請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48296
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴朝明(Chao-Ming Lai) | |
dc.contributor.author | Shan-Yuan Chu | en |
dc.contributor.author | 邱尚沅 | zh_TW |
dc.date.accessioned | 2021-06-15T06:51:39Z | - |
dc.date.available | 2012-02-20 | |
dc.date.copyright | 2011-02-20 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-02-14 | |
dc.identifier.citation | 申雍。2007。臺灣地區農業部門受全球氣候暖化之影響及調適策略。環境工程會刊18:9-6。
台灣農藝學會。2009。優良水稻栽培管理技術手冊。行政院農業委員會農糧署。台北市。 吳以健。2009。溫度環境與水稻穀粒產量及品質之相關性。國立台灣大學農藝學系碩士論文。台北市。 林淑華、徐嘉君。2008。全球氣候變遷模式推估與情境模擬簡介,http://rebecca.ecogarden.tw/CV/82-2.pdf,2011/0/16。 周仲島、張智北、蔡長泰、陳永明、張麒偉、楊明風。2008。氣候變遷對災害防治衝擊調適與因應策略整合研究--子計畫:台灣地區劇烈降雨與侵台颱風變異趨勢與辨識研究(I)研究成果報告。NSC 95-2625-Z-002-038。 林安秋、洪黎明。1979。第二期水稻低產原因之研究。6.溫度與日照對水稻抽穗及結實之影響。中華農學會報新 108: 24-38。 柳中明、郭振泰、黃文政。2007。因應氣候變遷及京都議定書水利政策調整之研究(2/2)期末報告。計畫編號:M0EAWRA0950119。 陳守泓、陳圭宏、黃俊騰、姚銘輝、李炳和、申雍。2007。全球暖化對臺灣地區水稻生產之影響。全球暖化對台灣稻米產業之影響研討會專刊。pp. 63-82。台灣農藝學會,台北市。 許晃雄。1998。人為的全球暖化與氣候變遷。The 4th International Conference of Atmospheric Action Network East Asia, Taiepi, 1998/9/26-27. 翁仁憲。1999。高溫及低光對水稻同化作用之影響及其生理和型態之因應。環境與稻作生產(楊純明、林俊義、林富雄主編)。pp. 121-131。臺灣農業試驗所、中華農業氣象學會,台中市。 游保杉等。2007。「台灣地區乾旱變異趨勢與辨識研究Ι」,國家科學委員會研究計畫報告。 張正賢。1988。稻作學精要。pp.81-139。國立編譯館。台北市。 楊純明。1995。臺灣地區農業氣象災害(1945-1993)及因應之研究方向。中華農業氣象。2:31-35。 楊純明、林俊義。1998。氣候變遷對農作物生產之影響 第十三章 全球氣候變遷對台灣地區農作物生產影響的因應研究與調整方向。農業試驗所特刊 71:191-207。 楊盛行、劉清標、林良平、賴朝明、王一雄、朱鈞、盧虎生、王銀波、趙震慶、楊秋忠、呂世宗、郭坤土、張哲明、洪肇嘉、劉瑞美、黃山內、李春芳。2003。溫室氣體測量及減量對策。全球變遷通訊雜誌 40:140-153。 賴朝明、楊盛行、張政雄、邱尚沅。2009。東亞與台灣區域臭氧、河川流量、候鳥、登革熱、糧產與森林變遷模式整合與衝擊評估及因應策略研究-氣候變遷對東亞近地面臭氧之衝擊評估與因應策略研究(1):B.氣候變遷對台灣土壤性質與微生物活性之衝擊評估及因應策略研究。國家科學委員會研究計畫期末報告。計畫編號:NSC 97-2621-M-002-019。 賴朝明、柯光瑞、劉桂龍、李建志、趙震慶、王樹仁、劉瑞美、陳文雄、林經偉、黃山內、吳添益、蔡正賢、蔡泳白皋、楊盛行。2005。台灣農業溫室氣體之排放與因應。氣候變遷、衝擊、因應與永續發展研究進展2005,p. 478-485。 盧虎生。2008。IPCC 第二工作分組之第四次評估報告:影響、調適與脆弱性 第五章 全球暖化對糧食、漁業及森林產業之影響。全球變遷通訊雜誌 58:p. 17-19. 羅正宗、陳榮坤、張素真。1998。苗栗地區水稻生育積溫度數與生育時期之關係。苗栗區農業專訊,第42期,p. 5-8. Aggarwal, P. K., 2003. Impact of climate change on Indian agriculture. J. Plant Biol. 30: 189–198. Antonopoulos, V. Z. 1999. Comparison of different models to simulate soil temperature and moisture effects on nitrogen mineralization in the soil. J. Plant Nutr. Soil Sci. 162: 667– 675. Baker, J. T., L. H. Allen Jr., and K. J. Boote. 1992. Response of rice to carbon dioxide and temperature. Agr. Forest Meteorol. 60: 153–166. Bazaya, B. R., A. Sen, and V. K. Srivastava. 2009. Planting methods and nitrogen effects on crop yield and soil quality under direct seeded rice in the Indo-Gangetic plains of eastern India. Soil Till. Res. 105: 27-32. Bojkov, R. D. 1995. The Changing Ozone Layer. WMO Report. Bouman, B. A. M. and H. H. van Laar. 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric. Syst. 87: 249-273. Bouman, B. A. M., H. van Keulen, H. H. van Laar, R. Rabbinge. 1996. The 'School of de Wit' crop growth simulation models: pedigree and historical overview. Agric. Sys. 52: 171-198. Bouman, B. A. M., E. Humphreys, T. P. Tuong, R. Barker, and L. S. Donald. 2007. Rice and Water. Adv. Agron. 92: 187–237. Bouman, B. A. M, and T. P. Tuong. 2001. Field water management to save water and increase its productivity in irrigated rice. Agric. Water Manage. 49/1:11-30. Bouman, B. A. M., Y. Xiaoguang, W. Huaqui, W. Zhiming, Z. Junfang, W. Changgui, and C. Bin. 2002. Aerobic rice (Han Dao) A new way growing rice in water short areas. p. 175-181. In: Proceeding of the 12th International Soil Conservation Organization Conference. 26-31 May 2002. Tsinghua University Press, Beijing, China. Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms nitrogen in soils. Soil Sci. 59: 39-45. Bremner, J. M., and D. R. Keeney. 1966. Determination and isotope-ratio analysis of different forms nitrogen in soil: 3. Exchangeable ammonium, nitrate and nitrate and nitrite by extraction-distillation method. Soil Sci. Soc. Am. Proc. 30: 557-582. Brockherhoff, M. P., 2000. An urbanizing world. Popul. bull. 55, 3–44. Campbell, C.A., H. H. Janzen, and N. G. Juma. 1997. Case studies of soil quality in the Canadian prairies: long-term field experiments. p. 351–397. In Gregorich, E.G., Carter, M.R. (eds.), Soil Quality for Crop Production and Ecosystems Health. Elsevier, Amsterdam, The Netherlands. Cassman, K., S. Peng, D. Olk, J. Ladha, W. Reichardt, A. Dobermann, and U. Singh. 1998.Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 56: 7–39. Chang, C. H., C. Y. Hsieh, and S. S. Yang. 2001. Effect of culture media on the phosphate-solubilizing activity of therme-tolerant Microbes. Journal of the Biomass Energy Society of China. 20: 79-90. Chen, J. 2007. Rapid urbanization in China: a real challenge to soil protection and food security. CATENA 69: 1–15. Conant, R. T., P. Dalla-Betta, C. C. Klopatek, and J. M. Klopatek. 2004. Controls on soil respiration in semiarid soils. Soil Biol. Biochem. 36: 945–951. Cooper, M., S. Rajatasereekul, S. Immark, S. Fukai, and J. Basnayake. 1999. Rainfed lowland rice breeding strategies for Northeast Thailand I. Genotypic variation and genotype _ environment interactions for grain yield. Field Crops Research 64: 131–151. De Datta, S.K. 1981. Principles and Practices of Rice Production. John Wiley & Sons, New York, p. 360. Dobermann, A., C. Witt, S. Abdulrachman, H. Gines, R. Nagarajan, T. Son, P. Tan, G. Wang, N. Chien, V. Thoa, C. Phung, P. Stalin, P. Muthukrishnan, V. Ravi, M. Babu, G. Simbahan, and M. Adviento. 2003. Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agron. J. 95: 913–923. Donald, R.Z., E.H. William, and W. Neil. 1999. Soil temperature, matric potential and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci. Soc. Am. J. 63: 575– 584. English M, SN Raja. 1996. Perspectives on deficit irrigation. Agric. Water Manage. 32 (1): 1-4. EPA. 1993. Nitrogen Control Manual. United States Environmental Protection Agency, Washington, DC, EPA/625/R-93/010. Gee, G., and J. W. Bauder. 1986. Particle size analysis. p. 383-411. In A. L. Page et al. (ed.) Methods of soil analysis, Part 1, 2nd ed. ASA-SSSA, Madison, WI. Gregorich, E.G., M.R. Carter, V.C. Angers, M. Monreal, and B.H. Ellert. 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 74: 367–385. Griffiths, R.P., M.D. Madritch, and A.K. Swanson. 2009. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For. Ecol. Manage. 257: 1-7. Gregory, P., J. Ingram, B. Campbell, J. Goudriaan, T. Hunt, J. Landsberg, S. Linder, M. Stafford-Smith, B. Sutherst, and C. Valentin. 1999. Managed production systems. The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems. Synthesis Volume, p. 229-270. In Walker, B., W. Steffen, J. Canadell, and J. Ingram (eds.). International Geosphere-Biosphere Program Book Series 4, Cambridge, United Kingdom, Fang, C.M., P. Smith, J.B. Moncrieff, and J.U. Smith. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature 433: 57–59. Hara S., Y. Hashidoko, R. V. Desyatkin, R. Hatano, and S. Tahara. 2009. High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-PoorMedium Solidified with Gellan Gum. Appl. Environ. Microbiol. 75: 2811–2819 Horie, T., Ohnishi, M., Angus, J.F., Lewin, L.G., Tsukaguchi, T., Matano, T., 1997. Physiological characteristics of high-yielding rice inferred from cross-location experiments. Field Crops Res. 52: 55–67. Horie, T., Baskar, J.T., Nakagawa, H., 2000. Crop ecosystem responses to climate change: Rice. p.81–106. In Reddy, K.R., Hodges, H.F. (eds.), Climate change and Global crop productivity. CABI Publishing, Wallingford, Oxon, Hossain, M., 2007. A balancing act rice facts. Rice Today (April–June): 37. Hsieh, S. C. and D. J. Liu 1979. The Causes of Low Yielding of the Second Crop Rice in Taiwan and the Measures for Improvement. Natl. Sci. Counc. Symp. Sre. 2. Natl. Sci. Taipei. 271 pp. (in Chinese with English abstract) IPCC. 2000. Chapter 4: An Overview of Scenarios. Nakicenovic, N. and R. Swart (ed.) Emissions Scenarios, Cambridge University Press, UK. IPCC. 2007a. Climate Change 2007: The physical Science Basis Summary for Policymakers Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Paris, February. IPCC. 2007b. Climate Change 2007: Impacts, Adaptation and Vulnerability Summary for Policymakers Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Brussels. April. IRRI. 2007. World Rice Statistics. Los Banos, Philippines, <http://www.irri.org/science/ricestat/>. IRRI. 2009.Saving Water: Alternate Wetting and Drying (AWD). Visit on 11/31/2010. <http://www.knowledgebank.irri.org/factsheetsPDFs/watermanagement_FSAWD3.pdf> Jobba´gy, E. G., and R. B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appli. 10: 423–436. Jurriens M., and P. Wester. 1994. Protective irrigation in India. 1994 Annual Report, Intl. Inst. For Land Reclamation and Improvement. Wageningen, Netherlands. Kabaki, N. 1983. Physiological analysis of growth retardation of rice seedings cause by low temperature. JARQ. 17: 161-165. Kim, H. Y., M. Lieffering, K. Kobayashi, M. Okada, S. Miura. 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: A free air CO2 enrichment (FACE) experiment. Global Change Biol. 9: 826–837. King, G., P. Roslev, and H. Skovgaard. 1990. Distribution and rate of methane Oxidation in sediments of Florida Everglades. Appl. Environ. Microbial. 56: 2902-2911. Kirschbaum, M. U. F. 2000. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48: 21– 51. Kropff, M.J., G. Centeno, D. Bachelet , M.H. Lee, S. Mohan Dass, T. Horie, S. De feng, S. Singh, and F.W.T. Penning de Vries. 1993. Predicting the impact of CO2 and temperature on rice production. In: IRRI Seminar Series on Climate Change and Rice. International Rice Research Institute. Los Baños, Philippines. Krishnan, P., D. K. Swain., B. Chandra Bhaskar., S. K. Nayak., and R. N. Dash. 2007. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agr. Ecosyst. Environ. 122: 233-242 Liu, C., S. C. Hsieh, and M. H. Lin. 1984. Influence of climate on the yield and agronomic characters of the first and second crop rices in Taiwan. p.59-72. In: Regional and Seasonal Causes of Low Yield in Rice and Measures of Improvement. (D. J. Liu and S. C. Hsieh, eds.) Special Pub. No. 16. Taiwan Agric. Res. Inst. Taichung. (in Chinese with English abstract) Lur, H. S., C. L. Hsu, C. W. Wu, C. Y. Lee, C. L. Lao, Y. C. Wu, S. J. Chang, C. Y. Wang, and M. Kondo. 2009. Change in temperature, cultivation timing and grain quality of rice in Taiwan in recent years. Crop. Environ. Bioinform. 6: 175-182. Mahmood, R. 1998. Air temperature variations and rice productivity in Bangladesh: a comparative study of the performance of the YIELD and the CERES-Rice models. Ecol. Mode. 106: 201-212. Maithani, K., A. Arunachalam, R. S. Tripathi, and H. N. Pandy. 1998. Nitrogen mineralization as influenced by climate, soil and vegetation in a subtropical humid forest in northeast India. For. Ecol. Manage. 109: 91-101. Mandels, M., and E. T. Reese. 1956. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73: 269-278. Masutomi, Y., K. Takahashi, H. Harasawa, and Y. Matsuoka, 2009:Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric. Eco. Environ. 131: 281-291. Matthews, R.B., M.J. Kropff, T. Horie, and D. Bachelet. 1997. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric. Syst. 54: 399–425. Nelson, D. W., and L. E., Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 964-1010. In A. L. Page et al. (eds) Methods of soil analysis. Part 3. ASA and SSSA, Madison, WI. Nye, P. H., Greenland, D. J., 1960. The Soil Under Shifting Cultivation. Commonwealth Bureau of Soils, Agricultural Bureau, Harpenden, UK. Parton, W. J., D. S. Schimel, C. V. Cole, and D. S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J. 51: 1173–1179. Peng, S. B., J. L. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G.S. Centeno, G.S. Khush, and K.G. Cassman. 2004. Rice yield decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101: 9971–9975. Pikovskaya, R. I. 1948. Mobilization of population in soil in connection with the vial activity of some microbial species. Microbiol. 17: 362-370. Powers, R. F. 1990. Nitrogen mineralization along an altitudinal gradient: Interactions of soil temperature, moisture, and substrate quality. For. Ecol. Manage. 30: 19-29. Raiesi, F. 2006. Carbon and N mineralization as affected by soil cultivation and crop residue in a calcarous wetland ecosystem in Central Iran. Agric. Ecosyst. Environ. 112: 13–20. Rasmussen, P.E., and H.P. Collins. 1991. Long-term impacts of tillage fertilizer, and crop residue on soil organic matter in temperate semiarid regions. Adv. Agron. 45: 93–134. Rice, E.L., and S.K. Pancholy. 1972. Inhibition of nitrification by climax ecosystem. Am. J. Bot. 59: 1033-1040. Satake, T., and S Yoshida S. 1978. High temperature-induced sterility in indica rices at flowering. Jpn. J. Crop sci. 47: 6-17 Saseendran, S. A., Singh, K. K., Rathore, S. V., Singh, S. V., and Singh, S. K. 2000. Effects of climate change on rice production in the tropical humid climate of Kerala, India. Clim. Change. 44: 495-514. Sierra, J., and L. Marban. 2000. Nitrogen mineralization pattern of an oxisol of Guide coupe, French West Indies. Soil Sci. Soc. Am. J. 64:2002–2010. Shaver, G. R., W. D. Billings, F. S. III Chapin, A. E. Giblin, K. J. Nadelhoffer, W. C. Oechel, and E. B. Rastetter. 1992. Global change and the carbon balance of arctic ecosystems. BioSci. 42: 433-441. Smil, V. 2005. Feeding the world: How much more rice do we need? p. 21–23. In Toriyama K., Heong K.L., Hardy B. (Eds.), Rice is life: scientific perspectives for the 21st century. Proceedings of the World Rice Research Conference held in Tokyo and Tsukuba, Japan, 4–7 November 2004. International Rice Research Institute, Los Banos, Philippines, Suzuki, M. 1980. Studies on distinctive patterns of dry matter production in the building process of grain yield in rice plants growing in the warm region in Japan. Bull. Kyushu Nat. Agri. Exp. Sta. 20: 429-494. Tang, Q., S. Peng, R.J. Buresh, Y. Zou, N.P. Castilla, T.W. Mew, and X. Zhong. 2007. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Res. 102: 219–227. Tsai, J. C. 1994. Studies on the relationship between rice yield of different crop seasons and climate element in Taiwan. p.29-48. In the Proceeding of the Sino-Ja-panese Symposium on Applications of Agrometeorology. Chinese Soc. Agromet. Taichung. (in Chinese with English abstract) Tisdale, J.M., and J.M. Oades. 1982. Organic matter and water stable aggregates in soils. J. Soil Sci. 33: 141– 163. Tyagi NK. 1987. Managing rotational canal eater supplies on the farm. Water Resour. Bull. 23(3): 455-462. Van Keulen, H., 1977. Nitrogen requirements of rice with special reference to Java. Contributions Central Research Institute for Agriculture Bogor, No. 30, Bogor, Indonesia, 67 pp. Von Braun, J., Rosegrant, M.W., Pandya-Lorch, R.L., Cohen, M.J., Cline, S.A., Brown, M.A., Bos, M.S., 2005. New risks and opportunities for food security: Scenario analyses for 2015 and 2050. 2020 Discussion Paper no. 39, International Food Policy Research Institute, Washington, DC, USA, 40 pp. Wade, L., McLaren, C., Quintana, L., Harnpichitvitaya, D., Rajatasereekul, S., Sarawgi, A., Kumar, A., Ahmed, H., Sarwoto, Singh, A., Rodriguez, R., Siopongco, J., Sarkarung, S., 1999. Genotype by environment interactions across diverse rainfed lowland rice environments. Field Crops Res. 64: 35–50. Wadman, W.P., and S. de Haan. 1997. Decomposition of organic matter from 36 soils in along-term pot experiment. Plant Soil 189: 289–301. Wang, C., J Yang, J Wa, and Q Cai. 2004. Influence of high and low temperature stress on fertility and yield of rice (Oryza sativa L.):Case study with Yangtze River rice cropping region in China. Abstract World Rice Research Conference 2004. p. 97. Yagi, K. and K. Minami. 1990. Effect of organic matter application on the methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36: 599-610. Yang, S. S., Y. H. Fan, C. K. Yang, and I. C. Lin. 2003. Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere. 52: 1489-1498. Yao, F., Y. Xu, E. Lin, M. Yokozawa, and J. Zhang.2007. Assessing the impacts of climate change on rice yields in the main rice areas of China. Clim. Change. 80: 395-409. Ying, J., S. Peng, Q. He, H. Yang, C. Yang, R. Visperas, and K. Cassman. 1998. Comparison of high-yield rice in tropical and subtropical environments – I. Determinants of grain and dry matter yields. Field Crops Res. 57: 71–84. Ying, J., S. Peng, G. Yang, N. Zhou, R. Visperas, and K. Cassman. 1998. Comparison of high-yield rice in tropical and subtropical environments – II. Nitrogen accumulation and utilization efficiency. Field Crops Res. 57: 85–93. Yoshida, S. 1981. Fundamentals of rice crop science. p.1-110. IRRI, Los Banos, Philippines. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48296 | - |
dc.description.abstract | 本研究以不同栽培期模擬氣候變遷在台灣西北部苗栗試驗區進行水稻栽培,並藉由政府間氣候變遷委員會(Intergovernmental Panel on Climate Change , IPCC)第三次與第四次評估報告與統計降尺度方法所產生之未來本世紀末期氣象資料,以水稻生長模式ORYZA2000評估未來氣候變遷對台灣西北部之土壤性質及水稻產量之衝擊,並提出其因應策略。
氣候變遷對土壤性質之衝擊方面,由不同時期進行採樣分析之結果顯示,土壤pH、質地與有效性磷含量之變化差異並不明顯,而土壤培育試驗模擬氣候變遷(氣溫上升)影響之結果顯示,氣溫上升使土壤微生物行有機質礦化作用之活性與無機態氮含量增加,但其對水稻產量之增加則不明顯。 經由水稻生長模式ORYZA2000模擬之結果顯示,採用第三次評估報告(A2情境)之每月氣象資料,預估台灣西北部未來本世紀末期(2080-2099)水稻之產量以四月中旬插秧者產量增加最多(38%),而以七月中旬插秧者減少最多(23%)。若以第四次評估報告(A1B情境)之氣候模式CCCma、GFDL、CSIRO與NIES-hires產生之本世紀中期(2046~2065)及末期(2080~2099)之每日氣象資料,分別利用水稻生長模式Oryza2000評估水稻之平均產量與上世紀末四十年(1960~1999)之平均產量比較,結果顯示自二月底至八月初進行水稻插秧,其產量於本世紀末期皆會增加,其中以插秧期於四月初至五月初之產量以前述四種氣候模式預估分別可增產37%、31%、34%與25%最為明顯。 本研究之結果可作為氣候變遷對台灣西北部土壤性質及水稻產量衝擊評估之參考。其因應策略,若考慮當地颱風季節及原水稻之插秧期,於本世紀末期(2080~2099)一期稻作之插秧期可調整至三月中旬,二期稻作之插秧期則維持不變。若再考慮不同品種可能會受高溫影響(產量及品質),以及使用較長期之水稻栽培及氣象資料進行校正與驗證,其因應策略則有待後續研究之。 | zh_TW |
dc.description.abstract | An experimental rice field in Miaoli, Northwest Taiwan was selected to assess the impacts of climate change on soil properties and rice yields. A rice growth model “ORYZA2000” cooperated with soil properties and meteorology data generated by a statistical down scale climate model were used to estimate the rice yields of late 21st century (2080-2099) affected by climate change, and their adaptive strategies were also suggested. The results from the analyses data of soils sampled on different dates showed that the changes in soil pH and available phosphate were not significant. The results of soil incubation experiments simulated climate change showed that the raising temperatures (2-3 oC) increased the mineralized nitrogen contents in soils but not obviously for the rice yields. The results showed that the rice yield would increase most (38%) when transplanted in middle April, and decrease most (27%) in middle July in late 21st century (2080-2099). The results from the ORYZA2000 and two sets of twenty-year daily meteorology data (2046~2065 and 2080~2099) compared with those of forty-year (1960~1999) showed that rice yield would increase 37%, 31%, 34%, and 25% when transplanted in early April to early May by climate models CCCma, GFDL, CSIRO, and NIES-hires, respectively. The results of this study could be used for references to assess impacts of climate change on soil properties and rice yield in northwest Taiwan. The adaptive strategy suggested was to adjust the transplanting date of rice crop to middle March for the first season and remain unchanged for the second season in late 21st century (2080~2099), when considering the local typhoon seasons and original transplanting dates. However, it deserves further studies when considering more rice varieties and longer term data of rice cultivation and meteorology used. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:51:39Z (GMT). No. of bitstreams: 1 ntu-100-R97623014-1.pdf: 1087454 bytes, checksum: 614774c4ee50127bb2c41ac3048fc829 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書..........................................i
誌謝.....................................................ii 中文摘要................................................iii 英文摘要..................................................v 目錄....................................................vii 表次.....................................................ix 圖次......................................................x 第一章 前言...............................................1 第二章 前人研究...........................................2 2.1氣候變遷之衝擊.........................................2 2.2氣候變遷與水稻產量.....................................5 2.3氣候變遷與土壤性質.....................................7 2.4水稻生長模式Oryza 2000程式.............................9 2.5氣候變遷之模擬........................................10 2.6氣候變遷之因應........................................13 第三章 材料與方法........................................16 3.1試驗地點與土壤樣品之採集..............................17 3.2水稻品種..............................................17 3.3水稻生長模式ORYZA2000.................................17 3.4土壤理化性質測定方法..................................19 3.4.1土壤物理性質........................................19 3.4.2土壤化學性質........................................19 3.4.3土壤生物性質........................................20 3.5氣象站之選用..........................................21 3.6氣候模式以及氣象資料之選用............................21 3.7土壤培育實驗..........................................30 第四章 結果與討論........................................31 4.1土壤性質之變化........................................31 4.2不同栽培時期對苗栗試驗區水稻產量及生質量之影響........39 4.3 2008年苗栗試驗區水稻生質量與產量之驗證結果...........39 4.4 2008年苗栗試驗區水稻生質量與產量與2099年預估之結果...45 4.5土壤礦化氮素及其對水稻產量之影響......................53 4.6 A2與 A1B情境下以水稻生長模式ORYZA2000預估苗栗試驗區未 來本世紀中期期與世紀末期水稻產量之變化...............63 4.7氣候變遷對水稻產量衝擊之因應策略......................67 第五章 結論.............................................68 參考文獻.................................................70 附錄.....................................................86 | |
dc.language.iso | zh-TW | |
dc.title | 氣候變遷對台灣西北部土壤性質及水稻產量之衝擊評估及因應策略 | zh_TW |
dc.title | Impact Assessment and Adaptive Strategies of Climate Change on Soil Properties and Rice Yield in Northwest Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊盛行(Shang-Shyng Yang),盧虎生(Huu-Sheng Lur),柳中明(Chung-Ming Liu),施養信(Yang-Hsin Shih) | |
dc.subject.keyword | 氣候變遷,台灣,土壤性質,水稻產量,Oryza2000,衝擊,因應策略, | zh_TW |
dc.subject.keyword | climate change,Taiwan,soil property,rice yield,Oryza2000,impact,adaptive strategy, | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-02-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。