Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48282
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張璞曾(Fok-Ching Chong)
dc.contributor.authorMeng-Lun Hsuehen
dc.contributor.author薛孟倫zh_TW
dc.date.accessioned2021-06-15T06:51:11Z-
dc.date.available2014-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-15
dc.identifier.citation[1] L. A. Geddes, 'Birth of the Stethoscope,' IEEE Engineering in Medicine and Biology Magazine, Vol. 5, (January/February), pp. 84-86, 2005.
[2] P. J. Bishop, 'Evolution of the Stethoscope,' Journal of the Royal Society of Medicine, Vol. 73, pp. 448-456, 1980.
[3] R.-i. Abdulla, 'The History of the Stethoscope,' Pediatric Cardiology, Vol. 22, pp. 371-372, 2001.
[4] S. S. K, Hans Pasterkamp, and George R. Wodicka, 'Respiratory Sounds-Advances Beyond the Stethoscope,' Am. J. Respir. Crit. Care Med. , Vol. 156, pp. 974-987, 1997.
[5] J. Vanderschoot, A.R.A. Sovijärvi ,and J.E. Earis, 'Standardization of Computerized Respiratory Sound Analysis,' Eur Respir Rev. Vol. 10, No. 77, pp. 585-645, 2000.
[6] G. Charbonneau, N. Meslier, and J-L. Racineux, 'Wheezes,' Eur. Respir. J., Vol. 8, pp. 1942-1948, 1995.
[7] M. Bahoura, 'Pattern recognition methods applied to respiratory sounds classification into normal and wheeze Classes, ' Computers in Biology and Medicine, Vol. 39, pp. 824-843, 2009.
[8] M. J. Murray, 'Critical care medicine: perioperative management, ' pp.380, Lippincott Williams & Wilkins, 2002.
[9] C. Kroen, 'Back to the Bedside: The Art of Physical Diagnosis,' The Hospitalist, Vol. 7, No. 1, (January/February), pp. 22-31, 2003.
[10] L. Williams and Wilkins, 'Auscultation Skills: Breath and Heart Sounds,' Springhouse, pp.256,2009.
[11] H. Pasterkamp, W. Wiebicke, and R. Fenton, 'Subjective Assessment vs Computer Analysis of Wheezing in Asthma,' Chest, Vol. 91, pp. 376-381, 1987.
[12] Bor Shing Lin, et al. 'Wheeze Recognition Based on 2D Bilateral Filtering of Spectrogram,' Biomedical Engineering Applications, Basis and Communications, Vol. 18, pp. 128-137, 2006.
[13] R. J. José A. Fiz, et al. 'Detection of Wheezing During Maximal Forced Exhalation in Patients with Obstructed Airways,' Chest, Vol. 122, pp. 186-191, 2002.
[14] R.J. Riella, P. Nohama and J. M. Maia, 'Method for automatic detection of wheezing in lung sounds,' Brazilian Journal of Medical and Biological Research, Vol. 42, pp. 674-684, 2009.
[15] Antoni Homs-Corbera, et al. 'Time-Frequency Detection and Analysis of Wheezes during Forced Exhalation,' IEEE Transactions on Biomedical Engineering, Vol. 51, No.1, pp. 182-186, 2004.
[16] Styliani A. Taplidou, and L. J. Hadjileontiadis, 'Wheeze Detection based on Time-Frequency Analysis of Breath Sounds,' Computers in Biology and Medicine, Vol. 37, pp. 1073-1083, 2007.
[17] Sonia Charleston, M. R. Azimi-Sadjadi, and Ramon Gonz´alez-Camarena, 'Interference Cancellation in Respiratory Sounds via a Multiresolution Joint Time-Delay and Signal-Estimation Scheme,' IEEE Transactions on Biomedical Engineering, Vol. 44, No. 10, pp. 1006-1019, October 1997.
[18] H. Pasterkamp, I. G. R. Wodicka, and S. S. Kraman, 'Effect of Ambient Respiratory Noise on the Measurement of Lung Sounds,' Medical and Biological Engineering and Computing, Vol. 37, pp. 461-465, 1999.
[19] M. Waris, et al. 'A New Method for Automatic Wheeze Detection,' Technology and Health Care, Vol. 6, pp. 33-40, 1998.
[20] P. Forgacs, 'Crackles and Wheezes,' The Lancet, Vol. 290, pp. 203-205, July 22, 1967.
[21] Anthony Seaton, et al. 'Crofton and Douglas's respiratory diseases,' Vol. 1, Wiley-Blackwell, 2000.
[22] C. Y. Cheng, 'Third and Last Breath,' Clinical Vignettes, Vol. 39, No. 3, pp. 16-20, March 2007.
[23] Noam Gavriely, et al. 'Measurement and theory of wheezing breath sounds,' J. Appl. Physiol., Vol. 57, pp. 481-492, Aug. 1984.
[24] Meng-Lun Hsueh, et al. 'Respiratory Wheeze Detection System,' Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005.
[25] Yu-Cheng Wu, et al. 'Reliability Analysis of Lung Sound Recording by Analog-to-Digital Converter and Sound Card,' International Conference on Manufacturing and Engineering Systems, Taipei, Taiwan, 2009.
[26] M. R. Portnoff, 'Short-Time Fourier Analysis of Sampled Speech,' IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 29, No. 3, pp. 364-373, June 1981.
[27] A. K. Jain, M. N. Murty, and P.J. Flynn, 'Data Clustering: A Review,' ACM Computing Surveys, Vol. 31, No.3, pp. 264-323, September 1999.
[28] J. MacQueen, 'Some Methods for Classification and Analysis of Multivariate Observations,' Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California, Vol.1, pp. 281-297, 1967.
[29] Shu-Heng Chen, Paul Wang, and Tzu-wen Kuo, 'Computational Intelligence in Economics and Finance,' Vol. 2, Springer, pp.126, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48282-
dc.description.abstract本論文主要是使用彩色聲譜圖來呈現哮鳴的時頻特徵,並利用k群聚演算法來偵測哮鳴。k群聚演算法主要執行的是分群的工作,其中,群聚組數必須人為先做設定,經過測試後,k值選擇設定成三,三可以在彩色聲譜圖中,對應到紅、綠、藍三個顏色,也可以在聲譜圖上顯示哮鳴。但是k群聚演算法中群組編號的分派是隨機的,因此對應到哮鳴病徵的顏色會產生不固定的現象,本研究利用色彩索引法來修正k群聚演算法,將三個群組編號依照在聲譜圖中所佔的面積比例製作成索引,再將哮鳴索引出來,並標示成紅色。
除此之外,此方法也應用至正常的呼吸音,雜訊消除的效應也一起被探討。結果顯示,經過修正k群聚演算法,不論是正常或哮鳴,訊號-雜訊比都約可提升2dB,同時,色彩索引的製作可以使得哮鳴在彩色聲譜圖上能夠具有穩定的再現性,才能夠提供給醫生,並且能對醫生有幫助。
zh_TW
dc.description.abstractThe aim of this study is to present wheeze time-frequency characteristics in color scales spectrogram, and k-means clustering algorithm is applied to detect wheezes. k-means clustering algorithms are grouped according to its spectrogram nature. The first step is to preset the k value, representing the grouping number. After experiment testing, the k value is set to three. This number corresponds to the color scale spectrogram are red, green, and blue. Wheeze sounds can also be displayed on the spectrogram. However, k-means clustering algorithms group number is assigned randomly. Therefore, the color corresponding to wheezing symptoms has no fixed color. Through the color-indexing method, the wheezing color is set to be red in accordance with the color index production proportions.
In addition, this method is also applied to the normal respiratory sounds, and the effects of noise reduction are discussed. After using modified k-means clustering algorithm, the results show that the signal-to-noise ratios are improved for about 2dB for wheeze and normal cases. The color index can mark wheezing sounds on the color spectrogram in red, and this has a stable representation and reproducibility. This helps the doctor very much in wheeze detection.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:51:11Z (GMT). No. of bitstreams: 1
ntu-100-D91921024-1.pdf: 613051 bytes, checksum: e1a5febee6794517454fb41ffa3fcdba (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Abstract i
List of Figures ii
List of Tables iv
Chapter 1 Introduction 1
1.1 Introduction to Respiratory Sounds 1
1.2 Literature Review 5
1.3 Purposes 8
1.3.1 Problem Statement 8
1.3.2 Motivation 9
1.3.3 Expected results 9
1.4 Dissertation organization 11
Chapter 2 Respiratory Wheeze Detection System 12
2.1 The Wheezes Sounds Production Mechanism 12
2.2 System Architecture 14
2.3 Clinical Recording 16
Chapter 3 Methods 17
3.1 Introduction to Analysis Techniques 17
3.2 Signal Processing Procedure 18
3.3 Time-Frequency Analysis Techniques 20
3.4 k-Means Clustering Algorithm 23
3.5 Color Indexing Approach 27
Chapter 4 Results 30
4.1 The options of the time and frequency resolutions 31
4.2 The rearrangement of color distribution 35
4.3 Comparison of Normal and Wheeze Spectrogram 38
4.4 Wheeze Segmentation 41
Chapter 5 Discussion 42
Chapter 6 Conclusion 45
6.1 Contributions 45
6.2 Future work 46
References 47
dc.language.isoen
dc.subject再現性zh_TW
dc.subject聲譜圖zh_TW
dc.subject哮鳴zh_TW
dc.subjectk群聚演算法zh_TW
dc.subject色彩索引zh_TW
dc.subject訊號-雜訊比zh_TW
dc.subjectspectrogramen
dc.subjectreproducibilityen
dc.subjectsignal-to-noise ratioen
dc.subjectcolor-indexingen
dc.subjectk-means clustering algorithmen
dc.subjectwheezesen
dc.title利用修正k群聚演算法偵測哮鳴zh_TW
dc.titleWheeze Detection using Modified k-Means Clustering Algorithmen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.coadvisor吳惠東(Huey-Dong Wu),盧並裕(Bing-Yuh Lu)
dc.contributor.oralexamcommittee陳友倫(Yu-Luen Chen),林耀仁(Yaw-Jen Lin),陸哲駒(Jer-Junn Luh),余松年(Sung-Nien Yu),詹曉龍(Hsiao-Lung Chan),林志隆(Chih-Lung Lin)
dc.subject.keyword聲譜圖,哮鳴,k群聚演算法,色彩索引,訊號-雜訊比,再現性,zh_TW
dc.subject.keywordspectrogram,wheezes,k-means clustering algorithm,color-indexing,signal-to-noise ratio,reproducibility,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2011-02-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
598.68 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved