請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙福杉 | |
| dc.contributor.author | Chun-Hsi Wu | en |
| dc.contributor.author | 吳宗羲 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:52:10Z | - |
| dc.date.available | 2016-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-14 | |
| dc.identifier.citation | [1] Mortensen S, Djurhuus J, Rask-Andersen H: A system for measurements of micturition urethral cross-sectional areas and pressures. Med Biol Eng Comput 1983, 21:482-488.
[2] Tsadok S: The Historical Evolution of Bioimpedance. AACN Adv Crit Care 1999, 10:371-384. [3] Kushner R, Schoeller D: Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 1986, 44:417-424. [4] Lukaski H, Johnson P, Bolonchuk W, Lykken G: Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985, 41:810-817. [5] Lukaski HC, Bolonchuk WW, Hall CB, Siders WA: Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 1986, 60:1327-1332. [6] Ko GTC, Tang J, Chan JCN, Sung R, Wu MMF, Wai HPS, Chen R: Lower BMI cut-off value to define obesity in Hong Kong Chinese: an analysis based on body fat assessment by bioelectrical impedance. Brit J Nutr 2001, 85:239-242. [7] Zegelin SJ, White I, Jenkins DR: Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry. Water Resour Res 1989, 25:2367-2376. [8] Gaskin GJ, Miller JD: Measurement of Soil Water Content Using a Simplified Impedance Measuring Technique. J Agr Eng Res 1996, 63:153-159. [9] Axer H, Stegelmeyer J, von Keyserlingk DG: Comparison of tissue impedance measurements with nerve fiber architecture in human telencephalon: value in identification of intact subcortical structures. J Neurosurg 1999, 90:902-909. [10] Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S: Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE T BIO-MED ENG 2004, 51:2097-2102. [11] Lababidi Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM: EVALUATION OF IMPEDANCE CARDIAC OUTPUT IN CHILDREN. Pediatrics 1971, 47:870-879. [12] Denniston JC, Maher JT, Reeves JT, Cruz JC, Cymerman A, Grover RF: Measurement of cardiac output by electrical impedance at rest and during exercise. J Appl Physiol 1976, 40:91-95. [13] Baan JAN, Jong TTA, Kerkhof PLM, Moene RJ, Van Dijk AD, Van Der Velde ET, Koops JAN: Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res 1981, 15:328-334. [14] Jabara AE, Mehta RL: Determination of Fluid Shifts During Chronic Hemodialysis Using Bioimpedance Spectroscopy and an In-Line Hematocrit Monitor. ASAIO J 1995, 41:M682-M687. [15] Van Loan MD, Kopp LE, King JC, Wong WW, Mayclin PL: Fluid changes during pregnancy: use of bioimpedance spectroscopy. J Appl Physiol 1995, 78:1037-1042. [16] Fisch BJ, Spiegel DM: Assessment of excess fluid distribution in chronic hemodialysis patients using bioimpedance spectroscopy. Kidney Int 1996, 49:1105-1109. [17] ARMSTRONG LE, KENEFICK RW, CASTELLANI JW, RIEBE D, KAVOURAS SA, KUZNICKI JT, MARESH CM: Bioimpedance spectroscopy technique: intra-, extracellular, and total body water. MED SCI SPORT EXER 1997, 29:1657-1663. [18] Scharfetter H, Monif M, Laszlo Z, Lambauer T, Hutten H, Hinghofer-Szalkay H: Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int 1997, 51:1078-1087. [19] Scharfetter H, et al.: A model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopy. Physiol Meas 1998, 19:247. [20] Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior J-C, Pirlich M, et al: Bioelectrical impedance analysis--part I: review of principles and methods. ESPEN 2004, 23:1226-1243. [21] Earthman C, Traughber D, Dobratz J, Howell W: Bioimpedance Spectroscopy for Clinical Assessment of Fluid Distribution and Body Cell Mass. NCP 2007, 22:389-405. [22] De Lorenzo A, Deurenberg P, Andreoli A, Sasso GF, Palestini M, Docimo R: Multifrequency Impedance in the Assessment of Body Water Losses during Dialysis. Kidney Blood Press Res 1994, 17:326-332. [23] De Lorenzo A, Candeloro N, Andreoli A, Deurenberg P: Determination of Intracellular Water by Multifrequency Bioelectrical Impedance. ANN NUTR METAB 1995, 39:177-184. [24] Hannan WJ, Cowen SJ, Plester CE, Fearon KC, deBeau A: Comparison of bio-impedance spectroscopy and multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci 1995, 89:651-658. [25] Avis NJ, et al.: In vitro multifrequency electrical impedance measurements and modelling of the cervix in late pregnancy. Physiol Meas 1996, 17:A97. [26] Gregersen H, Djurhuus JC: Impedance Planimetry: A New Approach to Biomechanical Intestinal Wall Properties. DIGEST DIS 1991, 9:332-340. [27] Gregersen H, JØRgensen CS, Dall FH: Biomechanical wall properties in the isolated perfused porcine duodenum: an experimental study using impedance planimetry. NEUROGASTROENT MOTIL 1992, 4:125-135. [28] Dall FH, Jørgensen CS, Houe D, Gregersen H, Djurhuus JC: Biomechanical wall properties of the human rectum. A study with impedance planimetry. Gut 1993, 34:1581-1586. [29] Gregersen H, Vinter-Jensen L, Juhl CO, Dajani EZ: Impedance planimetric characterization of the distal oesophagus in the goettingen minipig. JBiom 1996, 29:63-68. [30] Rao SSC, Gregersen H, Hayek B, Summers RW, Christensen J: Unexplained Chest Pain: The Hypersensitive, Hyperreactive, and Poorly Compliant Esophagus. ANN INTERN MED 1996, 124:950-958. [31] Villadsen GE, Storkholm JH, Hendel L, Vilstrup H, Gregersen H: Impedance Planimetric Characterization of Esophagus in Systemic Sclerosis Patients with Severe Involvement of Esophagus. DIGEST DIS SCI 1997, 42:2317-2326. [32] McKay R, Spears J, Aroesty J, Baim D, Royal H, Heller G, Lincoln W, Salo R, Braunwald E, Grossman W: Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation 1984, 69:703-710. [33] Faes TJC, et al.: The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas 1999, 20:R1. [34] Bridges JE: Electrical Safety Standards. ANN NY ACAD 1994, 720:246-271. [35] Mohapatra SN, Costeloe KL, Hill DW: Blood resistivity and its implications for the calculation of cardiac output by the thoracic electrical impedance technique. J Intensive Care Med 1977, 3:63-67. [36] Niida T, Kousaka Y, Oda S: Aerosol Generation Method for Measuring Particles Suspended in Water – Detection of Particulate Impurities in Ultrapure Water and Sizing of Fine Powders –. PART PART SYST CHAR 1988, 5:139-143. [37] Haynes WMM, Emeritus S, Technology NIoSa, : CRC Handbook of Chemistry and Physics. CRC Press 2010, 91st edition. [38] Martinsen Ø, Grimnes S, Sveen O: Dielectric properties of some keratinised tissues. Part 1:Stratum corneum and nail in situ. Med Biol Eng Comput 1997, 35:172-176. [39] Martinsen ØG, Grimnes S: Facts and Myths about Electrical Measurement of Stratum corneum Hydration State. Dermatology 2001, 202:87-89. [40] Johnsen GK, Martinsen ØG, Grimnes aS: Estimation of in vivo water content of the stratum corneum from electrical measurements. Open Biomed Eng J 2009, 2009 Apr 3:8-12. [41] CALKINS JB, SWANSON BT: The distinction between living and dead plant tissue: viability tests in cold hardiness research. Cryobiology 1990, 27:194-211 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48312 | - |
| dc.description.abstract | 生物阻抗量測是一種便宜、簡單且便於使用的生物組織分析方法,本文專注於以自製之阻抗量測平台測量不同生物材料的阻抗。
在此研究中我們使用此平台模擬經尿道攝護腺切除手術之過程,以監測尿道直徑與出血量的初步離體模型。所測量之阻抗與量筒之直徑的相關係數很高,而使用生理食鹽水模擬的出血量也能由平台偵測。 此外本研究也使用此系統進行多頻率測量以分辨雞眼於疣之特性。由於指甲的角質厚度與雞眼範圍相當,最初我們以指甲角質作為平台的可用性測試,但是個人指甲本身雖然有相當高的一致性,但是在不同人之間的指甲阻抗差異卻相當大。然而我們仍發現此平台分辨雞眼跟疣的潛力。 此自製系統可用於組織分辨,術中分析之初步模型也可行,而且平台需針對不同組織修正電極。 | zh_TW |
| dc.description.abstract | Since bioimpedance measurement is low cost, simple, and easy-to-use, it has been used to analyze biological tissues. This thesis is focused on measurement platform to satisfy the requirements for different biological materials.
A pilot model for in vitro transurethral resection of the prostate procedure was built to monitor the changes of urethra diameter and blood leakage. The correlation between the diameters of the cylinders and the measured impedance is high. Also blood leakage, as simulated by the injection of saline can be detected by the platform. The relation between diameter and impedance is compatible with previous report [1]. In addition, we use the system to identify the characteristics of verruca and clavus in multi-frequencies. As nails are in the range of thick stratum corneum as clavus. In the beginning, we measured nail as a feasibility test. The consistency of measured impedance between each individual nail is relatively high, but the variation of different subjects is much larger than within an individual. Nevertheless, we can find the potential of identifying verruca and clavus in capacitive component of impedance. The proposed system is capable for tissue characterization and the pilot model for intra-operative monitoring is workable. The platform can be adapted with different kinds of electrodes for various tissues measurement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:52:10Z (GMT). No. of bitstreams: 1 ntu-100-R98548023-1.pdf: 1889477 bytes, checksum: 2fab62531dc03664890323429fa5c866 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | List of contents
中文摘要 V Abstract VI 1. Background 1 1.1 Biomedical impedance analysis 1 1.2 Literature review 3 1.2.1 Tissue identification 3 1.2.2 Impedance planimetry 3 2. Impedance analysis for transurethral resection of the prostate analysis 4 2.1 Introduction 4 2.1.1 Transurethral resection of the prostate 4 2.1.2 Motivation 4 2.1.3 Mathematics model 5 2.2 Materials and methods 7 2.2.1 Experimental design 7 2.2.2 Materials 9 2.2.3 Measurement Configuration 10 2.2.4 Algorithm 13 2.3 Results 15 2.3.1 Frequency response of the platform 15 2.3.2 Diameter test 17 2.3.3 Closed system measurement 19 2.4 Discussion 22 2.4.1 Impedance change of cylinders with different diameter 22 2.4.2 Impedance change caused by saline dripping 22 3. Stratum corneal analysis 24 3.1 Introduction 24 3.1.1Stratum corneum 24 3.1.2 Motivation 24 3.1.3 Mathematics model 25 3.2 Materials and methods 26 3.2.1 Experimental design 26 3.2.2 Materials 28 3.2.3 Measurement configuration 30 3.2.4 Algorithm 31 3.3 Results 33 3.3.1 Frequency response of the platform 33 3.3.2 In vivo and in vitro nail measurement 34 3.3.2 In vivo and in vitro nail measurement 36 3.3.3 Characteristics of clavi and verrucae 37 3.4 Discussion 38 3.4.1 The feasibility of the platform 38 3.4.2 The effect of tissues except stratum corneum 38 3.4.3 The nail characteristics of in vivo and in vitro measurement 39 3.4.4 The identification of verruca and clavus 39 4. Discussion 40 4.1 Calibration of the phase shift 40 4.2 Benefits of the platform 40 References 42 List of figures Fig. 1. Analysis of biomedical impedance. 1 Fig. 2. Resistance (A) is the real part of Z, the impedance, and reactance (B) is the imaginary part of Z. Where θ is the phase angel of Z. 2 Fig. 3. The cylinder model.. 5 Fig. 4. TURP measurement model. 6 Fig. 5. Measurement platform for TURP. 7 Fig. 6. Detailed circuit of the measurement platform. 8 Fig. 7. The dimensions and the arrangement of the probe. 10 Fig. 8. Configuration of the closed system of saline dripping 11 Fig. 9. Configuration of distilled water irrigating system. 12 Fig. 10. The bridge circuit of I-V model. 13 Fig. 11. Frequency response of the platform when RC parallel components were used. 15 Fig. 12. Difference in quality of commercial and laboratory distilled water. 17 Fig. 13. Responses of the saline dripped into the closed system. 19 Fig. 14. The result of impedance change of the irrigating system with saline dripping. 21 Fig. 15. The model of stratum corneum. 25 Fig. 16. Data acquisition of the system 26 Fig. 17. Measurement circuit and power supply. 27 Fig. 18. Nail measurement. 29 Fig. 19. Measurement configuration.. 30 Fig. 20. The bridge circuit of I-V model. 31 Fig. 21. Frequency response of the measurement circuit. 33 Fig. 22. The spectrum of the different positions. 34 Fig. 23. Characteristics of in vivo and in vitro nails. 36 Fig. 24. Characteristics of clavus, verruca, and nail 37 Fig. 25. Interchannel delay 40 List of tables Table 1. Resistivity of commercial and laboratory distilled water. 18 Table 2. Saline dripping test 20 | |
| dc.language.iso | en | |
| dc.subject | 生物阻抗分析 | zh_TW |
| dc.subject | 經尿道攝護線切除手術 | zh_TW |
| dc.subject | 電阻抗頻譜分析 | zh_TW |
| dc.subject | 阻抗面積分析 | zh_TW |
| dc.subject | 組織辨識 | zh_TW |
| dc.subject | 角質 | zh_TW |
| dc.subject | tissue identification | en |
| dc.subject | bioimpedance analysis | en |
| dc.subject | transurethral resection of the prostate | en |
| dc.subject | TURP | en |
| dc.subject | stratum corneum | en |
| dc.subject | impedance spectrum | en |
| dc.subject | impedance planimetry | en |
| dc.title | 術中監測暨組織辨別之電阻抗分析 | zh_TW |
| dc.title | Electrical impedance Analysis for Intra-operative Monitoring and Tissue Identification | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭德盛,林宗賢,黃基礎 | |
| dc.subject.keyword | 生物阻抗分析,經尿道攝護線切除手術,角質,電阻抗頻譜分析,阻抗面積分析,組織辨識, | zh_TW |
| dc.subject.keyword | bioimpedance analysis,transurethral resection of the prostate,TURP,stratum corneum,impedance spectrum,impedance planimetry,tissue identification, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
