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Sci. Technol. 54, 317-325. Chen, J., Zhang, P.Y., Zhang, L., 2006. Photocatalytic decomposition of environmentally persistent perfluorooctanoic acid. Chem. Lett. 35, 230-231. Chuang, C.J., Fang, C.W., Tung, K.L., 2003. Electro-microfiltration of colloidal suspensions. Sep. Sci. Technol. 38, 797-816. Comninellis, C., Pulgarin, C., 1991. Anodic-oxidation of phenol for waste-water treatment. J. Appl. Electrochem. 21, 703-708. de la Rubia, A., Rodriguez, M., Prats, D., 2006. pH, Ionic strength and flow velocity effects on the NOM filtration with TiO2/ZrO2 membranes. Sep. Purif. Technol. 52, 325-331. D'Eon, J.C., Crozier, P.W., Furdui, V.I., Reiner, E.J., Libelo, E.L., Mabury, S.A., 2009. Observation of a Commercial Fluorinated Material, the Polyfluoroalkyl Phosphoric Acid Diesters, in Human Sera, Wastewater Treatment Plant Sludge, and Paper Fibers. Environ. Sci. Technol. 43, 4589-4594. Dong, B.Z., Lin, W., Gao, N.Y., 2008. The removal of bisphenol A by ultrafiltration. Desalination 221, 312-317. Dreyer, A., Matthias, V., Weinberg, I., Ebinghaus, R., 2010. Wet deposition of poly- and perfluorinated compounds in Northern Germany. Environ. Pollut. 158, 1221-1227. DuPont Company, 2008. DuPont Surface Protection Solutions, DUPONT™ CAPSTONE™ REPELLENTS AND SURFACTANTS, K-20614-1 (10/08). USA,<http://www2.dupont.com/Capstone/en_US/assets/downloads/capstone_prod_stewardship_detail_doc_01oct2008.pdf>. Ellis, D.A., Martin, J.W., De Silva, A.O., Mabury, S.A., Hurley, M.D., Andersen, M.P.S., Wallington, T.J., 2004. Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids, Environ. Sci. Technol. 38, 3316–3321. Fujii, S., Polprasert, C., Tanaka, S., Lien, N.P.H., Qiu, Y., 2007. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds – a review paper. J. Water Supply Res. Technol. – Aqua 56, 313-326. Furdui, V.I., Stock, N.L., Ellis, D.A., Butt, C.M., Whittle, D.M., Crozier, P.W., Reiner, E.J., Muir, D.C.G., Mabury, S.A., 2007. Spatial distribution of perfluoroalkyl contaminants in lake trout from the Great Lakes. Environ. Sci. Technol. 41, 1554-1559. Geens, J., Boussu, K., Vandecasteele, C., Van der Bruggen, B., 2006. Modelling of solute transport in non-aqueous nanofiltration. J. Membr. Sci. 281, 139-148. Giesy, J.P., Kannan, K., 2002. Perfluorochemical surfactants in the environment. Environ. Sci. Technol. 36, 146A-152A. Giesy, J.P., Naile, J.E., Khim, J.S., Jones, P.D., 2010. Newsted, J.N., Aquatic toxicology of perfluorinated chemicals. Rev. Environ. Contam. Toxicol. 202, 1-52. Gomeza, M. J., Petrovic, M, Fernandez-Alba, A. R., Barcelo, D., 2006. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography–tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A. 1114, 224-233. Gulkowska, A., Jiang, Q.T., So, M.K., Taniyasu, S., Lam, P.K.S., Yamashita, N., 2006. Persistent perfluorinated acids in seafood collected from two cities of China. Environ. Sci. Technol. 40, 3736-3741. Hansen, K.J., Clemen, L.A., Ellefson, M.E., Johnson, H.O., 2001. Compound-specific, quantitative characterization of organic: Fluorochemicals in biological matrices. Environ. Sci. Technol. 35, 766-770. Hatfield, T., 2001. Screening studies on the aqueous photolytic degradation of potassium perfluorooctane sulfonate (PFOS). 3M Environmental Laboratory. 3M Company, St. Paul, MN. Report number W2775. Henry, J.D., Lawler, L.F., Kuo, C.H.A., 1977. Solid-liquid separation process based on cross flow and electrofiltration. Aiche J. 23, 851-859. Higgins, C.P., Field, J.A., Criddle, C.S., Luthy, R.G., 2005. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ. Sci. Technol. 39, 3946-3956. Higgins, C.P., Luthy, R.G., 2006. Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 40, 7251-7256. Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., 2005. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 39, 2383-2388. Huset, C.A., Chiaia, A.C., Barofsky, D.F., Jonkers, N., Kohler, H.P.E., Ort, C., Giger, W., Field, J.A., 2008. Occurrence and mass flows of fluorochemicals in the Glatt Valley watershed, Switzerland. Environ. Sci. Technol. 42, 6369-6377. Inoue, K., Okada, F., Ito, R., Kato, S., Sasaki, S., Nakajima, S., Uno, A., Saijo, Y., Sata, F., Yoshimura, Y., Kishi, R., Nakazawa, H., 2004. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: Assessment of PFOS exposure in a susceptible population during pregnancy. Environ. Health Persp. 112, 1204-1207. Karrman, A., van Bavel, B., Jarnberg, U., Hardell, L., Lindstrom, G., 2006. Perfluorinated chemicals in relation to other persistent organic pollutants in human blood. Chemosphere 64, 1582-1591. Kim, S.K., Kannan, K., 2007. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. Environ. Sci. Technol. 41, 8328-8334. Kudo, N., Kawashima Y., 2003. Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J. Toxicol. Sci. 23, 49-57. Kuklenyik, Z., Reich, J.A., Tully, J.S., Needham, L.L., Calafat, A.M., 2004. Automated solid-phase extraction and measurement of perfluorinated organic acids and amides in human serum and milk. Environ. Sci. Technol. 38, 3698-3704. Kwadijk, C., Korytar, P., Koelmans, A.A., 2010. Distribution of Perfluorinated Compounds in Aquatic Systems in the Netherlands. Environ. Sci. Technol. 44, 3746-3751. Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Butenhoff, J.L., Stevenson, L.A., 2003. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol. Sci. 74, 382-392. Lazarova, Z., Serro, W., 2002. Electromembrane separation of mineral suspensions: Influence of process parameters. Sep. Sci. Technol. 37, 515-534. Lee, Y.C., Lo, S.L., Chiueh, P.T., Chang, D.G., 2009. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res. 43, 2811-2816. Li, L., Xu, Z.S., Song, G.W., 2009. Study on the Langmuir aggregation of fluorinated surfactants on protein. J. Fluorine Chem. 130, 225-230. Lin, A.Y.C., Panchangam, S.C., Lo, C.C., 2009. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environ. Pollut. 157, 1365-1372. Lin, A.Y.C., Panchangam, S.C., Ciou, P.S., 2010. High levels of perfluorochemicals in Taiwan's wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere 80, 1167-1174. Liu, W., Jin, Y.H., Quan, X., Sasaki, K., Saito, N., Nakayama, S.F., Sato, I., Tsuda, S., 2009. Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China. Environ. Int. 35, 737-742. Loganathan, B.G., Sajwan, K.S., Sinclair, E., Kumar, K.S., Kannan, K., 2007. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Res. 41, 4611-4620. MacCormick, T., 1999. Cryptosporidium - driving the shift towards microfiltration? Filtr. Sep. 36, 16-19. Martin, J.W., Mabury, S.A., Whittle, D.M., Muir, D.C.G., 2004. Perfluoroalkyl contaminants in a food web from Lake Ontario. Environ. Sci. Technol. 38, 5379-5385. Moody, C.A., Martin, J.W., Kwan, W.C., Muir, D.C.G., Mabury, S.C., 2002. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etohicoke Creek. Environ. Sci. Technol. 36, 545-551. Morikawa, A., Kamei, N., Harada, K., Inoue, K., Yoshinaga, T., Saito, N., Koizumi, A., 2006. The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles (Trachemys scripta elegans and Chinemys reevesii): An Ai river ecological study in Japan. Ecotox. Environ. Safe. 65, 14-21. Nghiem, L.D., Schafer, A.I., Elimelech, M., 2005. Nanofiltration of hormone mimicking trace organic contaminants. Sep. Sci. Technol. 40, 2633-2649. OECD (Organization for Economic Cooperation and Development), 2002. Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts. ENV/JM/RD 17/Final. Panchangam, S.C., Lin, A.Y.C., Tsai, J.H., Lin, C.F., 2009. Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid. Chemosphere 75, 654-660. Park, H., Vecitis, C.D., Cheng, J., Choi, W., Mader, B.T., Hoffmann, M.R., 2009. Reductive Defluorination of Aqueous Perfluorinated Alkyl Surfactants: Effects of Ionic Headgroup and Chain Length. J. Phys. Chem. A 113, 690-696. Prevedouros, K., Cousins I. T., Buck R. C., Korzeniowski S. H., 2006. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 40, 32-44. Quinete, N., Wu, Q., Zhang, T., Yun, S.H., Moreira, I., Kannan, K., 2009. Specific profiles of perfluorinated compounds in surface and drinking waters and accumulation in mussels, fish, and dolphins from southeastern Brazil. Chemosphere 77, 863-869. Rayne, S., Forest, K., Friesen, K.J., 2009. Computational approaches may underestimate pKa values of longer-chain perfluorinated carboxylic acids: Implications for assessing environmental and biological effects. J. Environ. Sci. Heal. A 44, 317-326. Renner, R., 2001. Growing concern over perfluorinated chemicals. Environ. Sci. Technol. 35, 154-160. Saito, N., Harada, K., Inoue, K., Sasaki, K., Yoshinaga, T., Koizumi, A., 2004. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J. Occup. Heal. 46, 49-59. Schroder, H.F., Meesters, R.J.W., 2005. Stability of fluorinated surfactants in advanced oxidation processes - A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. J. Chromatogr. A 1082, 110-119. Schultz, M.M., Barofsky, D.F., Field, J.A., 2006. Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry - Characterization of municipal wastewaters. Environ. Sci. Technol. 40, 289-295. Senthilkumar, K., Ohi, E., Sajwan, K., Takasuga, T., Kannan, K., 2007. Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. B. Environ. Contam. Tox. 79, 427-431. Sinclair, E., Kannan, K., 2006. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environ. Sci. Technol. 40, 1408-1414. Sinclair, E., Mayack, D.T., Roblee, K., Yamashita, N., Kannan, K., 2006. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Arch. Environ. Con. Tox. 50, 398-410. Skutlarek, D., Exner, M., Farber, H., 2006. Perfluorinated surfactants in surface and drinking water. Environ. Sci. Pollut. R. 13, 299-307. Steinle-Darling, E., Reinhard, M., 2008. Nanofiltration for trace organic contaminant removal: Structure, solution, and membrane fouling effects on the rejection of perfluorochemicals. Environ. Sci. Technol. 42, 5292-5297. Stevenson, F.J., 1982. Humic Chemistry: Gensis composition, reactions. John Wiley & Sons. New York. Sung, M.H., Huang, C.P., Weng, Y.H., Lin, Y.T., Li, K.C., 2007. Enhancing the separation of nano-sized particles in low-salt suspensions by electrically assisted cross-flow filtration. Sep. Purif. Technol. 54, 170-177. Szymczyk, A., Fievet, P., Mullet, M., Reggiani, J.C., Pagetti, J., 1998. Study of electrokinetic properties of plate ceramic membranes by electroosmosis and streaming potential. Desalination 119, 309-313. Tang, C.Y., Fu, Q.S., Criddle, C.S., Leckie, J.O., 2007. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ. Sci. Technol. 41, 2008-2014. Tang, C.Y.Y., Fu, Q.S., Robertson, A.P., Criddle, C.S., Leckie, J.O., 2006. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ. Sci. Technol. 40, 7343-7349. Taniyasu, S., Kannan, K., Horii, Y., Hanari, N., Yamashita, N., 2003. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ. Sci. Technol. 37, 2634-2639. Taniyasu, S., Kannan, K., Yeung, L.W.Y., Kwok, K.Y., Lam, P.K.S., Yamashita, N., 2008. Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2-C4) in precipitation by liquid chromatography-tandem mass spectrometry: Comparison to patterns of long-chain perfluorinated acids (C5-C18). Anal. Chim. Acta 619, 221-230. Tseng, C.L., Liu, L.L., Chen, C.M., Ding, W.H., 2006. Analysis of perfluorooctanesulfonate and related fluorochemicals in water and biological tissue samples by liquid chromatography-ion trap mass spectrometry. J. Chromatogr. A. 1105, 119-126. US EPA, 2002. Hazard assessment of perfluorooctanoic acid and its salts, Office of Pollution Prevention and Toxics - Risk Assessment Division, US. US EPA, 2003. Preliminary risk assessment of the developmental toxicity associated with exposure to perfluorooctanoic acid and its salts. Office of Pollution Prevention and Toxics - Risk Assessment Division, US. Vecitis, C.D., Park, H., Cheng, J., Mader, B.T., Hoffmann, M.R., 2008. Enhancement of Perfluorooctanoate and Perfluorooctanesulfonate Activity at Acoustic Cavitation Bubble Interfaces. J. Phys. Chem. C 112, 16850-16857. Vecitis, C. D.; Park, H.; Cheng, J.; Mader, B. T.; Hoffmann, M. R., Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Eng. in China 2009, 3 (2), 129-151. Verreault, J., Houde, M., Gabrielsen, G.W., Berger, U., Haukas, M., Letcher, R.J., Muir, D.C.G., 2005. Perfluorinated alkyl substances in plasma, liver, brain, and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. Environ. Sci. Technol. 39, 7439-7445. Wakeman, R.J., Tarleton, E.S., 1986. Experiments using electricity to prevent fouling in membrane filtration. Filtr. Sep. 23, 174-176. Wakeman, R.J., Williams, C.J., 2002. Additional techniques to improve microfiltration. Sep. Purif. Technol. 26, 3-18. Washington, J.W., Henderson, W.M., Ellington, J.J., Jenkins, T.M., Evans, J.J., 2008. Analysis of perfluorinated carboxylic acids in soils II: Optimization of chromatography and extraction. J. Chromatogr. A. 1181, 21-32. Weng, Y.H., Chaung-Hsieh, L.H., Lee, H.H., Li, K.C., Huang, C.P., 2005. Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF). J. Hazard. Mater. 122, 171-176. Weng, Y.H., Li, K.C., Chaung-Hsieh, L.H., Huang, C.P., 2006. Removal of humic substances (HS) from water by electro-microfiltration (EMF). Water Res. 40, 1783-1794. Wererniuk, A.M., Gerstmann, S., Frank, H., 2006. Quantitative determination of perfluorinated surfactants in water by LC-ESI-MS/MS. J. Sep. Sci. 29, 2251-2255. Yamamoto, T., Noma, Y., Sakai, S.I., Shibata, Y., 2007. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environ. Sci. Technol. 41, 5660-5665. Yoo, H., Washington, J.W., Jenkins, T.M., Libelo, E.L., 2009. Analysis of perfluorinated chemicals in sludge: Method development and initial results. J. Chromatogr. A 1216, 7831-7839. Yuan, W., Zydney, A.L., 1999. Humic acid fouling during microfiltration. J. Membr. Sci. 157, 1-12. Zhang, Y., Van der Bruggen, B., Chen, G.X., Braeken, L., Vandecasteele, C., 2004. Removal of pesticides by nanofiltration: effect of the water matrix. Sep. Purif. Technol. 38, 163-172. Zhao, Y.J., Xing, W.H., Xu, N.P., Wong, F.S., 2005. Effects of inorganic electrolytes on Zeta potentials of ceramic microfiltration membranes. Sep. Purif. Technol. 42, 117-121. Zushi, Y., Takeda, T., Masunaga, S., 2008. Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan. Chemosphere 71, 1566-1573. 江謝令函 (2003),以外加電場輔助掃流過濾處理水中砷及天然有機物,國立台灣大學環境工程研究所博士論文。 吳振溢 (2004),以電場掃流過濾分離酵母菌牛血清蛋白混合懸浮液,私立中原大學化工所碩士論文。 蔡秀惠 (2001),利用外加電場掃流微過濾程序處理化學機械研磨廢水,國立中山大學環境工程研究所碩士論文。 曾巧立 (2004),以液相層析質譜儀檢測水樣與生物檢體中全氟界面活性劑之濃 度,國立中央大學化學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48352 | - |
| dc.description.abstract | 本研究針對北部某科學園區工業廢水處理廠放流及其下游承受水體進行全氟化合物(perfluorinated compounds, PFCs),包括三種perfluoroalkyl sulfonates (PFASs):perfluorobutane sulfonate (PFBS (C4))、perfluorohexane sulfonate (PFHxS (C6))及perfluorooctane sulfonate (PFOS (C8))及七種perfluoroalkyl carboxylates (PFCAs):perfluorohexanoic acid (PFHxA (C6))、perfluoroheptanoic acid (PFHpA (C7))、perfluorooctanoic acid (PFOA (C8))、perfluorononanoic acid (PFNA (C9))、perfluorodecanoic acid (PFDA (C10))、perfluoroundecanoic acid (PFUnA (C11))及 perfluorododecanoic acid (PFDoA (C12))之分析調查。水樣分析結果顯示十種目標PFCs皆於工業廢水處理廠放流中發現,PFOS (6930 ng/L)為PFASs中最主要之污染物,PFHxS (2662 ng/L)次之;而PFOA (3298 ng/L)則為PFCAs中最主要之污染物,於工業廢水處理廠放流至其下游及承受水體之PFCs濃度顯著的升高且保持一相近之數值,其可說明工業廢水處理廠所排放之廢水為其下游承受水體受PFCs汙染的主要來源。工業廢水處理廠下游及承受水體之PFBS與PFOS的濃度皆遠超過Avian Wildlife Value (AWV)之標準,顯示此二種化合物將可能對棲息於客雅溪之鳥類(食物鏈頂層之野生動物)造成不良之影響;另亦發現PFOS之濃度已超過Criteria Continuous Concentration (CCC)之標準,顯示將可能對承受水體中水生生物產生慢毒性之影響。
底泥樣品中可偵測到五種PFCAs (PFHxA、PFOA、PFDA、PFUA及PFDoA)及二種PFASs (PFHxS及PFOS),其中以PFOS (1.5-78 ng/g)、PFOA (0.5-5.6 ng/g)及PFDoA (nd-5.4 ng/g)有相對較高之濃度。且發現Log (Csediment / Cwater)隨PFCAs之碳數增加而增加,其中PFOA、PFDA、PFUA及PFDoA之Log (Csediment / Cwater)分別為0.2-0.3、2.2-2.5、2.5-2.7及3.2-3.3,表示長碳鏈之PFCs (PFDA、PFUA及PFDoA)較易被吸附於底泥中。 於生物體中,PFOS之濃度比例皆為十種目標PFCs中最高者(肌肉組織:76-84%於客雅溪;55-64%於基隆河,肝臟組織:94-95%於客雅溪;44-51%於基隆河),且PFCs濃度於肝臟組織大於肌肉組織(以吳郭魚A1生物體為例,其肝臟組織PFOS含28933 ng/g;肌肉組織PFOS含1386 ng/g)。Log (Cbiological tissue / Cwater)有隨PFASs及PFCAs之碳數增加而增加之趨勢,以肝臟組織為例,PFBS、PFHxS及PFOS之Log (Cliver / Cwater)分別為1.0-1.5、2.2-2.3及3.5-3.7;PFOA、PFNA、PFDA、PFUA及PFDoA之Log (Cliver / Cwater)分別為1.7-1.8、3.8-4.2、3.7-4.0、4.3-4.4及5.3-5.4,表示長碳鏈PFCs較短碳鏈PFCs易累積於生物體內,且客雅溪之生物體PFCs濃度高於基隆河約1-197倍。綜合水樣、底泥及生物體之分析結果,顯示該工業廢水處理廠對下游承受水體客雅溪的生態環境具有潛在之衝擊影響。 因此勢必要提升工業廢水處理廠對於PFCs之去除效率,才可有效控制PFCs排放至自然水體。近年來薄膜技術已普及應用於廢水處理,因此依PFCs在水中以負電形式(low pKa)存在之特性,利用microfiltration (MF)薄膜外加電場技術(electro-microfiltration, EMF)進行處理,發現可大幅提升PFCs之去除效率。 本研究探討改變不同操作參數,如電場強度的施加(0、29、43.5及58 V/cm)、溶液pH值(4、7及10)、離子強度(0.4-4.8 mM Na2SO4、NaCl、NH4Cl及CaCl2)及溶解性有機物(dissolved organic matter, DOM)之存在對於EMF去除PFOA及PFOS之影響。結果顯示僅利用MF薄膜過濾,幾乎無法去除PFOA及PFOS,但施加一電場穿透過薄膜能夠大幅增加PFOA及PFOS的去除效率,如溶液pH=10下,去除效率可從無外加電場之<3%,提升至施加58 V/cm電場強度的>84%。於EMF程序下,當溶液氫離子濃度及離子強度增加,PFOA及PFOS去除效率有降低之趨勢,可能因薄膜表面界達電位降低,減少薄膜與PFOA及PFOS之間的靜電排斥力所致。當施加電場強度小於臨界電場強度(critical electrical field strength, Ecritical, HA)時,可觀察到有腐植酸存在時PFOA及PFOS之去除效率較低,推測此狀況下HA會朝向薄膜表面傳輸並吸附於膜面,進而產生積垢,此積垢層會降低薄膜表面界達電位所致。因此本研究假設在電場施加下,上述之無機及有機基質存在會改變薄膜表面界達電位,因而影響PFOA及PFOS之去除效率。 EMF可有效去除PFOA、PFOS及其他三種PFCs (PFDA、PFHxS及PFHxA)共同存在之溶液(電場強度58 V/cm,去除效率範圍於溶液pH=7下為70-76%;於溶液pH=10下為81-86%)。EMF亦能夠有效去除實廠廢水中之PFOA及PFOS,電場強度為58 V/cm下,PFOA及 PFOS及DOM去除效率分別為70%及80%。 | zh_TW |
| dc.description.abstract | We investigated the occurrence of perfluorinated compounds (PFCs) in the effluents of an industrial wastewater treatment plant (IWWTP) and its receiving rivers. Ten target PFCs including three perfluoroalkyl sulfonates (PFASs):perfluorobutane sulfonate (PFBS (C4)), perfluorohexane sulfonate (PFHxS (C6)), and perfluorooctane sulfonate (PFOS (C8)) and seven perfluoroalkyl carboxylates (PFCAs):perfluorohexanoic acid (PFHxA (C6)), perfluoroheptanoic acid (PFHpA (C7)), perfluorooctanoic acid (PFOA (C8)), perfluorononanoic acid (PFNA (C9)), perfluorodecanoic acid (PFDA (C10)), perfluoroundecanoic acid (PFUnA (C11)), and perfluorododecanoic acid (PFDoA (C12)) were detected in the effluents of IWWTP; PFOS (6930 ng/L) and PFHxS (2662 ng/L) were the major constituents of PFASs; PFOA (3298 ng/L) was the major constituent of PFCAs. IWWTP effluent and its receiving rivers demonstrated to have similar PFCs distribution and concentrations, indicating that the IWWTP wastewater is the major source of PFCs to its receiving rivers. Compared to the reported Avian Wildlife Value (AWV), PFBS (392 ng/L) and PFOS (7165 ng/L) level detected showed to exceed the AWV 23 and 152 times, respectively, which may potentially result in adverse effects to birds and other wildlife. In addition, PFOS concentration found (7165 ng/L) at the receiving rivers was higher than the reported Criteria Continuous Concentration (CCC), indicating the potential chronic toxicity to aquatic organisms.
In sediment samples, five PFCAs (PFHxA, PFOA, PFDA, PFUA and PFDoA) and two PFASs (PFHxS and PFOS) were detected. PFOS (1.5-78 ng/g), PFOA (0.5-5.6 ng/g), and PFDoA (nd-5.4 ng/g) were present at relatively higher concentration. Log (Csediment / Cwater) increases with an increasing carbon chain length of PFCAs; the Log (Csediment / Cwater) values for PFOA, PFDA, PFUA, and PFDoA were 0.2-0.3, 2.2-2.5, 2.5-2.7, and 3.2-3.3, respectively and therefore, PFCs with higher carbon numbers (PFDA, PFUA and PFDoA) are easier adsorbed onto sediments. In biological tissue, PFOS was presented at higher concentration among the target PFCs and was the predominant PFCs (PFOS % in total PFCs in muscle tissue:76-84% in Keya River;55-64% in Keelung River and in liver tissue:94-95% in Keya River;44-51% in Keelung River). The PFCs concentration in the liver tissue was higher than those found in the muscle tissue (e.g. in A1-mouthbeeder biological tissue, PFOS concentration was 28933 ng/g in liver tissue; 1386 ng/g in muscle tissue). Log (Cbiological tissue / Cwater) increases with an increasing carbon chain length of PFASs or PFCAs. In liver tissue, the Log (Cliver / Cwater) values for PFBS, PFHxS, and PFOS were 1.0-1.5, 2.2-2.3, and 3.5-3.7, respectively;the Log (Cliver / Cwater) values for PFOA, PFNA, PFDA, PFUA, and PFDoA were 1.7-1.8, 3.8-4.2, 3.7-4.0, 4.3-4.4, and 5.3-5.4, respectively. The results indicated that PFCs with higher carbon numbers are easier accumulated in biological tissues. In addition, PFC concentrations in biological tissues in Keya River were 1-197 times greater than levels found in Keelung River. These water, sediment and biota data together imply that the receiving aquatic environments were impacted by the industrial discharges. Therefore in order to reduce, and better yet, to eliminate PFCs discharge into aqueous environments, advanced treatment technologies appear viable for their removal. PFCs are negatively charged and have low pKa values in water; therefore, a laboratory-scale electro-microfiltration (EMF) unit that applies a direct-current (DC) electrical field across its membrane can greatly enhance their removal from aqueous systems. We examined the effects of electrical field strength (0, 29, 43.5 and 58 V/cm), an aqueous inorganic matrix (pH: 4, 7 or 10; ionic strength: 0.4-4.8 mM; ionic composition: Na2SO4, NaCl, NH4Cl or CaCl2) and an organic matrix such as dissolved organic matter (DOM) on the ability of EMF to remove PFOA and PFOS. In the absence of an electrical field, PFOA and PFOS removal efficiencies were low; however, the application of a DC electrical field through the membrane greatly enhanced PFOA and PFOS removal. PFC rejections increased from <3% (0 V/cm) to >84% (58 V/cm) at pH=10 solution. Decreases in PFOA and PFOS removal were observed as the increase of proton concentration and ionic strength, suggesting decreased membrane zeta potential, in turn reducing the electrostatic repulsion force between the membrane and PFOA and PFOS. At 29 V/cm, the electrical field was less than the critical electrical field strength (Ecritical, HA), conditions under which humic acid (HA) could be transported toward the membrane; thus, its adsorption would decrease the membrane zeta potential. HA adsorption would decrease the PFOA and PFOS rejection efficiency during EMF with an electrical field strength lower than its critical value. Therefore, we hypothesize that these matrices affect PFOA and PFOS rejection by altering membrane zeta potential during filtration in the presence of an electrical field. EMF was found to remove coexisting PFCs including PFOA, PFOS and three other PFCs (PFDA, PFHxS and PFHxA) effectively; at 58 V/cm, their removal efficiencies were 70-76% and 81-86% at pH=7 and pH=10, respectively. In addition, EMF was also able to remove effectively 70% PFOA and PFOS and 80% DOM from real industrial wastewaters at 58 V/cm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:53:34Z (GMT). No. of bitstreams: 1 ntu-100-D95541007-1.pdf: 3564872 bytes, checksum: 1c45e326376259bec7b1741826bbe05e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 中文摘要 I 英文摘要 IV 目錄 VII 圖目錄 IX 表目錄 XI 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 全氟化合物(PFCs) 4 2-1-1 物理化學性質 4 2-1-2 危害特性 5 2-2 環境分佈 7 2-3 環境樣品之分析方法 8 2-4 薄膜外加電場程序 15 2-4-1 操作因子之影響 15 第三章 研究材料與方法 18 3-1 實驗藥品與配置 18 3-2 HPLC-MS/MS分析方法建立 20 3-2-1 HPLC-MS/MS條件最佳化 21 3-2-2 樣品採集及前處理 24 3-2-3 分析方法確效 27 3-3 薄膜外加電場 27 3-3-1 進流水樣之配置 29 3-3-2 過濾模組 29 3-3-3 水樣分析 30 第四章 結果與討論 32 4-1 PFCs於水體環境之分佈情形 32 4-1-1 PFCs於水樣之分佈 32 4-1-2 PFCs於底泥之分佈 37 4-1-3 PFCs於生物體之分佈 43 4-2 薄膜外加電場程序處理PFCs 55 4-2-1 電場對於PFOA及PFOS去除效率之影響 55 4-2-2 溶液pH及離子對於PFOA及PFOS去除效率之影響 60 4-2-3 溶解性有機物存在對於過濾通量之影響 66 4-2-4 溶解性有機物存在對於PFOA及PFOS去除效率之影響 68 4-2-5 其他PFCs共同存在之去除效率 71 4-2-6 電力消耗之評估 73 4-2-7 EMF對於實廠廢水處理之應用 74 第五章 結論與建議 76 5-1 結論 76 5-2 建議 78 參考文獻 79 附錄 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 薄膜界達電位 | zh_TW |
| dc.subject | 全氟化合物 | zh_TW |
| dc.subject | 工業廢水處理廠 | zh_TW |
| dc.subject | 水樣 | zh_TW |
| dc.subject | 底泥 | zh_TW |
| dc.subject | 生物體 | zh_TW |
| dc.subject | 薄膜外加電場 | zh_TW |
| dc.subject | 無機及有機基質 | zh_TW |
| dc.subject | Perfluorinated compounds (PFCs) | en |
| dc.subject | Membrane zeta potential | en |
| dc.subject | Sediment | en |
| dc.subject | Water | en |
| dc.subject | Industrial WWTP | en |
| dc.subject | Water inorganic and organic matrix | en |
| dc.subject | Electro-microfiltration (EMF) | en |
| dc.subject | Fish | en |
| dc.title | 水體環境中全氟化合物之流佈與外加電場薄膜處理之研究 | zh_TW |
| dc.title | Occurrence of perfluorinated compounds in aqueous environments and the treatment by electrofiltration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林郁真(Yu-Chen Lin) | |
| dc.contributor.oralexamcommittee | 張慶源(Ching-Yuan Chang),陳家揚(Chia-Yang Chen),侯嘉洪(Chia-Hung Hou) | |
| dc.subject.keyword | 全氟化合物,工業廢水處理廠,水樣,底泥,生物體,薄膜外加電場,無機及有機基質,薄膜界達電位, | zh_TW |
| dc.subject.keyword | Perfluorinated compounds (PFCs),Industrial WWTP,Water,Sediment,Fish,Electro-microfiltration (EMF),Water inorganic and organic matrix,Membrane zeta potential, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
