Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周仲島(Ben Jong-Dao Jou)
dc.contributor.authorPin-Fang Linen
dc.contributor.author林品芳zh_TW
dc.date.accessioned2021-06-15T06:51:31Z-
dc.date.available2011-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-15
dc.identifier.citationReference
Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the southwest during the North American monsoon. Mon. Wea. Rev., 137, 83–98.
Adang, T. C., and R. L. Gall, 1989: Structure and dynamics of the Arizona monsoon boundary. Mon. Wea. Rev., 117, 1423–1437.
Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123, 1720–1739.
Amitai, E., 2000: Systematic variation of observed radar reflectivity-rainfall rate relations in the Tropics. J. Appl. Meteor., 39, 2198–2208.
Babin, S. M., 1996: Surface duct height distributions for Wallops Island, Virginia, 1985–1994. J. Appl. Meteor., 35, 86–93.
Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of Geosynchronous Satellite images. Mon. Wea. Rev., 115, 463–476.
Battan, L., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.
Bellon, A., G. W. Lee, and I. Zawadzki, 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44, 998–1015.
Berenguer, M., D. Sempere-Torres, C. Corral, and R. Sánchez-Diezma: 2006: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J. Atmos. Oceanic Technol., 23, 1157–1180.
Bermowitz, R. J., and E. A. Zurndorfer, 1979: Automated guidance for predicting quantitative precipitation. Mon. Wea. Rev., 107, 122–128.
Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol., 19, 1745–1758.
Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 1887–1909.
Burrows, W. R., C. Price, and L. J. Wilson, 2005: Warm season lightning probability prediction for Canada and the Northern United States. Wea. Forecasting, 20, 971–988.
Byers, H. R., and R. R. Braham Jr., 1948: Thunderstorm structure and circulation. J. Meteor., 5, 71–86.
——, and ——, 1949: The Thunderstorms. U.S Government Printing Office, Washington, D.C., 287 pp.
Caine, S., C. Jakob, S. Siems, and P. May, 2009: Objective classification of precipitating convective regimes using a weather radar in Darwin, Australia. Mon. Wea. Rev., 137, 1585–1600.
Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056.
——, J. W. Wilson, T. D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128, 3459–3480.
Carleton, A. M., D. L. Arnold, D. J. Travis, S. Curran, J. O. Adegoke, 2008: Synoptic circulation and land surface influences on convection in the Midwest U.S. “Corn Belt” during the summers of 1999 and 2000. Part I: Composite synoptic environments. J. Climate, 21, 3389–3415.
Chaboureau, J., F. Guichard, J. Redelsperger, and J. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 3105–3117.
Chang, P. L., P. F. Lin, B. J.-D. Jou, and J. Zhang, 2009: An application of reflectivity climatology in constructing radar hybrid scans over complex terrains. J. Atmos. Oceanic Technol. 26, 1315–1327.
Changnon, S. A., 2001: Damaging thunderstorm activity in the United States. Bull. Amer. Meteor. Soc., 82, 597–608.
Chen, C. S., and Y. L. Chen, 2003: The rainfall characteristic of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
Chen, G. T.-J., H. C. Chou, T. C. Chang, and C. S. Liu, 2001: Frontal and non-frontal convection over northern Taiwan in mei-yu season (in Chinese with English abstract). Atmos. Sci, 29, 37–52.
Chen, T. C., M. C. Yen, J. C. Hsieh, and R. W. Arritt, 1999: Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and Meteorological telemetry system in Taiwan. Bull. Amer. Meteor. Soc., 80, 2299–2312.
Chen, Y. L, and J. Li, 1995: Characteristics of surface airflow and pressure patterns over the island of Taiwan during TAMEX. Mon. Wea. Rev., 123, 695–716.
Colby, F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME-2. Mon. Wea. Rev., 112, 2239–2252.
Cornman, L. B., R. K. Goodrich, C. S. Morse, W. L. and Ecklund, 1998: A fuzzy logic method for improved moment estimation from Doppler spectra. J. Atmos. Oceanic Technol., 15, 1287–1305.
Craven, J., R. Jewell, and H. Brook, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885–890.
Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 1767–1785.
——, and D. F. Tucker, 2005: Flow over heated terrain. Part I: Linear theory and idealized numerical simulations. Mon. Wea. Rev., 133, 2552–2564.
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting–A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785–797.
Donaldson, R. J., R. M. Dyer, and M. J. Krauss, 1975: An objective evaluator of techniques for predicting severe weather events. Preprints, 9th Conf. Severe Local Storm, Norman, OK, Amer. Meteor. Soc., 321–326.
Donner, L. J., and V. T. Phillips, 2003: Boundary layer control on convective available potential energy: Implications for cumulus parameterization. J. Geophys. Res., 108, 4701, doi:10.1029/2003JD003773.
Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 3–16.
——, and E. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625–629.
Doviak, R., and D. Zrnic´, 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp.
Dye, J. E., W. P. Winn, J. J. Jones, and D. W. Breed, 1989: The electrification of New Mexico Thunderstorms. Part I: Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94, 8643–8656.
Eilts, M. D., K. D. Hondl, M. Jain, J. T. Johnson, E. D. Mitchell, D. Rhue, S. Sanger, G. Stumpf, K. W. Thomas, and A. Witt, 1996: Severe weather warning decision support system. Preprints, 18th Conference on Severe Local Storms, San Francisco, AMS (Boston), 536–540.
Fuelberg, H. E., and D. G. Biggar, 1994: The preconvective environment of summer thunderstorms over the Florida panhandle. Wea. Forecasting, 9, 316–326.
Fuller, R. D., and D. J. Stensrud, 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American Monsoon. Mon. Wea. Rev., 128, 2983–2989.
Fulton, R. A, J. P. Breidenbach, D. J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377–395.
Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 2859–2873.
Grabowski, W. W., P. Bechtold, A. Cheng, R. Forbes, C. Halliwell, M. Khairoutdinov, S. Lang, T. Nasuno, J. Petch, W. K. Tao, R. Wong, X. Wu, and K. M. Xu, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317–344.
Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at Kennedy Space Flight Center, Florida: A study of lightning initiation signatures as indicated by WSR-88D. Wea. Forecasting, 14, 640–649.
Heinselman, P. L., and D. M. Schultz, 2006: Intraseasonal variability of summer storms over central Arizona during 1997 and 1999. Wea. Forecasting, 21, 559–578.
Henry, S. G., 1993: Analysis of thunderstorm lifetime as a function of size and intensity. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 138–140.
Heske, T., and J. Heske, 1996: Fuzzy Logic for Real World Design. 1st ed. Annabooks, 428 pp.
Hondl, K. D., and M. D. Eilts, 1994: Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning. Mon. Wea. Rev., 122, 1818–1836.
Huntrieser, H., H. H. Schiesser, W. Schmid, and A. Waldvogel, 1997: Comparison of traditional and newly developed thunderstorm indices for Switzerland. Wea. Forecasting, 12, 108–125.
Joe, N. C., D. M. Rinderknecht, and R. S. Hamilton, 1995: WSR-88D clutter suppression and Its Impact on meteorological data interpretation. WSR-88D Operational Support Facility Operations Training Branch. Norman, OK. USA.
Joe, P., D. Burgess, R. Potts, T. Keenan, G. Stumpf, and A. Treloar, 2004: The S2K severe weather detection algorithms and their performance. Wea. Forecasting, 19, 43–63.
Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588–612.
Johnson, J. T., P. L. Mackeen, A. Witt, E. D. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thmas, 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263–276.
Johnson, R. H., and J. F. Bresch, 1991: Diagnosed characteristics of precipitation systems over Taiwan during the May–June 1987 TAMEX. Mon. Wea. Rev., 119, 2540–2557.
Jou, B. J.-D., 1994: Mountain-originated mesoscale precipitation system in northern Taiwan: A case study 21 June 1991. Terr. Atmos. Oceanic Sci., 5, 169–197.
Kerns, B. W. J., Y. L. Chen, and M. Y. Chang, 2010: The diurnal cycle of winds, rain, and clouds over Taiwan during the mei-yu, summer, and autumn rainfall regimes. Mon. Wea. Rev., 138, 497–516.
Kessinger, C., S. Ellis, and J. V. Andel, 2003: The radar echo classifier: A fuzzy logic algorithm for the WSR-88D. 19th Int’l Conf. on Inter. Inf. Proc. Sys. (IIPS) for Meteor., Ocean. and Hydr., Long Beach, CA. Amer. Meteor. Soc.
Klir, G. J., and T. A. Folger, 1988: Fuzzy sets, uncertainty and information. Prentice Hall, 355 pp.
Klitch, M. A., J. F. Weaver, F. P. Kelly, and T. H. V. Haar, 1985: Convective cloud climatologies constructed from satellite imagery. Mon. Wea. Rev., 113, 326–337.
Kosko, B., 1992: Neural networks and systems: A dynamical systems approach to machine intelligence. Prentice Hall, 449 pp.
Krajewski, W. F., and B. Vignal, 2001: Evaluation of anomalous propagation echo detection in WSR-88D data: A large sample case study. J. Atmos. Oceanic Technol., 18, 807–814.
Krehbiel, P. R., M. Brook, R. L., Lhermitte, and C. L., Lennon, 1983, Lightning charge structure in thunderstorms, Proceedings in Atmospheric Electricity, L. H. Ruhnke, and J. Lathan, Eds., A. Deepak Publshing, Hampton, Va., pp. 408–410.
Kuo, J. T., and H. D. Orville, 1973: A radar climatology of summertime convective clouds in the Black Hills. J. Appl. Meteor., 12, 359–368.
Lakshmanan, V., 2000: Using a genetic algorithm to tune a bounded weak echo region detection algorithm. J. Appl. Meteor., 39, 222–230.
——, A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climat., 46, 288–305.
Lapczak, S, E. Aldcroft, M. Stanley-Jones, J. Scott, P. Joe, P. V. Rijn, M. Falla, A. Gagne, P. Ford, K. Reynolds, and D. Hudak, 1999: The Canadian National Radar Project, 29th AMS Radar Conf, Montreal, CA, AMS, 327–330.
Lericos, T. P., H. E. Fuelberg, A. I. Watson, and R. L. Holle, 2002: Warm season lightning distributions over the Florida peninsula as related to synoptic patterns. Wea. Forecasting, 17, 83–98.
Li, J., Y. L. Chen, and W. C. Lee, 1997: Analysis of a heavy rainfall event during TAMEX. Mon. Wea. Rev., 125, 1060–1081.
Lin, P. F., P. L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Wea. Forecasting, 26, 44–60.
Lin, S. M., and H. C. Kuo, 1996: A study of summertime afternoon convection in southern Taiwan during 1994 (in Chinese with English abstract). Atmos. Sci., 24, 249–280.
Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140–164.
Livingston, E. S., J. W. Nielsen-Gammon, and R. E. Orville, 1996: A climatology, synoptic assessment, and thermodynamic evaluation for cloud-to-ground lightning in Georgia: A study for the 1996 Summer Olympics. Bull. Amer. Meteor. Soc., 77, 1483–1495.
López, R. E., and R. L. Holle, 1987: The distribution of lightning as a function of low-level wind flow in central Florida. NOAA Tech. Memo. ERL ESG-28, National Severe Storms Laboratory, Norman, OK, 43 pp.
Lynn, B. H., D. R. Stauffer, P. J. Wetzel, W. K. Tao, P. Alpert, N. Perlin, R. D. Baker, R. Muñoz, A. Boone, and Y. Jia, 2001: Improved simulation of Florida summer convection using the PLACE land model and a 1.5 order turbulence parameterization coupled to the Penn State NCAR mesoscale model. Mon. Wea. Rev., 129, 1441–1461.
MacGorman, D. R., W. D. Rust, T. J. Schuur, M. I. Biggerstaff, J. M. Straka, C. L. Ziegler, E. R. Mansell, E. C. Bruning, K. M. Kuhlman, N. R. Lund, N. S. Biermann, C. Payne, L. D. Carey, P. R. Krehbiel, W. Rison, K. B. Eack, and W. H. Beasley, 2008: TELEX the thunderstorm electrification and lightning experiment. Bull. Amer. Meteor. Soc., 89, 997–1013.
Maddox, R. A., J. Zhang, J. J. Gourley, K. W. Howard: 2002: Weather radar Coverage over the Contiguous United States. Wea. Forecasting, 17, 927–934.
McBride, J., and W. Frank, 1999: Relationships between stability and monsoon convection. J. Atmos. Sci., 56, 24–36.
Moncrieff, M., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373–394.
Morin, E., and M. Gabella, 2007: Radar-based quantitative precipitation estimation over Mediterranean and dry climate regimes. J. Geophys. Res., 112, D20108, doi:10.1029/2006JD008206.
Mueller, C., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and J. Yee, 2003: NCAR Auto-Nowcast System. Wea. Forecasting, 18, 545–561.
Murphy, M. S., and C. E. Konrad II, 2005: Spatial and temporal patterns of thunderstorm events that produce cloud-to-ground lightning in the interior southeastern United States. Mon. Wea. Rev., 133, 1417–1430.
O'Bannon, T, 1997: Using a 'terrain-based' hybrid Scan to improve WSR-88D precipitation estimates. Preprints, 28th Conf. on Radar Meteorology, AMS, Austin, pp. 506–507.
Overeem, A., I. Holleman, and A. Buishand, 2009: Derivation of a 10-year radar-based climatology of rainfall. J. Appl. Meteor. Climato., 48, 1448–1463.
Parker, M. D., and J. C. Knievel, 2005: Do meteorologists suppress thunderstorms?: Radar-derived statistics and the behavior of moist convection. Bull. Amer. Meteor. Soc., 86, 341–358.
Raymond, D. J., and Marvin H. Wilkening, 1982: Flow and mixing in New Mexico Mountain cumuli. J. Atmos. Sci., 39, 2211–2228.
Reap, R. M., 1986: Evaluation of cloud-to-ground lightning data from the western United States for the 1983–84 summer seasons. J. Appl. Meteor., 25, 785–799.
——, and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518–535.
Rickenbach, T. M., and S. A. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55, 2715–2729.
Roberts, R., J. Wilson, D. Megenhardt, J. Sun, A. Anderson, E. Nelson, and W. C. Lee, 2010: NCAR-CWB Taiwan Heavy Rainfall Nowcasting Project. 2010 End-Of-Year Report, 34 pp.
Rosenfeld, D., D. B. Wolff, and D. Atlas, 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32, 50–72.
Saxen, T. R., C. K. Mueller, T. T. Warner, M. Steiner, E. E. Ellison, E. W. Hatfield, T. L. Betancourt, S. M. Dettling, and N. A. Oien, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. army test and evaluation command. Part IV: The White Sands Missile Range auto-nowcast system. J. Appl. Meteor. Climato., 47, 1123–1139.
Schaaf, C. B., J. Wurman, and R. M. Banta, 1986: Satellite climatology of thunderstorm initiation sites in the Rocky Mountains of Colorado and Northern New Mexico. AFGL–TR–86–0075 (NTIS# AD–A178052). Air Force Geophysics Laboratory, Hanscom AFB, vi + 35 pp.
——, ——, and ——, 1988: Thuderstorm-producing terrain features. Bull. Amer. Meteor. Soc., 69, 272–277.
Shafer, P. E., and H.E. Fuelberg, 2006: A Statistical Procedure to Forecast Warm Season Lightning over Portions of the Florida Peninsula. Wea. Forecasting, 21, 851–868.
Shao, J., 2000: Fuzzy Categorization of Weather Conditions for Thermal Mapping. J. Appl. Meteor., 39, 1784–1790.
Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709–727.
Steiner, M., and J. A. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection removal of non-precipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673–686.
——, R. A. Houze, Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007.
Szoke, E. J., C. K. Mueller, J. W. Wilson, and E. J Zipser, 1985: Development of convection and severe weather along outflow boundaries in northeast Colorado: Diagnosing the above-surface environment with a mobile sounding system. Preprint, 14th Conf. on Severe Local Storms, Indianapolis, Amer. Meteor. Soc., 386–389.
Tapia, A., J. A. Smith, and M. Dixon, 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 1497–1509.
Toracinta, E. R., K. I. Mohr, E. J. Zipser, and R. E. Orville, 1996: A comparison of WSR-88D reflectivities SSM/I brightness temperatures, and lightning for mesoscale convective system in Texas. Part I: Radar reflectivity and lightning. J. Appl. Meteor., 35, 902–918.
Tucker, D. F., and N. A. Crook, 2005: Flow over heated terrain. Part II: Generation of convective precipitation. Mon. Wea. Rev., 133, 2565–2582.
Ulbrich, C. W., and L. G. Lee, 1999: Rainfall measurement error by WSR-88D radars due to variations in Z-R law parameters and the radar constant. J. Atmos. Oceanic Technol., 16, 1017–1024.
Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388.
Wang, C. C., G. T.-J. Chen, and R. E. Carbone, 2005: Variability of warm-season cloud episodes over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 133, 1478–1500.
Watson, A. I., R. E. López, and R. L. Holle, 1994: Diurnal cloud-to-ground lightning patterns in Arizona during the southwest monsoon. Mon. Wea. Rev., 122, 1716–1725.
Weaver, J. F., and F. P. Kelly, 1982: A mesoscale, climatologically-based forecast technique for Colorado. Preprints, Ninih Conf. on Weather Forecasting and Analysis, Seattle, Amer. Meteor. Soc., 277–280.
Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 4017–4030.
Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536.
Xie, S., and M. Zhang, 2000: Impact of the convective triggering function on single-column model simulations. J. Geophys. Res., 105, 14 983–14 996.
Yeh, H. C., and Y. L. Chen, 1998: Characteristics of rainfall distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). J. Appl. Meteor., 37, 1457–1469.
Yuter, S. E., and R. A. Houze, Jr., 1995: Three–dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.
Zehnder, J. A., L. Zhang, D. Hansford, A. Radzan, N. Selover, and C. M. Brown, 2006: Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134, 2527–2546.
Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, doi:10.1029/2001JD001005.
Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 30–42.
——, S. Wang, and B. Clarke, 2004: WSR-88D reflectivity quality control using horizontal and vertical reflectivity structure. Preprints, 11th Conference on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc. CD–ROM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48292-
dc.description.abstract摘 要
台灣地區在弱綜觀環境條件下的暖季,午後對流(afternoon thunderstorm, TSA)為其主要的天氣型態,而其準確的時空預報極具挑戰性。由於雷達資料為本研究主要定義與特徵化午後對流之資料,為避免非氣象回波影響本研究分析結果,尤其在具複雜地形的台灣地區,故其品質控制(quality control, QC)為首要進行目標。本研究利用三年(2005–2007)的氣象局屬四座雷達回波資料建立其氣候統計資訊並結合地形以及其各掃描策略,所架構之各雷達具氣象條件影響之合成仰角(hybrid scan),經評估可有效去除受地形雜波(ground clutter)及地形遮蔽(beam blockage)效應所影響之回波資料。
利用上述經QC的雷達資料,以及雲對地閃電、衛星、探空和地面氣象站等資料,探討在弱綜觀環境條件下共四年(2005–2008)的暖季(5–10月)午後對流特徵。在此期間,平均時雨量顯示其最大降雨量發生於1500–1600 LST (local standard time)間,而降雨的最大發生頻率則是侷限於平行於山脈走向的低斜坡帶上。進一步利用經QC的雷達資料將弱綜觀環境再區分為有發生午後對流(TSA days)及無發生午後對流(non-TSA days)兩類,其地面平均風向、溫度及露點溫度均呈現明顯差異。在TSA days期間,其對流前環境(preconvective environment)於近地面層具有相對較non-TSA days而言較暖(約0.3–2.4 °C)及較濕(約1.6–2.8 °C)的環境。探空除了顯示整層也有較為濕暖及較小風速的環境條件外,於850–650 hPa層間,露點差異在TSA days與non-TSA days間,可高達3.0–4.5 °C。
這些對流前的環境差異(預報因子),可做為模糊邏輯算則(fuzzy logic algorithm)之隸屬函數(membership function),提供TSA的客觀預報。由地面測站與探空資料所得的預報因子之特徵函數,可強調在TSA days與non-TSA days期間的對流前特徵差異。本研究建立的客觀預報TSA之fuzzy logic方法,整合28個隸屬函數,並根據最佳化臨界成功指數(critical success index, CSI)得其權重。這些權重可定量描述對流發生前相對較暖濕的綜觀環境、海風傳送水氣至內陸,以及內陸的弱風速等,皆為提供有利發展午後對流活動的條件。除此之外,持續性預報法(persistence forecast)亦可視為預報TSA的參考預報因子。經兩年(2009–2010)暖季(5–10月)之個案進行驗證並評估,顯示此客觀預報TSA的fuzzy logic方法可整合弱綜觀環境所呈現之各項對流前環境參數特徵,提供TSA的機率性預報,未來可進ㄧ步運用於作業中。
關鍵詞:回波氣候統計,合成仰角,午後對流特徵,對流前環境特徵,模糊邏輯算則,隸屬函數。
zh_TW
dc.description.abstractOver Taiwan island with complex terrain, during the warm season (May–October) under weak synoptic-scale forcing, afternoon thunderstorms are the main weather system, and it is still faced the rigorous challenges to accurately forecast the thunderstorms on small temporal and spatial scales. In this study, quality control of radar reflectivity data is the primary procedure to accomplish since radar is the mainly dataset for identifying and characterizing afternoon thunderstorms (TSA). Three years’ of radar reflectivity data from four radars from 2005 to 2007 are analyzed and the reflectivity climatology is developed. The climatology is applied in the construction of climatology–based hybrid scans to minimize the impact of ground clutter and beam blockages.
The spatial and temporal characteristics and distributions of thunderstorms in Taiwan during the warm season (May–October) from 2005–2008 and under weak synoptic-scale forcing are documented using radar reflectivity, cloud–to–ground lightning, satellite, radiosonde, and surface observations. Average hourly rainfall amounts peaked in mid-afternoon (1500–1600 local standard time, LST). The maximum frequency of rain was located in a narrow strip, along the lower slopes of the mountains and parallel to the orientation of the mountains. Significant diurnal variations are found in surface wind, temperature, and dewpoint temperature between days with and without afternoon thunderstorms (TSA and non-TSA days). Before thunderstorms occurred, on TSA days, the surface temperature was warmer (about 0.3–2.4 °C) and the surface dewpoint temperature was moister (about 1.6–2.8 °C) than non-TSA days. Sounding observations from northern Taiwan also showed warmer, higher moisture, and smaller wind–speed conditions on TSA days relative to non-TSA days. The largest average difference was in the 850–650 hPa layer with values of 3.0–4.5 °C drier on non-TSA days. And, wind speeds on non-TSA days between near surface and 6 km were 2–3 m s–1 stronger than on TSA days.
A fuzzy logic algorithm has been proposed to provide the objective guidance for the prediction of TSA using these membership functions of preconvective factors. Features functions of thunderstorms are derived from surface stations and sounding measurements that highlight the preconvective characteristics of days with TSA that best differentiate them from synoptically undisturbed days. There are total 28 membership functions and associated weights in fuzzy logic approach are derived and determined based on the optimization of the critical success index (CSI). The results quantitatively illustrate that synoptically relatively warmer and moister conditions, sea breezes transport moisture into the inland, and weak winds in the inland provide the proper conditions in inducing afternoon convective activity. In addition, the relatively simple persistence rule is also useful for prediction of afternoon thunderstorms, i.e., there is high probability that afternoon thunderstorms occur consecutively for a few days when the environmental conditions are right. Evaluation with the validation dataset (2009–2010) suggests that the fuzzy logic algorithm has the capability to integrate the preconvective factors and provide the probability guidance for the predictions of TSA, and the highly predictive potential that could be implemented in real-time operations.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:51:31Z (GMT). No. of bitstreams: 1
ntu-100-D92229001-1.pdf: 5327781 bytes, checksum: 6714b7d7f59f22c0ab16366fbbc7fb63 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsApproval of Advisory Committee
Acknowledgements
Abstract -------------------------------------------------------------------------------------------------------- I
Chinese Abstract ------------------------------------------------------------------------------------------ V
Table of Contents --------------------------------------------------------------------------------------- VII
List of Tables ---------------------------------------------------------------------------------------------- XI
List of Figures ------------------------------------------------------------------------------------------ XIII
Chapter1 Introduction ----------------------------------------------------------------------------- 1
Chapter 2 Data and methodology ------------------------------------------------------------ 7
Chapter 3 Reflectivity climatology in constructing radar hybrid scans ----- 11
3.1 Radar reflectivity climatology ---------------------------------------------------------- 12
3.2 Construction of hybrid scans using reflectivity climatology ---------------- 15
3.2.1 Rainfall climatology -------------------------------------------------------------------- 15
3.2.2 Climatology–based hybrid scan ------------------------------------------------------ 16
3.3 Evaluation -------------------------------------------------------------------------------------- 20
3.4 Summary --------------------------------------------------------------------------------------- 22
Chapter 4 Afternoon thunderstorm characteristics under weak synoptic-scale forcing ---------------------------------------------------------------------------------- 25
4.1 Overview — distributions of rainfall, reflectivity, and CG lightning ------ 25
4.2 Characteristics of thunderstorms ------------------------------------------------------ 27
4.2.1 Temporal variations --------------------------------------------------------------------- 27
4.2.2 Hovmoller diagram over the mountain slopes ------------------------------------- 29
4.2.3 Genesis regions -------------------------------------------------------------------------- 32
4.2.4 Movement of storms ------------------------------------------------------------------- 33
4.2.5 Composite vertical structures --------------------------------------------------------- 35
4.3 Preconvective environments ------------------------------------------------------------ 37
4.3.1 Definition of thunderstorm days ------------------------------------------------------ 38
4.3.2 Diurnal variations ----------------------------------------------------------------------- 39
4.3.3 Composite sounding profiles ---------------------------------------------------------- 42
4.4 Discussions -------------------------------------------------------------------------------------45
4.5 Summary --------------------------------------------------------------------------------------- 48
Chapter 5 Objective prediction of TSA in northern Taiwan using a fuzzy logic approach ------------------------------------------------------------------------------ 51
5.1 Distributions and functions -------------------------------------------------------------- 51
5.1.1 Feature distribution functions --------------------------------------------------------- 52
5.1.2 Conditional probability functions ---------------------------------------------------- 54
5.2 The fuzzy logic approach ---------------------------------------------------------------- 56
5.2.1 Fuzzification ----------------------------------------------------------------------------- 56
5.2.2 Composition ----------------------------------------------------------------------------- 57
5.2.3 Determination of an optimal threshold ---------------------------------------------- 63
5.2.4 Evaluation -------------------------------------------------------------------------------- 65
5.3 Discussions ------------------------------------------------------------------------------------ 66
5.3.1 Reduction of membership functions ------------------------------------------------- 66
5.3.2 Bad cases --------------------------------------------------------------------------------- 67
5.4 Summary --------------------------------------------------------------------------------------- 71
Chapter 6 Conclusions --------------------------------------------------------------------------- 73
Chapter 7 Future work -------------------------------------------------------------------------- 79
Reference --------------------------------------------------------------------------------------------------- 83
Tables -------------------------------------------------------------------------------------------------------- 99
Figures ----------------------------------------------------------------------------------------------------- 109
dc.language.isoen
dc.title弱綜觀環境下台灣午後對流特徵及其客觀預報zh_TW
dc.titleWarm Season Afternoon Thunderstorm Characteristics under Weak Synoptic-Scale Forcing over Taiwan Island and Its Objective Predictionen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳泰然(George Tai-Jen Chen),吳俊傑(Chun-Chieh Wu),郭鴻基(Hung-Chi Kuo),廖宇慶(Yu-Chieng Liou),簡芳菁(Fang-Ching Chien),劉清煌(Ching-Hwang Liu)
dc.subject.keyword回波氣候統計,合成仰角,午後對流特徵,對流前環境特徵,模糊邏輯算則,隸屬函數,zh_TW
dc.subject.keywordreflectivity climatology,hybrid scan,afternoon thunderstorm,characteristics,preconvective factor,fuzzy logic,membership function,en
dc.relation.page161
dc.rights.note有償授權
dc.date.accepted2011-02-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
5.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved