Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48317
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor靳宗洛
dc.contributor.authorDan-Li Luoen
dc.contributor.author羅丹利zh_TW
dc.date.accessioned2021-06-15T06:52:21Z-
dc.date.available2016-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-14
dc.identifier.citationAlexandrov V (1994) Functional aspects of cell response to heat shock. International Review of Cytology 148: 171–227
Ashburner M and Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17: 241-254
Bellincampi D, Camardella L, Delcour JA, Desseaux V, D’Ovidio R, Durand A, Elliot G, Gebruers K, Giovane A, Juge N, Sorensen JF, Svensson B, Vairo D (2004) Potential physiological role of plant glycosidase inhibitors. Biochim Biophys Acta 1696: 265-274
Bosch M, and Hepler, PK (2005a) Pectin methyl-esterases and pectin dynamics in pollen tubes. Plant Cell 17: 3219–3226
Bosch M, Cheung AY, and Hepler PK (2005b) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138: 1334–1346
Bosch M and Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223: 736–745
Brummell DA and Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47: 311–340
Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41: 1-14
Caffall KH and Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344: 1879-1900
Camardella L, Carratore V, Ciardiello M.A, Servillo L, Balestrieri C and Giovane A (2000) Kiwi protein inhibitor of pectin methylesterase amino acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267: 4561–4565
Castillejo C, de la Fuente JI, Iannetta P, Botella MA, Valpuesta V (2004) Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot 55: 909–18
Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein,is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140: 1297-1305
Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143: 1297-262
Christgau S, Kofod LV, Halkier T, Andersen LN, Hockauf M, Dorreich K, Dalboge H, Kauppinen S (1996) Pectin methyl esterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme. Biochemistry 319: 705−712
Clough SJ and Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant 16: 735-743
Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13: 171-201
Crelier S, Robert MC, Claude J, Juillerat MA (2001)Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure-induced inactivation. J Agric Food Chemistry 49: 5566-5575
D’Avino R, Camardella L, Charistensen TM, Giovane A and Servillo L (2003) tomato pectin methylesterase:modeling, fluorescence, and inhibitor interaction studies-comparison with the bacterial (Erwinia chrysanthemi) enzyme. Proteins 53: 830-839
Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455-1461
Dedeurwaerder S, Menu-Bouaouiche L, Mareck A, Lerouge P, Guerineau F (2009) Activity of an typical Arabidopsis thanaliana pectin methylesteras. Planta 229: 311-321
De-la-Peña C, Badri DV, Vivanco JM (2008) Novel role for pectin methylesterase in Arabidopsis: A new function showing ribosome-inactivating protein (RIP) activity. Biochim Biophys Acta 1780: 773-783
Di Matteo (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17: 849–858
Dorokhov YL, Skurat EV, Frolova OY, Gasanova TV, lvanov PA, Ravin NV, Skryabin KG, Mäkinen KM, Klimyuk VI, Gleba YY and Atabekov JG (2006) Role of the leader sequence in tobacco pectin methylesterase secretion. FEBS Lett 580: 3329–3334
Downie B, Dirk LM, Hadfield KA, Wilkins TA, Bennett AB, Bradford KJ (1998) A gel diffusion assay for quantification of pectin methylesterase activity. Anal Biochem 264: 149–157
Edelman L, Czarnecka E and Key JL (1988) Induction and accumulation of heat shock-specific poly(A)+ RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol 86: 1048-1056
Fachin D, Van Loey A, Nguyen BL, Verlent I, Hendrickx M (2002) Temperature and pressure inactivation of tomato pectinases: a kinetic study. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen) 67: 23-26
Francis KE, Lam SY, and Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectinmethyl-esterase gene. Plant Physiol 142: 1004–1013
Geisler-Lee, J. et al. (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol 140: 946–962
Giovane A, Quagliuolo L, Castaldo D, Servillo L, Balestrieri C (1990) Pectin methyl esterase from Actinidia chinensis fruits. Photochemistry 29: 2821−2823
Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45: 820–831
Harholt J, Suttangkakul A, and Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153: 384–395
Hewezi T, Howe P, Maier TR, Hussey RS, Mitchum MG, Davis EL, and Baum TJ (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methyl-esterase: cooperative cell-wall modification during parasitism. Plant Cell 20: 3080–3093
Honda S, Matsuda Y, Takahashi M, Kakehi K, Ganno S (1980) Fluorimetric determination of reducing carbohydrates with 2-cyanoacetamide and application to automated analysis of carbohydrates as borate complexes. Anal Chem 52: 1079–1082
Hong SH and Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Science USA 97: 4392-4397
Hong SW and Vierling E (2001) HSP101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J 27: 25-35
Hong SW, Lee U and Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures Plant Physiol 132: 757-767
Ishikawa M, Kuroyama H, Takeuchi Y and Tsumuraya Y (2000) Characterization of pectin methyltransferase from soybean hypocotyls. Planta 210: 782–791
Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, and Ye D. (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584–596
Jinn TL, Chang P, Chen YM, Key JL, Lin CY (1997) Tissue-type-specific heat-shock response and immunolocalization of class I low-molecular-weight heat-shock proteins in soybean. Plant Physiol 114: 429–438
Juge N (2006) Plant protein inhibitors of cell-wall degrading enzymes. Trends Plant Sci 11: 359–367
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E and Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10: 310-316
Lairez D, Monties B, Bedos-Belval F, Duran H and Gorrichon L (2005) Aggregation during coniferyl alcohol polymerization in pectin solution: a biomimetic approach of the first steps of lignification, Biomacromolecules 6: 763–774
Levinson W, Opperman H and Jackoson J (1980) Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta 606: 170-180
Li YQ, Mareck A, Faleri C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214: 734–74
Lievens S, Goormachtig S, Herman