Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48336
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢(Zueng-Sang Chen)
dc.contributor.authorChia-Hsing Leeen
dc.contributor.author李家興zh_TW
dc.date.accessioned2021-06-15T06:53:00Z-
dc.date.available2013-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-14
dc.identifier.citation內政部營建署。2010。98年營建統計。內政部營建署網站。http://w3.cpami.gov.tw/statisty/98/98_htm/htm_year9805.htm。上次有效連結日期:2010年12月29日。
王西華、鄭正勇、章莉菁、李勝隆、林碧霞、凌美月。1977。行政院科技顧問組委託調查研究計畫。台灣地區有機質肥料與既有堆肥資源調查與研究期末報告。
江國忠、彭德昌、黃山內。1995。果園、蔬菜園長期施用有機質肥料之效果。p.10-1~10-20。有機質肥料合理施用技術研討會論文集。5月11、12日,1995年。台中縣霧峰。
行政院經濟部公告。1990年3月20日經(87)標檢字第89895007號。國家標準「配合飼料」修訂後之成分及含量明細表。
行政院農委會。2010。99年第3季畜牧農情調查結果。行政院農委會網站。http://www.coa.gov.tw/view.php?catid=22488。上次有效連結日期:2010年12月29日。
行政院環保署法規。2001。中華民國九十年十一月二十一日(90)環署水字第○○七三六八四號。土壤污染管制標準。
何念祖、孟賜福。1987。植物營養原理。上海科學技術社出版。p.256-406.
李國欽、林浩潭。1997。農地污染及其防治。藥毒所專題報導。行政院農業委員會農業藥物毒物試驗所出版。第43期。
林浩潭、翁愫慎、李國欽。2002。食品中重金屬含量及管制標準。行政院農業委員會農業藥物毒物試驗所編印。台中市。
林學正、鍾仁賜、林鴻淇。1991。下水道污泥之肥料特性及實用可能。中華生質能源學會會誌。第十卷。p.139-146。
姜樹興。1993。豬對銅之需求、利用及排泄。p.1-9。畜禽飼料銅鋅之添加對環保之影響論文集。台灣省畜產試驗所專輯第22號。
夏良宙。1993。豬之飼料添加硫酸銅作為生長促進劑之利弊。p.10-24。畜禽飼料銅鋅之添加對環保之影響論文集。台灣省畜產試驗所專輯第22號。

翁震炘。2000。畜牧資源回收再利用之發展與未來。農政與農情。第98期。
郭魁士。1997。土壤學。之宜出版社。修訂八版。p.127-157。
陳仁炫、曾國力。2001。禽畜糞之重金屬含量檢測。第四屆畜牧資源回收再利用研討會論文集。p.1-16。台灣省畜牧獸醫學會編印。
陳武雄、林俊義、簡宣裕、林木連、鄭智馨、張明暉。1999。堆肥製造技術 (農業委員會農業試驗所特刊第88號)。行政院農委會農試所暨中華永續農業協會。台中縣霧峰鄉。
陳芳英。2010。98年11月底養豬頭數調查概況。農政與農情。第213期。
陳尊賢、王銀波、鄭詩華、鍾仁賜、簡宣裕、蔡宜峰、黃盛洛、蔡呈奇、鍾欣燁、吳茂毅。1998。有機堆肥施用對土壤生態環境影響及其利用之評估與規劃。行政院農委會畜牧處委託計畫 (87科技-1.6-牧-0.5(4))期末報告。88頁。
陳尊賢。1995。長期施用豬糞堆肥對土壤中重金屬之累積與合理施用量之評估。有機質肥料合理施用技術研討會專刊。p.15-1~15-22。台灣省農業試驗所舉辦。5月11、12日。台中縣霧峰。
黃山內。1991。豬糞尿在農業生產上之利用。自然農法。pp.18-23。
臺北市政府工務局衛生下水道工程處。2001。衛工處污泥堆肥試驗場永續之利用。臺北市政府網站。http://www.taipei.gov.tw/cgi-bin/Message/MM_msg_ control?mode=viewnews&ts=4635d181:6ca2。上次有效連結日期:2008年11月23日。
鄭正勇。1993。重金屬元素銅與鋅對於白菜幼苗生長之影響。p.84-97。畜禽飼料銅鋅之添加對環保之影響論文集。台灣省畜產試驗所專輯第22號。
駱尚廉。1984。都市污水廠污泥之再污染特性及污泥無害化之研究(i)。台大環工所。台北。p.71-77。
謝克強。1984。台灣都市污水廠污泥之特性、土地處置與再污染研究。國立台灣大學環境工程學研究所碩士論文。
鍾仁賜、袁紹英、王一雄、林鴻淇。1992a。污泥及都市廢棄物堆肥之肥料性狀。中華生質能源學會會誌。第十一卷第一、二期。
鍾仁賜、蘇育萩、林鴻淇。1992b。盆栽水稻評估污泥、堆肥之殘餘養分生物有效性。中國農業化學會誌。第三十卷。p.386-395。
簡宣裕。1992。禽畜堆肥在園藝上之應用。農藥世界。第110期:40-43。
Adams, M. L., F. J. Zhao, S. P. McGrath, F. A. Nicholson, and B. J. Chambers. 2004. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual. 33:532-541.
Alloway, B. J. (ed.) 1995. Heavy metals in soils. Blackie Academic & Professional, Glasgow, UK.
Antoniadis, V., and B. J. Alloway. 2001. Availability of Cd, Ni and Zn to ryegrass in sewage sludge-treated soils at different temperatures. Water Air Soil Pollut. 132:201-214.
Antoniadis, V., and B. J. Alloway. 2002a. Leaching of cadmium, nickel and zinc down the profile of sewage sludge-treated soil. Commun. Soil Sci. Plant Anal. 33:273-286.
Antoniadis, V., and B. J. Alloway. 2002b. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ. Pollut. 117:515-521.
Ashworth, D. J., and B. J. Alloway. 2004. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 127:137-144.
Ashworth, D. J., and B. J. Alloway. 2007. Complexation of copper by sewage sludge-derived dissolved organic matter: Effects on soil sorption behavior and plant uptake. Water Air & Soil Pollut. 182:187-196.
Atiyeh, R. M., C. A. Edwards, S. Subler, and J. D. Metzger. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Biores. Technol. 78:11-20.
Bauer, A., and A. L. Black. 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci. Soc. Am. J. 58:185-193.
Baziramakenga, R., and R. R. Simard. 1998. Low molecular weight aliphatic acid contents of composted manures. J. Environ. Qual. 27:557-561.
Bereznitski, Y., M. Jaroniec, and P. Manrice. 1998. Adsorption characterization of two clay minerals society standard kaolinite. J. Colloid Interface Sci. 205:528-530.
Berggren, D. 1989. Speciation of aluminum, cadmium, copper, and lead in humic soil solutions—A comparison of the ion exchange column procedure and equilibrium dialysis. Intern. J. Environ. Anal. Chem. 35:1-15.
Blowes, D. W., C. J. Ptacek, S. G. Benner, C. W. T. McRae, T. A. Bennett, and R. W. Puls. 2000. Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 45:123-137.
Bohn, H. L., B. L. McNeal, and G. A. O’Connor. 2001. Soil Chemistry. 3rd ed.. John Wiley & Sons, New York, USA.
Borden, D., and R. F. Giese. Baseline studies of the clay minerals society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner. 49:444-445.
Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. p. 595-624. In A. L. Page et al. (eds.). Methods of Soil Analysis, Part 2: Chemical and Microbiological properties. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Brown, S., R. L. Chaney, J. G. Hallfrisch, and Q. Xue. 2003. Effect of biosolids processing on lead bioavailability in an urban soil. J. Environ. Qual. 32:100-108.
Cavallaro, N., and M. B. McBride. 1978. Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci. Soc. Am. J. 54:1242-1248.
Chaney, R. L. 1980. Health risks associated with toxic metals in municipal sludge. pp.59-83. In G. Bitton, B. L. Damron, G. T. Edds, and J. M. Davidson (eds.) Sludge-health risks of land application. Ann Arbor Sci. Publisher Inc, Ann Arbor, MI.
Chang, A. C., H. Hyun, and A. L. Page. 1997. Cadmium uptake for Swiss chard grown on composted sewage sludge treated field plots: plateau or time bomb? J. Environ. Qual. 26:11-19.
Chang, A. C., J. W. Warneke, A. L. Page, and L. J. Lund. 1984. Accumulation of heavy metals in sewage sludge treated soils. J. Environ. Qual. 13:87-91.
Chen, S. Y., and J. G. Lin. 2004. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effects of sludge solids concentration. Chemosphere 54:283-289.
Chen, Z. S. 1999. Selecting indicators to evaluate soil quality. In Food and Fertilizer Technology Center for the Asian and Pacific Region FFTC/ASPAC (editor). Extension Bulletin No. 473 (August, 1999), 21 pages. Taipei, Taiwan ROC.
Chen, Z. S., and D. Y. Lee. 1997. soil quality management in Taiwan rural soils after long term application of organic composts. pp.137-147. In The Korean Society of Soil Science and Fertilize (ed.) Soil quality management and agro-ecosystem health. Grand hotel, Cheju, Republic of Korea, Nov. 11-14.1997.
Chen, Z. S., and M. Y. Wu. 2000. Assessing soil quality and approaching national levels of sustainable soil management in Taiwan. p. 37-38. In Proceedings of International Symposium on Sustainable Land Management Paradigms for the New Millennium. August 8-10, 2000. Kuala Lumpur, Malaysia.
Chlopecka, A. 1996. Forms of Cd, Cu, Pb, and Zn in soil and their uptake by cereal crops when applied jointly as carbonates. Water Air Soil Pollut. 45:297-308.
Cristensen, T. H. 1989. Cadmium soil sorption at low concentrations. Ⅷ. Correlation with soil parameters. Water Air Soil Pollut. 44:71-82.
Davis, J. A. 1982. Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim. Cosmochim. Acta 46:2381-2393.
Dermont, G., M. Bergeron, G. Mercier, and M. Richer-Laflèche. 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 152:1-31.
Dowdy, R. H., C. E. Clapp, D. R. Linden, W. E. Larson, T. R. Halbach, and R. C. Polta. 1994. Twenty years of trace metal partitioning on the Rosemount sewage sludge watershed. pp.149-155. In C. E. Clapp, W. E. Larson, and R. H. Dowdy (eds.) Sewage sludge: land utilization and the environment. SSSA Miscellaneous publ. Madison, WI, USA.
Drever, J. I. 1994. The effect of land plants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta 58:2325-2332.
Gaskin, J. W., R. B. Brobst, W. P. Miller, and E. W. Tollner. 2003. Long-term biosolids application effects on metal concentrations in soil and bermudagrass forage. J. Environ. Qual. 32:146-152.
Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. p. 383-411. In A. Klute et al. (eds.). Methods of Soil Analysis, Part 1: Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Geets, J., K. Vanbroekhoven, B. Borremans, J. Vangronsveld, L. Diels, and D. Van der Lelie. 2006. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Environ. Sci. Pollut. Res. 13:362-378.
Giusquiani, P. L., G. Gigliotti, and D. Businelli. 1992. Mobility of heavy metals in urban waste-amended soils. J. Environ. Qual. 21:330-335.
Gjettermann, B., M. Styczen, S. Hansen, O. K. Borggaard, and H. C. B. Hansen. 2007. Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil. J. Environ. Qual. 36:753-763.
Goldberg, S., and L. J. Criscenti. 2008. Modeling Adsorption of Metals and Metalloids by Soil Components. p. 215-264. In A. VioLante, P. M. Huang and G. M. Gadd (eds). Biophysico-chemical Processes of Heavy Metals and Metalloids in Soil Environments. Jonh Wiley & Sons, Inc., Hoboken, New Jersey, USA.
Grigatti, M., C. Ciavatta, and C. Gessa. 2004. Evolution of organic matter from sewage sludge and garden trimming during composting. Biores. Technol. 91:163-169.
Han, N., and M. L. Thompson. 2003. Impact of dissolved organic matter on copper mobility in aquifer material. J. Environ. Qual. 32:1829-1836.
Harris, R. F., D. L. Karlen, and D. J. Mulla. 1996. A conceptual framework for assessment and management of soil quality and health. p.61-82. In J. W. Doran and A. J. Jones (eds). Methods for accessing soil quality. SSSA Spec. Pub. 49. SSSA, Madison, WI, USA.
He, Q. B., and B. R. Singh. 1993. Effect of organic matter on distribution extractability and uptake of cadmium and uptake in soils. J. Soil Sci. 44:641-650.
Hue, N. V., G. R. Craddock, and F. Adams.1986.Effect of organic acids on aluminium toxicity in subsoils. Soil Sci. Soc. Am. J. 50:25-34.
Hyun, S. P., Y. H. Cho, and P. S. Hahn. 2005. An electron paramagnetic resonance study of Cu(Ⅱ) sorbed on kaolinite. Applied Clay. Sci. 30:69-78.
Iranpour, R., H. H. J. Cox, R. J. Kearney, J. H. Clark, A. B. Pincince, and G. T. Daigger. 2004. Regulations for biosolids land application in U.S. and European Union. J. Residuals Sci. Technol. 1:209-222.
Jardine, P. M., N. L. Weber, and J. F. Mccarthy. 1989. Mechanisms of dissolved organic carbon adsorption to soil. Soil Sci;. Soc. Am. J. 53:1378-1385.
Jhou, L. X., and J. W. C. Wong. 2001. Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. J. Environ. Qual. 30:878-883.
Juste, C., and M. Mench. 1992. Lon-term Application of Sewage Sludge and Its Effects on Metal Uptake by Crops. pp.159-193. In D. C. Adriano (ed.) Biogeochemistry of trace metals. CRC Press, Inc., 2000 Corporate Blvd., N. W., Boca Raton, Florida 33431, USA.
Keller, C., S. P. McGrath, and S. J. Dunham. 2002. Trace metal leaching through a soil-grassland system after sewage sludge application. J. Environ. Qual. 31:1550-1560.
Korboulewsky, N., S. Dupouyet, and G. Bonin. 2002. Environmental risks of applying sewage sludge compost to vineyards: carbon, heavy metals, nitrogen, and phosphorus accumulation. J. Environ. Qual. 31:1522-1527.
Kress, N., B. Herut, and B. S. Galil. 2004. Sewage sludge impact on sediment quality and benthic assemblages of the Mediterranean coast of Israel – a long-term study. Marin Environ. Res. 57:213-233.
Liebig, M. A., and J. W. Doran. 1999. Impact of organic production practices on soil quality indicators. J. Environ. Qual. 28:1601-1609.
Lu, G., K. Sakagami, H. Tanaka, and R. Hamada. 1998. Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use. Soil Sci. Plant Nutr. 44:147-155.
Lund, L. J., A. L. Page, and C. O. Nelson. 1976. Movement of heavy metals below sewage disposal ponds. J. Environ. Qual. 5: 330-334.
Martínez, C. E., A. R. Jacobson, and M. B. McBride. 2003. Aging and temperature effects on DOC and elemental release from a metal contaminated soil. Environ. Pollut. 122:135-143.
Martínez, C. E., and H. L. Motto. 1999. Solubility of lead and copper added to mineral soils. Environ. Pollut. 107:153-158.
McBride, M. B. 1995. Toxic metal accumulation from agricultural use of sludge: are USEPA regulations protective? J. Environ. Qual. 24:5-18.
McBride, M. B., B. K. Richards, T. Stenhuis, J. J. Russo, and S. Sauve. 1997. Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Sci. 162:487-500.
McBride, M., S. Sauvé, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd, and Pb in contaminated soils. Eur. J. Soil Sci. 48:337-346.
McLean, E. O. 1982. Soil pH and lime requirement. p. 199-224. In A. L. Page et al. (eds.). Methods of Soil Analysis. Part 2: Chemical and Microbiological properties. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Mermut, A. R., and G. Lagaly. 2001. Baseline studies of the clay minerals society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Minerals 49:393-397.
Merritt, K. A., and M. S. Erich. 2003. Influence of organic matter decomposition on soluble carbon and its cooper-binding capacity. J. Environ. Qual. 32: 2122-2131.
Moreno, J. L., C. Garcia, T. Hernandez, and J. A. Pascual. 1996. Transference of heavy metals from a calcareous soil amended with sewage sludge compost to barley plants. Biores. Technol. 55:251-258.
Mulvaney, R. L. 1996. Nitrogen-Inorganic forms. p. 1123-1184. In D. L. Sparks et al. (eds.). Methods of Soil Analysis. Part 3: Chemical Methods. SSSA Book Series No. 5, Soil Sci. Soc. Am., Madison, WI, USA.
Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In D. L. Sparks et al. (eds.). Methods of Soil Analysis. Part 3: Chemical Methods. SSSA Book Series No. 5, Soil Sci. Soc. Am., Madison, WI, USA.
Oudeh, M., M. Khan, and J. Scullion. 2002. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environ. Pollut. 116:293-300.
Parker, G. R. 1978. Metal distribution in forested ecosystems in urban and rural northwestern Indiana. J. Environ. Qual. 7: 337-342.
Parnaudeau, V. B. Nicolardot, and J. Pagès. 2004. Relevance of organic matter fractions as predictors of wastewater sludge mineralization in soil. J. Environ. Qual. 33:1885-1894.
Pichtel, J., and M. Anderson. 1997. Trace metal bioavailability in municipal solid waste and sewage sludge composts. Biores. Technol. 60:223-229.
Pueyo, M., J. Sastre, E. Hernández, M. Vidal, J. F. López-Sánchez, and G. Rauret. 2003. Prediction of trace element mobility in contaminated soils by sequential extraction. J. Environ. Qual. 32:2054-2066.
Renella, G., L. Landi, and P. Nannipieri. 2004. Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma 122: 311-315.
Rhoades, J. D. 1982a. Soluble salts. p. 167-179. In A. L. Page et al. (eds.). Methods of Soil Analysis, Part 2: Chemical and Microbiological properties. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Rhoades, J. D. 1982b. Cation exchangeable capacity. p. 149-157. In A. L. Page et al. (eds.). Methods of Soil Analysis, Part 2: Chemical and Microbiological properties. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Sauvé, S., W. Hendershot, and H. E. Allen. 2000. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Tech. 34:1125-1131.
Schaecke, W., H. Tannerberg, and G. Schilling. 2002. Behavior of heavy metals from sewage sludge in a Chernozem of the dry belt in Saxony-Anhalt/Germany. J. Plant Nutr. Soil Sci. 165: 609-617.
Shuman, L. M. 1985. Fractionation for soil microelements. J. Soil Sci. 40:11-22.
Sidle, R. C., and L. T. Kardos. 1977. Transport of heavy metals in a sludge-treated forest area. J. Environ. Qual. 6: 431-437.
Sikora, L. J., and D. E. Stott.1996. Soil organic carbon and nitrogen. p.157-167. In J. W. Doran and A. J. Jones (eds). Methods for assessing soil quality. SSSA Spec. Publ. 49. SSSA, Madison, WI, USA.
Silveira, M. L. A., L. R. F. Alleoni, O. A. Camargo, and J. C. Casagrande. 2002. Copper adsorption in oxidic soils after removal of organic matter after and iron oxides. Commun. Soil Sci. Plant Anal. 33:3581-2592.
Smernik, R. J., I. W. Oliver, and J. McLaughlin. 2004. Changes in the nature of sewage sludge organic matter during a twenty-one-month incubation. J. Environ. Qual. 33:1924-1929.
Spark, K. M., J. D. Wells, and B. B. Johnson. 1995. Characterizing trace metal adsorption on kaolinite. Eur. J. Soil. Sci. 16:633-640.
Spinosa, L. 2004. EU strategy and practice for sludge utilization in agriculture, disposal and landfilling. J. Residuals Sci. Technol. 1:7-14.
Sposido, G. 2008. The Chemistry of Soils. 2nd ed.. Oxford University Press, New York, USA.
Sreekrishnan, T. R., and R. D. Tyagi. 1996. A comparative study of the cost of leaching out heavy metals from sewage sludges. Process Biochem. 31: 31-41.
Stacey, S., G. Merrington, and M. J. McLaughlin. 2001. The effect of aging biosolids on the availability of cadmium and zinc in soil. Eur. J. Soil Sci. 52:313-321.
Strobel, B. W., H. C. B. Hansen, O. K. Borggaard, M. K. Andersen, and K. Raulund-Rasmussen. Cadmium and copper release kinetics in relation to afforestation of cultivated soil. Geochim. Cosmochim. Acta 65:1233-1242.
Strobel, B. W., O. K. Borggaard, H. C. B. Hansen, M. K. Andersen, and K. Raulund-Rasmussen. 2005. Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. Europ. J. Soil Sci. 56:189-196.
Su, D. C., and J. W. C. Wong. 2003. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environ. Int. 29: 895-900.
Temminghoff, E. J. M., S. E. A. T. M. van der Zee, and M. G. Keizer. 1994. The influence of pH on the desorption and speciation of copper in sandy soil. Soil Sci. 158:398-408.
Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851.
Tisdall, J. M., and J. M. Oade. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33:141-163.
Tombácz, E., and M. Szekeres. 2004. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci. 27:75-94.
Tombácz, E., and M. Szekeres. 2006. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl. Clay Sci. 27:75-94.
Tyler, G. 1981. Leaching of metals from the A-horizon of a spruce forest soil. Water Air Soil Pollut. 15:353-369.
Undabeytia, T., S. Nir, G. Rytwo, E. Morillo, and C. Maqueda. Modeling adsorption-desorption processes of Cd on montmorillonite. Clay Clay Minerals. 46:423-428.
USEPA. 1998. National sewage sludge survey. US Government Printing Office, Washington, DC.
Voegelin, A., K. Barmettler, and R. Kretschmar. 2003. Heavy metal release from contaminated soils: comparison of column leaching and batch extraction results. J. Environ. Qual. 32:865-875.
Wang, J., C. P. Huang, and H. E. Allen. 2000. Surface physical-chemical characteristics of sludge particulates. Water Environ. Res. 72:545-554.
Wang, J., C. P. Huang, and H. E. Allen. 2003. Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter. Water Res. 37:4835-4842.
Wang, J., C. P. Huang, H. E. Allen, I. Poesponegoro, H. Poesponegoro, and L. R. Takiyama. 1999. Effects of dissolved organic matter and pH on heavy metal uptake by sludge particulates exemplified by copper(Ⅱ) and nickel(Ⅱ): three-variable model. Water Environ. Res. 71:139-147.
Wang, J., C. P. Huang, H. E. Allen, L. R. Takiyama, I. Poesponegoro, H. Poesponegoro, and D. Pirestani. 1998. Acid characteristics of dissolved organic matter in wastewater. Water Environ. Res. 70:1041-1048.
Wong, J. W. C., G. X. Li, and M. H. Wong. 1996. The growth of Brassica chinensis in heavy-metal-contaminated sewage sludge. Biores. Technol. 5:309-313.
Wong, J. W. C., K. M. Lai, D. S. Su, and M. Fang. 2001. Availability of heavy metals for Brassica chinensis grown in an acidic loamy soil amended with a DOCestic and an industrial sewage sludge. Water Air Soil Pollut. 128: 339-353.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48336-
dc.description.abstract畜牧廢棄物堆肥化及民生廢水污泥經處理後成為生物性固體 (biosolids) 是資源回收再利用的方式之一。這類堆肥富含氮、磷等營養元素,但堆肥中重金屬如銅、鋅之含量偏高,在田間施用這類堆肥時必需考慮農業生態環境中氮、磷、重金屬之累積、生物有效性改變及淋失。本研究目的為探討污泥堆肥、豬糞堆肥抽出之可溶性有機碳 (dissolved organic carbon; DOC) 的添加對人工製備孵育之銅、鋅、鎘污染土壤中,銅、鋅、鎘釋放之影響;並藉由探討兩種粘粒、兩種DOC與銅、鋅、鎘及可溶性有機碳的交互作用來解釋pH及DOC影響銅、鋅、鎘吸脫附的機制。結果顯示,在重金屬釋放的試驗裡,與pH 3之HClO4溶液比,以酸化至pH 3之DOC為萃取液可加速銅、鋅、鎘之釋放。但在相同的pH值下,DOC溶液釋出鎘之累積量與不含DOC之HClO4溶液處理下之累積量差異不大,顯示系統中鎘的釋放主要受到pH的支配。銅的累積釋放量在相同的pH值下,以DOC萃出之處理較HClO4溶液的處理高;表示DOC可直接影響銅之釋放。與Pu土系坋質黏壤土比較,Sk土系砂質壤土在初期即釋放較多之銅、鋅、鎘且總累積釋放量亦較高。在田間土壤溶液之pH範圍間 (pH 3-10),藉由多種酸位置之解離模式來擬合溶液或懸浮液的酸鹼消耗,可將本研究中材料抽出之DOC及標準黏粒之表面歸類為3種酸位置。將材料的酸特性代入多種位置之吸持模式後,可求得重金屬與微粒之表觀錯合常數KS。黏粒與不同重金屬之穩定常數KS 大小依序約為銅 > 鋅 > 鎘;且高嶺石、蒙特石之表面位置對此三種重金屬的吸持主要受到pH之支配。銅、鋅、鎘與兩種堆肥抽出之DOC作用後發生的沉澱量不高,其中銅約在pH 6.5、鋅約在pH 8.0、鎘約在pH 9.9左右時有最大量之沉澱發生。內湖二級污泥堆肥及豬糞堆肥抽出之DOC溶液在高嶺石、蒙特石上之吸持量隨DOC濃度增加而增加,隨pH增高而降低。銅、DOC以及黏粒之混合試驗中,DOC可減少銅在黏粒上之吸附,且DOC在黏粒上之吸附因為銅存在而增加;DOC可能與懸液中的微粒競爭銅,或與銅競爭黏粒上之位置,使更多的銅留存於溶液中;本研究結果可作為解釋銅在土壤中釋放受到DOC促進之參考。由試驗的結果,施用含重金屬之豬糞堆肥與民生廢水污泥堆肥,應推廣在非強酸性以及非粗質地之土壤,且應注意土壤pH與DOC的管理。堆肥中DOC溶液,可作為促進金屬污染土壤洗提復育之天然物質,特別是對銅。土壤構造複雜,仍需要更深入的研究來探討其間的反應,並使模式更加完備。zh_TW
dc.description.abstractApplication of composted swine manure and municipal wastewater sludge is an important procedure for resource recycling as well as one of environment-friendly disposal of wastes. Moreover, instead of incineration by composting of green-wastes presumably reduce carbon dioxide emission, the principal component of greenhouse gases. Application of organic-matter-enriched composts can promote soil physical, chemical, and biological properties. However, science swine fecal content high level of Cu and Zn and municipal wastewater sludge content high level of various heavy metals generally, applying of swine manure compost (SMC) and municipal wastewater sludge compost (MWSC) may lead to heavy metal accumulation in soils, leaching into ground water, uptake by plants, and further, hazards to food chain. Thus, the heavy metal movement in soils is important issue while applying this kind of composts. The retention and release of heavy metals in compost-soil-water suspensions are mainly affected by pH, dissolved organic carbon (DOC) acidity, particulate surface properties, and reaction strength between specific heavy metal and function group. The acidity of particulate surface and DOM implicate acid site density and acidity strength. In this study, one commercial SMC, one prepared MWSC (composting of straw and secondary sludge from Nei-Hu municipal wastewater treatment plant; NH2SC), two soils (Sk sandy loam and Pu silty clay loam), and two source clays (kaolinite and montmorillonite) are investigated to determine the acidity and Cd, Cu, and Zn retention of each material with multi-bounding-site model, and the effects of compost-derived DOC on Cd, Cu, and Zn release from artificial contaminated soils. The results of release experiments show that Cu release from soils was slower than Zn and Cd. Addition of 0.01 M compost-derived DOC accelerated metal release and pH decrease because of the organic matter buffering. The lack consistency of pH effect on accumulated release within different DOC treatments shows that DOC reacted with Cu directly and kept more Cu in solution than water did while DOC increased more Zn retention by particulates. Additionally, heavy metal release from Sk sandy loam was faster than that from Pu silty clam loam. With alkalimetric titration results within field pH range, multi-acid site model fitting revealed that kaolinite, montmorillonite and DOC extracted from SMC and NH2SC content 3 acid sites (model describable). With acidity parameters from multi-acid-site model, multi-bounding site model fitting, incorporating effects of pH, revealed that two or more function group contributed heavy metal retention in the suspensions. Therefore, the model provided better description than the original Langmuir isotherm model did. Metal retentions by particulates were governed by pH. The Coprecipitation of metals and DOC were unapparent. Furthermore, the comparison of estimated stability constants (log KS) of metal-clay complex are described in order as fallow: Cu > Zn > Cd. The results of Cu sorption in Cu-DOC-Clay suspensions supported that DOC can eather compete surface sites with Cu or compete Cu with Clay, and hance, Cu sorption onto clays can be decreased (i.e. release more Cu) by DOC. The application of DOC to enhace soil washing process for metal contaiminated soils couled be considered.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:53:00Z (GMT). No. of bitstreams: 1
ntu-100-D91623402-1.pdf: 1329906 bytes, checksum: bb2ae29bc3f049bbe86fcd6ecf4f4cce (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘 要--------------------------------------------------I
Abstract----------------------------------------------III
目 錄--------------------------------------------------V
圖 目 錄---------------------------------------------VIII
表 目 錄-----------------------------------------------XI
第一章 前言--------------------------------------------1
第二章 研究目的----------------------------------------3
第三章 文獻回顧----------------------------------------4
–3.1 台灣農地土壤的有機質境況--------------------------4
––3.1.1 土壤中有機質的功能----------------------------4
––3.1.2 堆肥在台灣地區的施用--------------------------5
–3.2 污泥的來源與處置----------------------------------6
–3.3 施用豬糞堆肥或生物性固體可能造成的環境危害--------7
––3.3.1 豬糞堆肥中的重金屬----------------------------7
––3.3.2 污泥的土地利用與可能的環境危害----------------8
––3.3.3 污泥中氮與磷的可能危害------------------------8
––3.3.4 污泥中的重金屬--------------------------------9
––3.3.5 作物吸收累積土壤中重金屬的高原概念-----------10
––3.3.6 土壤中重金屬移動性之定時炸彈概念-------------12
–3.4 施用污泥的土壤中重金屬的移動性-------------------14
–3.5 重金屬的移動性在土壤中受到的影響-----------------15
–3.6 有機質對重金屬移動性的影響-----------------------17
–3.7 土壤黏粒與其表面官能基---------------------------19
––3.7.1 層狀矽酸鹽之構造-----------------------------20
––3.7.2 層狀矽酸鹽礦物之表面電荷---------------------21
–3.8 吸持作用與吸附等溫線-----------------------------23
–3.9 吸附等溫線之常見曲線模式-------------------------25
––3.9.1 Langmuir Equation----------------------------25
––3.9.2 van Bemmelen-Freundlich Isotherm-------------25
––3.9.3 Henry Equation-------------------------------26
––3.9.4 BET (Brunauer-Emmett-Teller) Equation--------26
–3.10 以化學反應觀點之表面錯合模式--------------------27
––3.10.1 等電容模式----------------------------------27
––3.10.2 擴散層模式----------------------------------29
––3.10.3 三層模式------------------------------------29
––3.10.4 電荷分配多位置錯合模式----------------------30
第四章 材料與方法-------------------------------------36
–4.1 堆肥、黏粒與農田土壤之取得及製備-----------------36
–4.2 人工孵育污染土壤之重金屬釋放試驗-----------------38
–4.3 黏粒-金屬之吸附動力試驗--------------------------39
–4.4 水之酸鹼消耗-------------------------------------41
–4.5 重金屬的水解-------------------------------------42
–4.6 單質子酸與多質子酸之酸鹼消耗---------------------45
–4.7 黏粒表面之酸特性---------------------------------47
–4.8 DOC溶液之酸特性及其酸沉澱現象--------------------48
–4.9 黏粒對重金屬之吸持作用與多種酸位置之吸持模式-----50
–4.10 不同pH對重金屬與DOC沉澱之影響-------------------52
–4.11 不同pH對黏粒吸持DOC之影響-----------------------53
–4.12 不同pH對金屬-黏粒-DOC系統中固液相平衡之影響-----53
–4.13 化學分析方法與統計分析--------------------------54
第五章 試驗結果---------------------------------------57
–5.1 試驗材料之基本性質-------------------------------57
–5.2 人工孵育污染土壤之重金屬釋放試驗-----------------61
––5.2.1 鎘之釋放試驗---------------------------------61
––5.2.2 鋅之釋放試驗---------------------------------61
––5.2.3 銅之釋放試驗---------------------------------65
––5.2.4 討論-----------------------------------------65
–5.3 不同時間之黏粒-金屬吸持試驗----------------------72
–5.4 水分子解離常數與金屬的水解常數-------------------73
–5.5 黏粒表面之酸特性---------------------------------73
–5.6 DOC溶液之酸特性及其酸化沉澱現象------------------79
–5.7 黏粒對重金屬之吸持作用---------------------------85
––5.7.1黏粒對銅之吸持--------------------------------85
––5.7.2 鋅之吸持-------------------------------------92
––5.7.3 鎘之吸持-------------------------------------99
–5.8 不同pH對重金屬與DOC沉澱之影響-------------------110
––5.8.1 銅與兩種DOC之沉澱---------------------------110
––5.8.2 鋅與兩種DOC之沉澱---------------------------114
––5.8.3 鎘與兩種DOC之沉澱---------------------------117
–5.9 不同pH對黏粒吸持DOC之影響-----------------------124
–5.10 銅-DOC-黏粒混合懸液之吸持行為------------------129
––5.10.1 懸液中液相銅之濃度與pH之關係---------------129
––5.10.2 懸液中pH與銅之固相比率的關係---------------129
––5.10.3 懸液中銅之吸附等溫線-----------------------132
––5.10.4 懸液中DOC之吸持行為------------------------132
第六章 結論------------------------------------------136
參考文獻----------------------------------------------137
附 錄-------------------------------------------------149
–A. 水之滴定曲線-------------------------------------149
–B. 重金屬的水解-------------------------------------152
––B-1. 銅之水解-------------------------------------152
––B-2. 鋅之水解-------------------------------------152
––B-3. 鎘之水解-------------------------------------156
dc.language.isozh-TW
dc.subject高嶺石zh_TW
dc.subject釋放zh_TW
dc.subject吸持zh_TW
dc.subject重金屬zh_TW
dc.subject可溶性有機碳zh_TW
dc.subject糞堆肥zh_TW
dc.subject污泥堆肥zh_TW
dc.subject蒙特石zh_TW
dc.subjectmunicipal wastewater sludge composten
dc.subjectreleaseen
dc.subjectsorptionen
dc.subjectheavy metalsen
dc.subjectDOCen
dc.subjectmontmorilloniteen
dc.subjectkaoliniteen
dc.subjectswine manure composten
dc.title可溶性有機碳對兩種土壤吸脫附銅鋅鎘之影響zh_TW
dc.titleThe Effects of Dissolved Organic Carbon on Copper, Zinc, and Cadmium Sorption onto Two Soilsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee李達源(Dar-Yuan Lee),鍾仁賜(Ren-shih Chung),吳先琪(Shian-Chee Wu),李篤中(Duu-Jong Lee),王敏昭(Min-Chao Wang)
dc.subject.keyword高嶺石,蒙特石,污泥堆肥,猪,糞堆肥,可溶性有機碳,重金屬,吸持,釋放,zh_TW
dc.subject.keywordswine manure compost,municipal wastewater sludge compost,kaolinite,montmorillonite,DOC,heavy metals,sorption,release,en
dc.relation.page158
dc.rights.note有償授權
dc.date.accepted2011-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved