Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周涵怡(Han-Yi Chou)
dc.contributor.authorChung-Ju Kaoen
dc.contributor.author高仲儒zh_TW
dc.date.accessioned2021-06-15T06:49:55Z-
dc.date.available2012-03-03
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-18
dc.identifier.citation1. Bauerfeind, R., and Huttner, W. B. (1993) Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles, Curr Opin Cell Biol 5, 628-635.
2. Kelly, R. B. (1993) Storage and release of neurotransmitters, Cell 72 Suppl, 43-53.
3. Thomas-Reetz, A. C., and De Camilli, P. (1994) A role for synaptic vesicles in non-neuronal cells: clues from pancreatic beta cells and from chromaffin cells, FASEB J 8, 209-216.
4. Seino, S., and Shibasaki, T. (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis, Physiol Rev 85, 1303-1342.
5. Szaszak, M., Christian, F., Rosenthal, W., and Klussmann, E. (2008) Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells, Cell Signal 20, 590-601.
6. Evans, G. J., and Morgan, A. (2003) Regulation of the exocytotic machinery by cAMP-dependent protein kinase: implications for presynaptic plasticity, Biochem Soc Trans 31, 824-827.
7. Hardie, D. G. (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status, Endocrinology 144, 5179-5183.
8. Sidani, S., Kopic, S., Socrates, T., Kirchhoff, P., Foller, M., Murek, M., Capasso, A., and Geibel, J. P. (2009) AMP-activated protein kinase: a physiological off switch for murine gastric acid secretion, Pflugers Arch 459, 39-46.
9. Cheng, X. B., Wen, J. P., Yang, J., Yang, Y., Ning, G., and Li, X. Y. (2011) GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase, Endocrine 39, 6-12.
10. Dufer, M., Noack, K., Krippeit-Drews, P., and Drews, G. (2010) Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse beta-cells, Islets 2, 156-163.
11. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome, Science 298, 1912-1934.
12. Bright, N. J., Carling, D., and Thornton, C. (2008) Investigating the regulation of brain-specific kinases 1 and 2 by phosphorylation, J Biol Chem 283, 14946-14954.
13. Okamoto, M., Takemori, H., and Katoh, Y. (2004) Salt-inducible kinase in steroidogenesis and adipogenesis, Trends Endocrinol Metab 15, 21-26.
14. Bright, N. J., Thornton, C., and Carling, D. (2009) The regulation and function of mammalian AMPK-related kinases, Acta Physiol (Oxf) 196, 15-26.
15. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M., and Mandelkow, E. (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption, Cell 89, 297-308.
16. Beullens, M., Vancauwenbergh, S., Morrice, N., Derua, R., Ceulemans, H., Waelkens, E., and Bollen, M. (2005) Substrate specificity and activity regulation of protein kinase MELK, J Biol Chem 280, 40003-40011.
17. Wang, Z., Takemori, H., Halder, S. K., Nonaka, Y., and Okamoto, M. (1999) Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal, FEBS Lett 453, 135-139.
18. Horike, N., Takemori, H., Katoh, Y., Doi, J., Min, L., Asano, T., Sun, X. J., Yamamoto, H., Kasayama, S., Muraoka, M., Nonaka, Y., and Okamoto, M. (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2, J Biol Chem 278, 18440-18447.
19. Katoh, Y., Takemori, H., Horike, N., Doi, J., Muraoka, M., Min, L., and Okamoto, M. (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis, Mol Cell Endocrinol 217, 109-112.
20. Screaton, R. A., Conkright, M. D., Katoh, Y., Best, J. L., Canettieri, G., Jeffries, S., Guzman, E., Niessen, S., Yates, J. R., 3rd, Takemori, H., Okamoto, M., and Montminy, M. (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector, Cell 119, 61-74.
21. Ahmed, A. A., Lu, Z., Jennings, N. B., Etemadmoghadam, D., Capalbo, L., Jacamo, R. O., Barbosa-Morais, N., Le, X. F., Vivas-Mejia, P., Lopez-Berestein, G., Grandjean, G., Bartholomeusz, G., Liao, W., Andreeff, M., Bowtell, D., Glover, D. M., Sood, A. K., and Bast, R. C., Jr. (2010) SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer, Cancer Cell 18, 109-121.
22. Bettencourt-Dias, M., Giet, R., Sinka, R., Mazumdar, A., Lock, W. G., Balloux, F., Zafiropoulos, P. J., Yamaguchi, S., Winter, S., Carthew, R. W., Cooper, M., Jones, D., Frenz, L., and Glover, D. M. (2004) Genome-wide survey of protein kinases required for cell cycle progression, Nature 432, 980-987.
23. Sjostrom, M., Stenstrom, K., Eneling, K., Zwiller, J., Katz, A. I., Takemori, H., and Bertorello, A. M. (2007) SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process, Proc Natl Acad Sci U S A 104, 16922-16927.
24. Choi, S. Y., Li, J., Jo, S. H., Lee, S. J., Oh, S. B., Kim, J. S., Lee, J. H., and Park, K. (2006) Desipramine inhibits Na+/H+ exchanger in human submandibular cells, J Dent Res 85, 839-843.
25. Shimomura, H., Imai, A., and Nashida, T. (2004) Evidence for the involvement of cAMP-GEF (Epac) pathway in amylase release from the rat parotid gland, Arch Biochem Biophys 431, 124-128.
26. Yamada, K., Inoue, H., Kida, S., Masushige, S., Nishiyama, T., Mishima, K., and Saito, I. (2006) Involvement of cAMP response element-binding protein activation in salivary secretion, Pathobiology 73, 1-7.
27. Kasai, H. (1999) Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function, Trends Neurosci 22, 88-93.
28. Dean, P. M. (1973) Ultrastructural morphometry of the pancreatic -cell, Diabetologia 9, 115-119.
29. Kits, K. S., and Mansvelder, H. D. (2000) Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation, Brain Res Brain Res Rev 33, 78-94.
30. Barg, S. (2003) Mechanisms of exocytosis in insulin-secreting B-cells and glucagon-secreting A-cells, Pharmacol Toxicol 92, 3-13.
31. Straub, S. G., and Sharp, G. W. (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion, Diabetes Metab Res Rev 18, 451-463.
32. Kennelly, P. J., and Krebs, E. G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases, J Biol Chem 266, 15555-15558.
33. Skalhegg, B. S., and Tasken, K. (1997) Specificity in the cAMP/PKA signaling pathway. differential expression, regulation, and subcellular localization of subunits of PKA, Front Biosci 2, d331-342.
34. Gamm, D. M., Baude, E. J., and Uhler, M. D. (1996) The major catalytic subunit isoforms of cAMP-dependent protein kinase have distinct biochemical properties in vitro and in vivo, J Biol Chem 271, 15736-15742.
35. Hansson, V., Skalhegg, B. S., and Tasken, K. (2000) Cyclic-AMP-dependent protein kinase (PKA) in testicular cells. Cell specific expression, differential regulation and targeting of subunits of PKA, J Steroid Biochem Mol Biol 73, 81-92.
36. Hashimoto, Y. K., Satoh, T., Okamoto, M., and Takemori, H. (2008) Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity, J Cell Biochem 104, 1724-1739.
37. Gao, Z., Young, R. A., Trucco, M. M., Greene, S. R., Hewlett, E. L., Matschinsky, F. M., and Wolf, B. A. (2002) Protein kinase A translocation and insulin secretion in pancreatic beta-cells: studies with adenylate cyclase toxin from Bordetella pertussis, Biochem J 368, 397-404.
38. Dentin, R., Liu, Y., Koo, S. H., Hedrick, S., Vargas, T., Heredia, J., Yates, J., 3rd, and Montminy, M. (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2, Nature 449, 366-369.
39. Matenia, D., and Mandelkow, E. M. (2009) The tau of MARK: a polarized view of the cytoskeleton, Trends Biochem Sci 34, 332-342.
40. Drewes, G., Ebneth, A., and Mandelkow, E. M. (1998) MAPs, MARKs and microtubule dynamics, Trends Biochem Sci 23, 307-311.
41. Timm, T., Marx, A., Panneerselvam, S., Mandelkow, E., and Mandelkow, E. M. (2008) Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein, BMC Neurosci 9 Suppl 2, S9.
42. Uebi, T., Tamura, M., Horike, N., Hashimoto, Y. K., and Takemori, H. (2010) Phosphorylation of the CREB-specific coactivator TORC2 at Ser(307) regulates its intracellular localization in COS-7 cells and in the mouse liver, Am J Physiol Endocrinol Metab 299, E413-425.
43. Janssens, V., and Goris, J. (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling, Biochem J 353, 417-439.
44. MacDonald, P. E., El-Kholy, W., Riedel, M. J., Salapatek, A. M., Light, P. E., and Wheeler, M. B. (2002) The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion, Diabetes 51 Suppl 3, S434-442.
45. Takahashi, N., Kadowaki, T., Yazaki, Y., Ellis-Davies, G. C., Miyashita, Y., and Kasai, H. (1999) Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic beta cells, Proc Natl Acad Sci U S A 96, 760-765.
46. Karaca, M., Magnan, C., and Kargar, C. (2009) Functional pancreatic beta-cell mass: involvement in type 2 diabetes and therapeutic intervention, Diabetes Metab 35, 77-84.
47. Sasaki, T., Takemori, H., Yagita, Y., Terasaki, Y., Uebi, T., Horike, N., Takagi, H., Susumu, T., Teraoka, H., Kusano, K., Hatano, O., Oyama, N., Sugiyama, Y., Sakoda, S., and Kitagawa, K. (2011) SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB, Neuron 69, 106-119.
48. Burchfield, J. G., Lopez, J. A., Mele, K., Vallotton, P., and Hughes, W. E. (2010) Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy, Traffic 11, 429-439.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48241-
dc.description.abstract唾液腺是人體口腔中非常重要的腺體,它的分泌提供了保護功能以及消化功能。從免疫組織染色中我們發現屬於AMPK家族一員的SIK2蛋白在唾液腺中有高度的表現。SIK2的Serine587是PKA潛在的磷酸化位置,而PKA是腺體分泌中最主要的調控因子。我們發現SIK2-S587周圍的序列在脊椎動物中是高度保存的,同時我們證明了PKA與SIK2存在於同一個複合體,而且PKA可以在in vivo和in vitro的實驗中磷酸化SIK2-S587。另外我們也發現SIK2-S587的磷酸化確實會發生於唾液腺以及其他以Large dense core vesicle (LDCV)進行分泌的腺體。利用以LDCV分泌胰島素的β細胞中,我們發現葡萄糖的刺激可以快速的促使SIK2-S587的磷酸化,而且這個磷酸化的現象和PKA的活化有關。免疫螢光染色也顯示SIK2-pS587與PKA同時存在於部份的胰島素小泡中,暗示著SIK2和PKA的交互作用可能和胰島素小泡的調控相關。另外,經由TIRF顯微鏡我們也發現,在葡萄糖刺激後,SIK2-pS587和細胞膜周圍胰島素小泡的交互作用明顯上升,顯示SIK2-S587的磷酸化可能參與在β細胞中控制胰島素小泡運輸的機制上。這些證據暗示了SIK2可能在調控LDCV的分泌中扮演一個重要的角色。zh_TW
dc.description.abstractSalivary glands are an important secretory tissue of the oral cavity. From Immunohistochemical staining, we found that SIK2, a member of the AMPK family proteins, is highly expressed in salivary glands. The Ser587 residue of SIK2 has been identified as a putative phosphorylation site of PKA, which is a principal modulator in the regulation of secretion. Here we demonstrate that the context sequence around Ser587 residue of SIK2 is highly conserved among veterbrates, and identify PKAβ as the kinase that physically associates and phosphorylates SIK2 at S587 in vivo and in vitro. This phosphorylation occurs not only in the salivary glands but also in various Large dense core vesicle (LDCV)-secreting glands. Using the LDCV-mediated secretion of insulin model of β islet cells, we found that SIK2-S587 is rapidly phosphorylated upon glucose stimulation, and that this phosphorylation strongly correlates with PKA activation under physiological conditions. In Rinm5F insulinoma cells, SIK2-pS587 and PKAβ colocalize to insulin-containing LDCVs, while TEM observations indicate that SIK2-S587 phosphorylation can occurs as early as in reserve pool insulin vesicles. Our kinetics studies indicate that massive translocation of SIK2-pS587 containing insulin vesicles occurs upon glucose stimulation as observed under Total Internal Reflection Fluorescence Microscopy (TIRF). Taken together, our data suggest an important role for SIK2 in LDCV secretion, and that SIK2 may crosstalk with PKA to regulate insulin vesicle translocation in β islet cells.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:49:55Z (GMT). No. of bitstreams: 1
ntu-100-R97450003-1.pdf: 9954059 bytes, checksum: a6d515e763ebe4b24dee3013a17b6e7f (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 …………………………………………………………………...……...…...I
ABSTRACT ………………………………………………………………..…..……...II
CONTENTS …………………………………………………………….………,,…….1
INTRODUCTION …………………………………………………………….….…....7
-- Biogenesis of secretory proteins …………………………….......................................7
-- Characteristics of the regulated secretion pathway …………………………….…......8
-- cAMP-PKA pathway is a major modulator of various secretory systems ………..….8
-- The importance and composition of salivary glands …………….………...…....……9
-- The AMP-activated protein kinase family proteins ……………………………....…10
-- The expression and functions of SIKs ……………………………………………....12
-- Hypothesis …………………………………………………………………….……..13
-- The biogenesis and composition of insulin vesicles ………….………………….….14
-- The major signaling pathway and release kinetic of insulin vesicle exocytosis …....15
MATERIALS AND METHODS ……………………………………………..….…..18
-- DNA constructs and antibodies ………………………………………………..…....18
-- Cell culture and transfection ………………………………………………...…...…18
-- Immunopreipitation and western blot analysis ……………………………...……...19
-- In vitro kinase assay …………………………………………………………..........19
-- Immunofluorescence staining, Confocal microscopy and TIRF microscopy ……....20
-- In vivo perfusion assay ……………………………………………………….......…21
-- Immunohistochemistry ………………………………………………………….…..22
RESULTS …………………………………………………………………….…….....23
-- SIK2 is specifically expressed in salivary glands ……….………………….….…....23
-- SIK2-S587 is the substrate of PKA …………………………………………..……...23
-- SIK2-pS587 is widely expressed in various LDCV-secreting glands ……….….…..28
-- SIK2-pS587 is expressed in pancreatic β cells ……………………………….….….29
-- Glucose stimulation promotes SIK2-S587 phosphorylation which is correlated
with PKA activation ………………………………………………………….….….30
-- SIK2-pS587 is colocalized with PKAβ in insulin-containing LDCVs ………….….31
-- PKA/SIK2 crosstalk may be involved in the regulation of insulin vesicle
translocation ………………,…………………………………………….…..……...34
DISCUSSION ……………………………………………………………...…………37
FUTURE WORK …………………………………………………………………….44
-- Part 1 : Functional studies of SIK2 ………………………………………………....44
-- Part 2 : Live-tracking and kinetics studies of insulin vesicle transport ………...…..45
-- Part 3 : The animal models for SIK2 research …………………………………..….46
REFERENCES ……………………………………………………………...…….....47
FIGURES LEGENDS ……………………………………………………...….……..55
-- SIK2 is highly expressed in salivary glands ………………………………....…...…55
-- The PKA target consensus around SIK2-S587 is highly conserved among
vertebrates ……………………………………………………………….…..……...56
-- The schematic representation of SIK2 and SIK2-pS587 antibodies design and the
characterization of SIK2-pS587 antibody ……………………………………...…...57
-- cAMP-PKA signaling modulates the phosphorylation of SIK2-S587 …………........58
-- Overexpression of PKAcs augments SIK2-S587 phosphorylation in vivo ……..…...59
-- The enhancement of SIK2-S587 phosphorylation is PKA dose-dependent ….......…60
-- Only PKAβ is present in immuno-complexes containing SIK2 ……….……..….….61
-- PKAβ can phosphorylate SIK2 at S587 in vitro ……………………………......…...62
-- SIK2-S587 phosphorylation occurs in salivary glands …………………..….……....63
-- A population of SIK2 expressed in thyroid and adrenal glands is phosphorylated
at S587 ……….……………………………………………………………...……...64
-- SIK2 is specifically located on pancreatic islet cells corresponds to insulin staining
pattern ……………………………………………………………………...…...…..65
-- Phosphorylation of SIK2 at S587 correlates with PKA activation in feeding rats ….66
-- The methodological design and the flow chart of in vivo perfusion assay ……........67
-- Glucose is sufficient to trigger SIK2-S587 phosphorylation in the fasting rats ........68
-- SIK2 colocalized with activate PKA at the peripheric rim of insulin secreting
cells ……………………………………………………………………………...…..69
-- S587 phosphorylated subpopulation of SIK2 is enriched near the plasma membrane
upon glucose stimulation …………………………………………………..…...…...70
-- SIK2-pS587 is colocalized with PKAβ in insulin containing granules which
resemble LDCVs ….…………………………………………………………...……71
-- Glucose stimulation triggers SIK2-S587 phosphorylation and causes the augment
of colocalization between SIK2-pS587 and insulin vesicles ………………..............72
-- Glucose stimulation triggers PKA/SIK2 crosstalk in insulin LDCVs …………...….73
-- SIK2 S587 phosphorylation occurs as early as in reserve pool insulin LDCVs …….74
-- PKA/SIK2 crosstalk may be involved in the regulation of insulin vesicle
translocation ………………………………………………………………………....75
SUPPLEMENTARY DATA …………………………………………………....…….76
-- The schematic representation of Flag-SIK2-WT, Flag-SIK2-S587 and
Flag-SIK2-KD vectors ……………………………………………………….…......76
-- The schematic representation of TIRF microscopic observation while PKA/SIK2
crosstalk regulates insulin vesicles translocation ……………………………......….77
-- The schematic representation of TIRF microscopic observation while PKA/SIK2
crosstalk regulates insulin vesicles docking .…………………………………...…...78
-- The possible role of SIK2 in regulating systemic homeostasis ………………….….79
-- The possible effect of SIK2 kinase activity and its associated proteins on the
S587 residue phosphorylation ……………………………………,,,....…..…...……80
-- The phosphorylation of SIK2-S587 at the reaction of Flag-SIK2-WT with ATP
only was diminished by adding selective PKA inhibitor H89………….….…....…...81
-- PKAβ is also associated with SIK2-kinase dead protein ………………….………..81
APPENDIX ………………………………………………………………….…….….82
-- The PKA dependent and PKA independent pathway of cAMP regulated vesicle
exocytosis …………………………………………………………………….……..82
-- The role of SIK1 in switching on and off steroidogenic gene expression at the
initial phase of ACTH stimulation ………………………………………….….…...83
-- The role of SIK2 in modulating insulin signaling in the adipocytes ……….….…....84
-- The role of SIK2 in regulating the localization of TORC2, thereby affecting
CREB-dependent gene expression …………………………………….…….……..85
-- Vesicle pools in β cells …………………………………….…………….….………86
-- The signaling pathway of Glucose-stimulated insulin secretion ……….……….….87
-- Release kinetics of glucose-induced insulin secretion …………….……….….……88
-- Schematic representation of PKA structure and activation ………………..……….89
-- The expression of SIK2 in various glands which were published from Human
Protein Atlas website …………………………………………………………..…...90
-- Scheme illustrating the translocation of granules from reserve pools to
exocytosis ………………………………………………………………….……..…91
dc.language.isoen
dc.subject胰島素小泡zh_TW
dc.subject分泌zh_TW
dc.subjectSIK2zh_TW
dc.subjectPKAzh_TW
dc.subjectβ細胞zh_TW
dc.subjectsecretionen
dc.subjectinsulin vesiclesen
dc.subjectβ cellsen
dc.subjectPKAen
dc.subjectSIK2en
dc.title探討SIK2蛋白於調控LDCVs分泌之功能角色zh_TW
dc.titleThe functional role of SIK2 in regulating large dense core vesicles (LDCVs) secretionen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee司徒惠康,沈湯龍
dc.subject.keyword分泌,SIK2,PKA,β細胞,胰島素小泡,zh_TW
dc.subject.keywordsecretion,SIK2,PKA,β cells,insulin vesicles,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2011-02-18
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
9.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved