Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48304
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柴惠敏
dc.contributor.authorJui-Chi Hsuen
dc.contributor.author許瑞祈zh_TW
dc.date.accessioned2021-06-15T06:51:55Z-
dc.date.available2015-03-03
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-14
dc.identifier.citationAerts, P., & De Clercq, D. (1993). Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness. J Sports Sci, 11(5), 449-461.
Aerts, P., Ker, R. F., de Clercq, D., & Ilsley, D. W. (1996). The effects of isolation on the mechanics of the human heel pad. J Anat, 188 ( Pt 2), 417-423.
Aerts, P., Ker, R. F., De Clercq, D., Ilsley, D. W., & Alexander, R. M. (1995). The mechanical properties of the human heel pad: a paradox resolved. J Biomech, 28(11), 1299-1308.
Bennett, M. B., & Ker, R. F. (1990). The mechanical properties of the human subcalcaneal fat pad in compression. J Anat, 171, 131-138.
Blechschmidt, E. (1982). The structure of the calcaneal padding. Foot Ankle, 2(5), 260-283.
Buschmann, W. R., Hudgins, L. C., Kummer, F., Desai, P., & Jahss, M. H. (1993). Fatty acid composition of normal and atrophied heel fat pad. Foot Ankle, 14(7), 389-394.
Buschmann, W. R., Jahss, M. H., Kummer, F., Desai, P., Gee, R. O., & Ricci, J. L. (1995). Histology and histomorphometric analysis of the normal and atrophic heel fat pad. Foot Ankle Int, 16(5), 254-258.
Chen, C. L. (2004). Effect of taping on shock attenuation capacity of the heel pad Unpublished Master Thesis, National Taiwan University, Taipei, Taiwan.
Chen, C. L., Chai, H., Wang, C. L., & Shau, Y. W. (2004). The effect of taping on compressibility of the heel pad in gymnasts, Pre-Olympic Congress.
Cichowitz, A., Pan, W. R., & Ashton, M. (2009). The heel: anatomy, blood supply, and the pathophysiology of pressure ulcers. Ann Plast Surg, 62(4), 423-429.
De Clercq, D., Aerts, P., & Kunnen, M. (1994). The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study. J Biomech, 27(10), 1213-1222.
Fleiss, J. L., Levin, B., & Paik, M. C. (Eds.). (2003). Statistical methods for rates and proportions (3rd ed.). New York: Jon Wiley & Sons.
Gao, L., Parker, K. J., Lerner, R. M., & Levinson, S. F. (1996). Imaging of the elastic properties of tissue--a review. Ultrasound Med Biol, 22(8), 959-977.
Garra, B. S. (2007). Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q, 23(4), 255-268.
Gefen, A., Megido-Ravid, M., & Itzchak, Y. (2001). In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J Biomech, 34(12), 1661-1665.
Gonticas, S. K., Ikkos, D. G., & Stergiou, L. H. (1969). Evaluation of the diagnostic value of heel-pad thickness in acromegaly. Radiology, 92(2), 304-307.
Gooding, G. A., Stress, R. M., Graf, P. M., & Grunfeld, C. (1985). Heel pad thickness: determination by high-resolution ultrasonography. J Ultrasound Med, 4(4), 173-174.
Hiltawsky, K. M., Kruger, M., Starke, C., Heuser, L., Ermert, H., & Jensen, A. (2001). Freehand ultrasound elastography of breast lesions: clinical results. Ultrasound Med Biol, 27(11), 1461-1469.
Hsu, C. C., Lee, Y. S., & Shau, Y. W. (2002). Biomechanics of the heel pad for type 2 diabetic patients. Clin Biomech (Bristol, Avon), 17(4), 291-296.
Hsu, C. C., Tsai, W. C., Hsiao, T. Y., Tseng, F. Y., Shau, Y. W., Wang, C. L., et al. (2009). Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin Biomech (Bristol, Avon), 24(8), 682-686.
Hsu, C. C., Tsai, W. C., Wang, C. L., Pao, S. H., Shau, Y. W., & Chuan, Y. S. (2007). Microchambers and macrochambers in heel pads: are they functionally different? J Appl Physiol, 102(6), 2227-2231.
Hsu, C. C., Wang, C. L., Shau, Y. W., Tang, F. T., Li, K. L., & Chen, C. Y. (2000). Altered heel-pad mechanical properties in patients with Type 2 diabetes mellitus. Diabet Med, 17(12), 854-859.
Hsu, C. C., Wang, C. L., Tsai, W. C., Kuo, J. K., & Tang, F. T. (1998). Comparison of the mechanical properties of the heel pad between young and elderly adults. Arch Phys Med Rehabil, 79(9), 1101-1104.
Hsu, T. C., Lee, Y. S., & Shau, Y. W. (2002). Biomechanics of the heel pad for type 2 diabetic patients. Clin Biomech (Bristol, Avon), 17(4), 291-296.
Hyland, M. R., Webber-Gaffney, A., Cohen, L., & Lichtman, P. T. (2006). Randomized controlled trial of calcaneal taping, sham taping, and plantar fascia stretching for the short-term management of plantar heel pain. J Orthop Sports Phys Ther, 36(6), 364-371.
Itoh, A., Ueno, E., Tohno, E., Kamma, H., Takahashi, H., Shiina, T., et al. (2006). Breast disease: clinical application of US elastography for diagnosis. Radiology, 239(2), 341-350.
Jahss, M. H., Kummer, F., & Michelson, J. D. (1992). Investigations into the fat pads of the sole of the foot: heel pressure studies. Foot Ankle, 13(5), 227-232.
Jahss, M. H., Michelson, J. D., Desai, P., Kaye, R., Kummer, F., Buschman, W., et al. (1992). Investigations into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle, 13(5), 233-242.
Jorgensen, U., & Bojsen-Moller, F. (1989). Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad. Foot Ankle, 9(6), 294-299.
Jorgensen, U., & Ekstrand, J. (1988). Significance of heel pad confinement for the shock absorption at heel strike. Int J Sports Med, 9(6), 468-473.
Jorgensen, U., Larsen, E., & Varmarken, J. E. (1989). The HPC-device: a method to quantify the heel pad shock absorbency. Foot Ankle, 10(2), 93-98.
Kinoshita, H., Francis, P. R., Murase, T., Kawai, S., & Ogawa, T. (1996). The mechanical properties of the heel pad in elderly adults. Eur J Appl Physiol Occup Physiol, 73(5), 404-409.
Kinoshita, H., Ogawa, T., Kuzuhara, K., & Ikuta, K. (1993). In vivo examination of the dynamic properties of the human heel pad. Int J Sports Med, 14(6), 312-319.
Konofagou, E. E. (2004). Quo vadis elasticity imaging? Ultrasonics, 42(1-9), 331-336.
Kuhns, J. G. (1949). Changes in elastic adipose tissue. J Bone Joint Surg Am, 31A(3), 541-547.
Miller-Young, J. E., Duncan, N. A., & Baroud, G. (2002). Material properties of the human calcaneal fat pad in compression: experiment and theory. J Biomech, 35(12), 1523-1531.
Noe, D. A., Voto, S. J., Hoffmann, M. S., Askew, M. J., & Gradisar, I. A. (1993). Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact. J Biomed Eng, 15(1), 23-26.
Ophir, J., Alam, S. K., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., et al. (1999). Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng [H], 213(3), 203-233.
Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., & Li, X. (1991). Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging, 13(2), 111-134.
Ozdemir, H., Soyuncu, Y., Ozgorgen, M., & Dabak, K. (2004). Effects of changes in heel fat pad thickness and elasticity on heel pain. J Am Podiatr Med Assoc, 94(1), 47-52.
Portney, L. G., & Watkins, M. P. (2009). Foundations of clinical research: Applications to practice (3rd ed.): Upper Saddle River: Prentice-Hall, Inc.
Prichasuk, S. (1994). The heel pad in plantar heel pain. J Bone Joint Surg Br, 76(1), 140-142.
Prichasuk, S., Mulpruek, P., & Siriwongpairat, P. (1994). The heel-pad compressibility. Clin Orthop Relat Res(300), 197-200.
Rchallis, J. H., Murdoch, C., & Winter, S. L. (2008). Mechanical properties of the human heel pad: a comparison between populations. J Appl Biomech, 24(4), 377-381.
Resnick, R. B., Hudgins, L. C., Buschmann, W. R., Kummer, F. J., & Jahss, M. H. (1999). Analysis of the heel pad fat in rheumatoid arthritis. Foot Ankle Int, 20(8), 481-484.
Rome, K., Campbell, R., Flint, A., & Haslock, I. (1998a). Reliability of weight-bearing heel pad thickness measurements by ultrasound. Clin Biomech (Bristol, Avon), 13(4-5), 374-375.
Rome, K., Campbell, R., Flint, A., & Haslock, I. (2002). Heel pad thickness--a contributing factor associated with plantar heel pain in young adults. Foot Ankle Int, 23(2), 142-147.
Rome, K., Campbell, R. S., Flint, A. A., & Haslock, I. (1998b). Ultrasonic heel pad thickness measurements: a preliminary study. Br J Radiol, 71(851), 1149-1152.
Rome, K., & Webb, P. (2000). Development of a clinical instrument to measure heel pad indentation. Clin Biomech (Bristol, Avon), 15(4), 298-300.
Rome, K., Webb, P., Unsworth, A., & Haslock, I. (2001). Heel pad stiffness in runners with plantar heel pain. Clin Biomech (Bristol, Avon), 16(10), 901-905.
Steinbach, H. L., Noetzli, M., & Ozonoff, M. B. (1963). Small Pituitary Fossa in Cushing's Syndrome Due to Adrenal Neoplasm. N Engl J Med, 269, 1286-1289.
Steinbach, H. L., & Russell, W. (1964). Measurement of the Heel-Pad as an Aid to Diagnosis of Acromegaly. Radiology, 82, 418-423.
Thomas, A., Warm, M., Hoopmann, M., Diekmann, F., & Fischer, T. (2007). Tissue Doppler and strain imaging for evaluating tissue elasticity of breast lesions. Acad Radiol, 14(5), 522-529.
Tong, J., Limb, C. S., & Gohc, O. L. (2003). Technique to study the biomechanical properties of the human calcaneal heel pad The Foot, 13(2), 83-91.
Tsai, W. C., Wang, C. L., Hsu, T. C., Hsieh, F. J., & Tang, F. T. (1999). The mechanical properties of the heel pad in unilateral plantar heel pain syndrome. Foot Ankle Int, 20(10), 663-668.
Turgut, A., Gokturk, E., Kose, N., Seber, S., Hazer, B., & Gunal, I. (1999). The relationship of heel pad elasticity and plantar heel pain. Clin Orthop Relat Res(360), 191-196.
Uzel, M., Cetinus, E., Bilgic, E., Ekerbicer, H., & Karaoguz, A. (2006). Comparison of ultrasonography and radiography in assessment of the heel pad compressibility index of patients with plantar heel pain syndrome. Measurement of the fat pad in plantar heel pain syndrome. Joint Bone Spine, 73(2), 196-199.
Uzel, M., Cetinus, E., Ekerbicer, H. C., & Karaoguz, A. (2006). Heel pad thickness and athletic activity in healthy young adults: a sonographic study. J Clin Ultrasound, 34(5), 231-236.
Wang, C. L., Cheng, C. K., Tsuang, Y. H., Hang, Y. S., & Liu, T. K. (1994). Cushing effect of heel cups. Clin Biomech, 9(5), 297-302.
Wang, C. L., Hsu, T. C., Shau, Y. W., & Wong, M. K. (1998). Variations in heel pad mechanical properties variation between children and young adults. J Formos Med Assoc, 97(12), 850-854.
Wang, C. L., Shau, Y. W., Hsu, T. C., Chen, H. C., & Chien, S. H. (1999). Mechanical properties of heel pads reconstructed with flaps. J Bone Joint Surg Br, 81(2), 207-211.
Wang, C. L., Shieh, J. Y., Wang, T. G., & Hsieh, F. J. (1999). Ultrasonographic assessment of posterior heel pain. J Formos Med Assoc, 98(1), 56-61.
Whittle, M. W. (1999). Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture, 10(3), 264-275.
Winter, D. A. (1990). Biomechanics and motor control of human movement. New York, USA: John Wiley & Sons.
Zagzebski, J. A. (1996). Essentials of ultrasound physics. Missouri, USA.
Zhi, H., Ou, B., Luo, B. M., Feng, X., Wen, Y. L., & Yang, H. Y. (2007). Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med, 26(6), 807-815.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48304-
dc.description.abstract足跟墊包含膠原纖維所構成的大小腔室儲存脂肪,具有吸震及減震的功能,以減輕足部在行走時所受到的衝擊。足跟墊如出現萎縮時,其避震能力會下降,因此產生發炎或疼痛。臨床上,以足跟墊貼紮產生限制效應來治療足跟墊疼痛者,過去研究發現療效極佳,且能增進其避震能力。然而有些人的足跟墊雖未造成疼痛症狀,但在受力後已呈現回彈力不佳的現象。對於足跟墊回彈力不佳者,目前尚無研究探討其避震能力,且尚不確定足跟墊貼紮是否能改變其避震能力。所以本研究旨在針對足跟墊回彈力不佳者施以足跟墊彈性貼紮,比較其避震能力在貼紮前後的差異,用以探討足跟墊貼紮的效應。此外,在主實驗進行前,先檢測站立重心轉移測試及足跟墊負載—卸載測試之測試者內信度。
本研究屬於便利抽樣、前瞻性研究、擬試驗分析、前後測研究的設計。收取20名足跟墊回彈力不佳者作為實驗組,並以性別、身高、體重及身體質量指數配對20名健康人當做控制組。每名受試者皆在有、無彈性貼紮狀況下接受站立重心轉移測試及足跟墊負載—卸載測試。貼紮順序採隨機方式,接受測試腳為慣用腳。在站立重心轉移測試中,受試者站立將重心以最快的速度從非慣用腳移到慣用腳,再移回非慣用腳,同時以超音波影像儀擷取足跟墊應變的資料,以荷重轉換器擷取足跟墊受力的資料,並分析足跟墊厚度、受壓指數、能量耗散率等參數。在足跟墊負載—卸載測試中,受試者採坐姿且膝關節伸直的姿勢,並利用步進馬達將超音波探頭以定速定距的方式對足跟墊進行負載及卸載的移動,同時擷取超音波彈性影像資料,再分析其巨腔室層與微腔室層的最大應變值。統計方法採用2×2複合式變異數分析,探討足跟墊回彈力不佳組與配對控制組在有無貼紮的差異,其顯著水準訂在在α=0.05,檢定力訂在0.8。此外,分別以8名健康人則進行站立重心轉移測試信度實驗及10名健康人進行足跟墊負載—卸載測試信度實驗,以檢測站立重心轉移測試與足跟墊負載—卸載測試之施測者內信度。統計方法為組內相關係數ICC3,5與量測標準誤。
結果顯示足跟墊彈性貼紮對於足跟墊回彈力不佳者,可以增加足跟墊厚度(16.2 ± 1.9mm vs. 18.3 ± 1.9 mm, p<0.05)及降低受壓指數(62.4 ±8.1% vs. 54.5 ± 10.5%, p<0.05)。但在能量耗散率方面,則僅對足跟墊回彈力輕度不佳者有降低的效應(68.3± 11.2 % vs. 62.1 ± 12.6%, p<0.05),對足跟墊回彈力重度不佳的人則不會改變。以超音波彈性影像量測巨腔室層及微腔室層在壓縮或回彈時的最大應變值,發現貼紮前後並無顯著差異(p>0.05)。在健康人足跟貼紮後也有相類似的效果。若以足跟墊回彈力不佳者與健康人比較,足跟墊回彈力不佳者在足跟墊微腔室層壓縮時應變值較健康人來得大(16.0 ± 4.8% vs. 15.5 ± 3.6%, p<0.05)。至於站立重心轉移測試與足跟墊負載—卸載測試,本研究發現皆有良好的施測者內信度(ICC3,5=0.782-0.979)。
本研究針對足跟墊回彈力差者與健康人的足跟墊施以彈性貼紮,探討貼紮對其機械性質的影響,發現足跟墊彈性貼紮無法改變其組織本身的機械特性,但卻可藉由足跟墊厚度的增加來改變整個足跟墊的機械特性,以增進避震能力,此結果有助於臨床應用的實證參考。此外,本研究檢測站立重心轉移測試與足跟墊負載—卸載測試之再測信度,發現兩個測試皆有良好的施測者內信度,此結果有助於日後使用此二量測方法來檢測足跟墊機械特性。
zh_TW
dc.description.abstractThe function of the heel pad is mainly composed of the adipocytes, separated by fibrous septa, whose function is to decrease and absorb the shock as the foot contacts on the ground during walking. If the heel pad becomes atrophy, its shock attenuation capacity decreased which may cause inflammation or pain of the heel pad. The heel pad taping had been reported to be effective in the treatment of heel pad pain syndrome through improving the shock attenuation capacity of the heel pad. However, some people present poor rebound capacity of the heel pad as compression loaded even though they do not have the heel pad pain. There were no evidences to identify the taping effect among them. The purpose of this research was to explore the confinement effect of the heel pad taping on shock attenuation capacity in individuals with poor-rebound heel pad. Prior to the main study, the intrarater reliability of the weight shifting test and loading-unloading test were all tested.
This research was convenience sampling, prospective, experiment, and pretest/ posttest study design. Twenty individuals with poor-rebound heel pad and 20 matched controls participated in the main study. Each participant received both weight shifting test and the loading-unloading test under the taping and non-taping conditions. For the weight shifting test, the participants were asked to stand with fully weight bearing on the non-dominant leg, and then shift the weight to the dominant leg and back to the non-dominant leg as soon as possible. The strain and stress data were collected using ultrasonography and load cell synchronously. The mechanical properties variables, including thickness, compressibility index, and energy dissipation ratio of the heel pad were analyzed. For the loading-unloading test, the participants were asked to sit on the floor with knee fully extended. The ultrasound probe with a stepping motor driver compressed the heel pad in a fixed speed and fixed displacement and unload in the same way. The maximum strain at the macrochamber and microchamber layers were collected by elastography. The 2×2 ANOVA with mixed model was used to examine the differences between taping conditions and groups. The significant level was set at α=0.05, and the power was at 0.8. Another 8 and 10 healthy adults separately received 3-session weight shifting test and 2-session loading-unloading test to examine the intrarater reliability. The averaged data were used for statistical analyses, including ICC3,5 and SEM.
The results revealed that the heel pad taping increased thickness (16.2 ± 1.9mm vs. 18.3 ± 1.9 mm, p<0.05) and decrease CI (62.4 ±8.1% vs. 54.5 ± 10.5%, p<0.05) of the heel pad for the participants with poor-rebound heel pad. EDR significantly decreased only in the participants with mild poor-rebound heel pad (68.3± 11.2 % vs. 62.1 ± 12.6%, p<0.05); however, it was not the case for those with severe poor-rebound heel pad. There was no significant difference in εcompression and εrecoil in both macrochamber and microchamber layers of the heel pad between taping conditions for both participants with poor-rebound heel pad and healthy adults. Higher εcompression of the microchamber layer in the participants with poor-rebound heel pad than in the healthy adults was found in this study (16.0 ± 4.8% vs. 15.5 ± 3.6%, p<0.05). Additionally, both the weight shifting and loading-unloading tests were highly reliable (ICC3,5=0.782-0.979).
It was concluded that the confinement effect of the heel pad taping changed the mechanical properties of the heel pad through increase in thickness rather than alteration of the mechanical properties of the tissue itself for both participants with poor-rebound heel pad and healthy adults. This taping method may be helpful in the clinic. Since the weight shifting and loading-unloading tests were reliable, these tests were able to be used to measure the mechanical properties of the heel pad.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:51:55Z (GMT). No. of bitstreams: 1
ntu-100-R96428004-1.pdf: 8421170 bytes, checksum: 31eb731da06df94112bcc3999dd0b7da (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract vi
Table of Contents ix
Chapter 1. Introduction 1
1.1 Motivation and background 2
1.2 Purposes 6
1.3 Research questions and hypotheses 8
1.4 Glossaries 11
Chapter 2. Literature Review 14
2.1 Properties and functions of the heel pad 15
2.2 Heel pad atrophy and its treatments 19
2.3 Measurements of mechanical properties of the heel pad 23
2.4 Ultrasonography and elastography 30
Chapter 3. Materials and Methods 37
3.1 Study design 38
3.2 Participants 39
3.3 Instruments 40
3.4 Procedure 46
3.5 Data analysis 49
3.6 Statistical analysis 52
Chapter 4. Results 53
4.1 Calibration of load cell 54
4.2 Intrarater reliability of weight shifting test 56
4.3 Effect of elastic taping on thickness, CI, and EDR of heel pad 58
4.4 Intrarater reliability of loading-unloading test 64
4.5 Effect of elastic taping on maximal compression and rebound strain of heel pad 65
Chapter 5. Discussions 69
5.1 Effect of taping on mechanical properties of heel pad 70
5.2 Differences in mechanical properties between healthy and poor-rebound heel pads 73
5.3 Reliability of weight shifting test and loading-unloading test 77
5.4 Strengths and contributions of this study 78
5.5 Limitations of present study and direction of further study 79
Chapter 6. Conclusions 81
References 83
Tables 92
Figures 106
Appendix 123
dc.language.isoen
dc.subject超音波彈性影像zh_TW
dc.subject足跟墊zh_TW
dc.subject彈性貼紮zh_TW
dc.subject黏彈特性zh_TW
dc.subject超音波影像zh_TW
dc.subjectheel paden
dc.subjectultrasonographyen
dc.subjectviscoelasiticityen
dc.subjectelastic tapingen
dc.subjectelastographyen
dc.title貼紮對足跟墊回彈力不佳者足跟墊避震能力之影響zh_TW
dc.titleEffect of Elastic Taping on Shock Attenuation Capacity in Individuals with Poor-rebound Heel Paden
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.coadvisor王淑芬
dc.contributor.oralexamcommittee王崇禮,邵耀華,蕭自佑,許智欽
dc.subject.keyword足跟墊,彈性貼紮,黏彈特性,超音波影像,超音波彈性影像,zh_TW
dc.subject.keywordheel pad,elastic taping,viscoelasiticity,ultrasonography,elastography,en
dc.relation.page132
dc.rights.note有償授權
dc.date.accepted2011-02-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved