請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48223完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉如(Yu-Ju Chen) | |
| dc.contributor.author | Tzu-Hsin Chan | en |
| dc.contributor.author | 詹子欣 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:49:23Z | - |
| dc.date.available | 2013-07-06 | |
| dc.date.copyright | 2011-07-06 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-03-16 | |
| dc.identifier.citation | 1. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K. (2005) Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America 102, 10451-10453.
2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A. (2005) Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 197-200. 3. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K., and Morpurgo, A. F. (2007) Bipolar supercurrent in graphene, Nature 446, 56-59. 4. Tuinstra, F., and Koenig, J. L. (1970) RAMAN SPECTRUM OF GRAPHITE, Journal of Chemical Physics 53, 1126-&. 5. Cancado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S. S., and Jorio, A. (2004) Influence of the atomic structure on the Raman spectra of graphite edges, Physical Review Letters 93. 6. Nakamura, K., and Kitajima, M. (1992) ION-IRRADIATION EFFECTS ON THE PHONON CORRELATION LENGTH OF GRAPHITE STUDIES BY RAMAN-SPECTROSCOPY, Physical Review B 45, 78-82. 7. Ferrari, A. C., and Robertson, J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61, 14095-14107. 8. Anderson, N., Hartschuh, A., Cronin, S., and Novotny, L. (2005) Nanoscale vibrational analysis of single-walled carbon nanotubes, Journal of the American Chemical Society 127, 2533-2537. 9. Pettinger, B., Ren, B., Picardi, G., Schuster, R., and Ertl, G. (2004) Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy, Physical Review Letters 92. 10. Raman, C. V., and Krishnan, K. S. (1928) A new type of secondary radiation, Nature 121, 501-502. 11. Placzek, G. (1934) Rayleigh Streeung und Raman Effekt, Hdb. der Radiologie Vol. VI., 2. 12. Khanna, R. K., Stranz, D. D., and Donn, B. (1981) A SPECTROSCOPIC STUDY OF INTERMEDIATES IN THE CONDENSATION OF REFRACTORY SMOKES - MATRIX-ISOLATION EXPERIMENTS OF SIO, Journal of Chemical Physics 74, 2108-2115. 13. Siu, D. C. T., Orville, A. M., Lipscomb, J. D., Ohlendorf, D. H., and Que, L. (1992) RESONANCE RAMAN STUDIES OF THE PROTOCATECHUATE 3,4-DIOXYGENASE FROM BREVIBACTERIUM-FUSCUM, Biochemistry 31, 10443-10448. 14. Smulevich, G., Paoli, M., Burke, J. F., Sanders, S. A., Thorneley, R. N. F., and Smith, A. T. (1994) CHARACTERIZATION OF RECOMBINANT HORSERADISH-PEROXIDASE-C AND 3 SITE-DIRECTED MUTANTS, F41V, F41W, AND R38K, BY RESONANCE RAMAN-SPECTROSCOPY, Biochemistry 33, 7398-7407. 15. Okuno, K., Uda, T., Ohira, S., and Naruse, Y. (1991) DEVELOPMENT OF INSITU GAS ANALYZER FOR HYDROGEN ISOTOPES IN FUSION FUEL GAS PROCESSING, Journal of Nuclear Science and Technology 28, 509-516. 16. Karmanenko, S. F. (1999) Influence of growth rate on the structural orientation of YBCO superconducting films, Superconductor Science & Technology 12, 36-44. 17. Schiferl, D., Nicol, M., Zaug, J. M., Sharma, S. K., Cooney, T. F., Wang, S. Y., Anthony, T. R., and Fleischer, J. F. (1997) The diamond C-13/C-12 isotope Raman pressure sensor system for high-temperature/pressure diamond-anvil cells with reactive samples, Journal of Applied Physics 82, 3256-3265. 18. Wikoff, W. R., Duda, R. L., Hendrix, R. W., and Johnson, J. E. (1999) Crystallographic analysis of the dsDNA bacteriophage HK97 mature empty capsid, Acta Crystallographica Section D-Biological Crystallography 55, 763-771. 19. Songprakob, W., Zallen, R., Liu, W. K., and Bacher, K. L. (2000) Infrared studies of hole-plasmon excitations in heavily-doped p-type MBE-grown GaAs : C, Physical Review B 62, 4501-4510. 20. Santoro, M., Gorelli, F. A., Ulivi, L., Bini, R., and Jodl, H. J. (2001) Antiferromagnetism in the high-pressure phases of solid oxygen: Low-energy electronic transitions, Physical Review B 64. 21. Le Tacon, M., Sacuto, A., Georges, A., Kotliar, G., Gallais, Y., Colson, D., and Forget, A. (2006) Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates, Nature Physics 2, 537-543. 22. Basova, T. V., Kolesov, B. A., Gurek, A. G., and Ahsen, V. (2001) Raman polarization study of the film orientation of liquid crystalline NiPc, Thin Solid Films 385, 246-251. 23. Huang, M. Y., Yan, H. G., Chen, C. Y., Song, D. H., Heinz, T. F., and Hone, J. (2009) Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy, Proceedings of the National Academy of Sciences of the United States of America 106, 7304-7308. 24. Nagasaki, Y., Yoshihara, T., and Ozaki, Y. (2000) Polarized infrared spectroscopic study on hindered rotation around the molecular axis in the smectic-C* phase of a ferroelectric liquid crystal with a naphthalene ring. Application of two-dimensional correlation spectroscopy to polarization angle-dependent spectral variations, Journal of Physical Chemistry B 104, 2846-2852. 25. Cooper, C. A., and Young, R. J. (1999) Investigation of structure/property relationships in particulate composites through the use of Raman spectroscopy, Journal of Raman Spectroscopy 30, 929-938. 26. Jorio, A., Fantini, C., Pimenta, M. A., Capaz, R. B., Samsonidze, G. G., Dresselhaus, G., Dresselhaus, M. S., Jiang, J., Kobayashi, N., Gruneis, A., and Saito, R. (2005) Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes, Physical Review B 71. 27. Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M. S. (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Physical Review Letters 86, 1118-1121. 28. Strano, M. S., Doorn, S. K., Haroz, E. H., Kittrell, C., Hauge, R. H., and Smalley, R. E. (2003) Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes, Nano Letters 3, 1091-1096. 29. Wu, Z. S., Deng, S. Z., Xu, N. S., Chen, J., and Zhou, J. (2002) Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties, Applied Physics Letters 80, 3829-3831. 30. Eliasson, C., and Matousek, P. (2007) Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy, Analytical Chemistry 79, 1696-1701. 31. Bicchieri, M., Sodo, A., Piantanida, G., and Coluzza, C. (2006) Analysis of degraded papers by non-destructive spectroscopic techniques, Journal of Raman Spectroscopy 37, 1186-1192. 32. Campion, A., and Kambhampati, P. (1998) Surface-enhanced Raman scattering, Chemical Society Reviews 27, 241-250. 33. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S. (1999) Ultrasensitive chemical analysis by Raman spectroscopy, Chemical Reviews 99, 2957-+. 34. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R., and Feld, M. S. (1997) Single molecule detection using surface-enhanced Raman scattering (SERS), Physical Review Letters 78, 1667-1670. 35. Neugebauer, U., Rosch, P., Schmitt, M., Popp, J., Julien, C., Rasmussen, A., Budich, C., and Deckert, V. (2006) On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy, Chemphyschem 7, 1428-1430. 36. Pettinger, B., Picardi, G., Schuster, R., and Ertl, G. (2002) Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces, Single Molecules 3, 285-294. 37. Bailo, E., and Deckert, V. (2008) Tip-enhanced Raman scattering, Chemical Society Reviews 37, 921-930. 38. Pettinger, B. (2006) Tip-enhanced Raman spectroscopy (TERS), Surface-Enhanced Raman Scattering: Physics and Applications 103, 217-240. 39. Doering, W. E., and Nie, S. M. (2002) Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement, Journal of Physical Chemistry B 106, 311-317. 40. McFarland, A. D., Young, M. A., Dieringer, J. A., and Van Duyne, R. P. (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy, Journal of Physical Chemistry B 109, 11279-11285. 41. Moskovits, M. (2006) Surface-enhanced Raman spectroscopy: a brief perspective, Surface-Enhanced Raman Scattering: Physics and Applications 103, 1-17. 42. Creighton, J. A., and Eadon, D. G. (1991) ULTRAVIOLET VISIBLE ABSORPTION-SPECTRA OF THE COLLOIDAL METALLIC ELEMENTS, Journal of the Chemical Society-Faraday Transactions 87, 3881-3891. 43. Langhammer, C., Yuan, Z., Zoric, I., and Kasemo, B. (2006) Plasmonic properties of supported Pt and Pd nanostructures, Nano Letters 6, 833-838. 44. Lombardi, J. R., Birke, R. L., Lu, T. H., and Xu, J. (1986) CHARGE-TRANSFER THEORY OF SURFACE ENHANCED RAMAN-SPECTROSCOPY - HERZBERG-TELLER CONTRIBUTIONS, Journal of Chemical Physics 84, 4174-4180. 45. Lombardi, J. R., and Birke, R. L. (2008) A unified approach to surface-enhanced Raman spectroscopy, Journal of Physical Chemistry C 112, 5605-5617. 46. Chen, G. H., Weng, W. G., Wu, D. J., Wu, C. L., Lu, J. R., Wang, P. P., and Chen, X. F. (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique, Carbon 42, 753-759. 47. Geim, A. K., and Novoselov, K. S. (2007) The rise of graphene, Nature Materials 6, 183-191. 48. Charlier, J. C., Eklund, P. C., Zhu, J., and Ferrari, A. C. (2008) Electron and phonon properties of graphene: Their relationship with carbon nanotubes, Carbon Nanotubes 111, 673-709. 49. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., and Geim, A. K. (2008) Giant intrinsic carrier mobilities in graphene and its bilayer, Physical Review Letters 100. 50. Chen, J. H., Jang, C., Xiao, S. D., Ishigami, M., and Fuhrer, M. S. (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3, 206-209. 51. Lifshitz, I. M. (1952) Journal of Experimental and Theoretical Physics (in Russian) 22, 475. 52. Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., and McEuen, P. L. (2007) Mechanical properties of suspended graphene sheets, Journal of Vacuum Science & Technology B 25, 2558-2561. 53. Wang, X. S., Li, Q. Q., Xie, J., Jin, Z., Wang, J. Y., Li, Y., Jiang, K. L., and Fan, S. S. (2009) Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates, Nano Letters 9, 3137-3141. 54. Lu, X., and Chen, Z. F. (2005) Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C-60) and single-walled carbon nanotubes, Chemical Reviews 105, 3643-3696. 55. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., and Ruoff, R. S. (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637-640. 56. Nakamizo, M., Honda, H., and Inagaki, M. (1978) RAMAN-SPECTRA OF GROUND NATURAL GRAPHITE, Carbon 16, 281-283. 57. Vidano, R., and Fischbach, D. B. (1978) NEW LINES IN RAMAN-SPECTRA OF CARBONS AND GRAPHITE, Journal of the American Ceramic Society 61, 13-17. 58. Katagiri, G., Ishida, H., and Ishitani, A. (1988) RAMAN-SPECTRA OF GRAPHITE EDGE PLANES, Carbon 26, 565-571. 59. Miller, T. M., Fang, H., Magruder, R. H., and Weller, R. A. (2003) Fabrication of a micro-scale, indium-tin-oxide thin film strain-sensor by pulsed laser deposition and focused ion beam machining, Sensors and Actuators a-Physical 104, 162-170. 60. Reyntjens, S., and Puers, R. (2000) Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young's modulus of the deposited material, Journal of Micromechanics and Microengineering 10, 181-188. 61. Shedd, G. M., Lezec, H., Dubner, A. D., and Melngailis, J. (1986) FOCUSED ION-BEAM INDUCED DEPOSITION OF GOLD, Applied Physics Letters 49, 1584-1586. 62. Tao, T., Ro, J. S., Melngailis, J., Xue, Z. L., and Kaesz, H. D. (1990) FOCUSED ION-BEAM INDUCED DEPOSITION OF PLATINUM, Journal of Vacuum Science & Technology B 8, 1826-1829. 63. Ishida, M., Fujita, J., Ichihashi, T., Ochiai, Y., Kaito, T., and Matsui, S. (2003) Focused ion beam-induced fabrication of tungsten structures, Journal of Vacuum Science & Technology B 21, 2728-2731. 64. Chason, E., Picraux, S. T., Poate, J. M., Borland, J. O., Current, M. I., delaRubia, T. D., Eaglesham, D. J., Holland, O. W., Law, M. E., Magee, C. W., Mayer, J. W., Melngailis, J., and Tasch, A. F. (1997) Ion beams in silicon processing and characterization, Journal of Applied Physics 81, 6513-6561. 65. Orloff, J. (1993) HIGH-RESOLUTION FOCUSED ION-BEAMS, Review of Scientific Instruments 64, 1105-1130. 66. Phaneuf, M. W. (1999) Applications of focused ion beam microscopy to materials science specimens, Micron 30, 277-288. 67. Ishitani, T., Tsuboi, H., Yaguchi, T., and Koike, H. (1994) TRANSMISSION ELECTRON-MICROSCOPE SAMPLE PREPARATION USING A FOCUSED ION-BEAM, Journal of Electron Microscopy 43, 322-326. 68. Mayer, J., Giannuzzi, L. A., Kamino, T., and Michael, J. (2007) TEM sample preparation and FIB-induced damage, Mrs Bulletin 32, 400-407. 69. Giannuzzi, L. A., and Stevie, F. A. (1999) A review of focused ion beam milling techniques for TEM specimen preparation, Micron 30, 197-204. 70. Weibel, D., Wong, S., Lockyer, N., Blenkinsopp, P., Hill, R., and Vickerman, J. C. (2003) A C-60 primary ion beam system for time of flight secondary ion mass spectrometry: Its development and secondary ion yield characteristics, Analytical Chemistry 75, 1754-1764. 71. Maultzsch, J., Reich, S., and Thomsen, C. (2004) Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion, Physical Review B 70. 72. Novotny, L., Sanchez, E. J., and Xie, X. S. (1998) Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams, Ultramicroscopy 71, 21-29. 73. Greenawa.Dl, Harbeke, G., Bassani, F., and Tosatti, E. (1969) ANISOTROPY OF OPTICAL CONSTANTS AND BAND STRUCTURE OF GRAPHITE, Physical Review 178, 1340-&. 74. Gruneis, A., Saito, R., Samsonidze, G. G., Kimura, T., Pimenta, M. A., Jorio, A., Souza, A. G., Dresselhaus, G., and Dresselhaus, M. S. (2003) Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes, Physical Review B 67. 75. Tonomura, O., Mera, Y., Hida, A., Nakamura, Y., Meguro, T., and Maeda, K. (2002) Structural change of radiation defects in graphite crystals induced by STM probing, Applied Physics a-Materials Science & Processing 74, 311-316. 76. Dvoynenko, M. M., and Wang, J. K. (2007) Finding electromagnetic and chemical enhancing powers of surface-enhanced Raman scattering, Optics Letters 32, 3552-3554. 1. Mahoney, R. R. (1998) Galactosyl-oligosaccharide formation during lactose hydrolysis: a review, Food Chemistry 63, 147-154. 2. Hoover, R., and Zhou, Y. (2003) In vitro and in vivo hydrolysis of legume starches by alpha-amylase and resistant starch formation in legumes - a review, Carbohydrate Polymers 54, 401-417. 3. Beguin, P., and Aubert, J. P. (1994) THE BIOLOGICAL DEGRADATION OF CELLULOSE, Fems Microbiology Reviews 13, 25-58. 4. Jahnz, U., Schubert, M., Baars-Hibbe, H., and Vorlop, K. D. (2003) Process for producing the potential food ingredient DFA III from inulin: screening, genetic engineering, fermentation and immobilisation of inulase II, International Journal of Pharmaceutics 256, 199-206. 5. Kasperowiez, A., and Michalowski, T. (2007) Digestion and utilization of fructose polymers by the rumen bacterium Treponema sp strain T, Journal of Animal and Feed Sciences 16, 577-589. 6. McBride, M. J., Xie, G., Martens, E. C., Lapidus, A., Henrissat, B., Rhodes, R. G., Goltsman, E., Wang, W., Xu, J., Hunnicutt, D. W., Staroscik, A. M., Hoover, T. R., Cheng, Y. Q., and Stein, J. L. (2009) Novel Features of the Polysaccharide-Digesting Gliding Bacterium Flavobacterium johnsoniae as Revealed by Genome Sequence Analysis, Applied and Environmental Microbiology 75, 6864-6875. 7. Gray, K. A., Zhao, L. S., and Emptage, M. (2006) Bioethanol, Current Opinion in Chemical Biology 10, 141-146. 8. Gray, K. A. (2007) Cellulosic ethanol - state of the technology, International Sugar Journal 109, 145-+. 9. Binder, J. B., and Raines, R. T. (2010) Fermentable sugars by chemical hydrolysis of biomass, Proceedings of the National Academy of Sciences of the United States of America 107, 4516-4521. 10. Adlernissen, J. (1977) ENZYMATIC-HYDROLYSIS OF FOOD PROTEINS, Process Biochemistry 12, 18-&. 11. Mandels, M., Hontz, L., and Nystrom, J. (1974) ENZYMATIC-HYDROLYSIS OF WASTE CELLULOSE, Biotechnology and Bioengineering 16, 1471-1493. 12. Hammond, J. B., Egg, R., Diggins, D., and Coble, C. G. (1996) Alcohol from bananas, Bioresource Technology 56, 125-130. 13. Wilson, D. B. (2009) Cellulases and biofuels, Current Opinion in Biotechnology 20, 295-299. 14. Gehlen, M. H. (2009) Approximate solution of the autocatalytic hydrolysis of cellulose, Cellulose 16, 1069-1073. 15. Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., and Arai, K. (1998) Cellulose hydrolysis in subcritical and supercritical water, Journal of Supercritical Fluids 13, 261-268. 16. Khajavi, S. H., Kimura, Y., Oomori, T., Matsuno, R., and Adachi, S. (2005) Kinetics on sucrose decomposition in subcritical water, Lwt-Food Science and Technology 38, 297-302. 17. Winocour, P. D., Watala, C., Perry, D. W., and Kinloughrathbone, R. L. (1992) DECREASED PLATELET MEMBRANE FLUIDITY DUE TO GLYCATION OR ACETYLATION OF MEMBRANE-PROTEINS, Thrombosis and Haemostasis 68, 577-582. 18. Miyata, T., Devuyst, O., Kurokawa, K., and de Strihou, C. V. (2002) Toward better dialysis compatibility: Advances in the biochemistry and pathophysiology of the peritoneal membranes, Kidney International 61, 375-386. 19. Welihinda, A. A., Tirasophon, W., and Kaufman, R. J. (1999) The cellular response to protein misfolding in the endoplasmic reticulum, Gene Expression 7, 293-300. 20. Lacis, L. S., and Lawford, H. G. (1991) THERMOANAEROBACTER ETHANOLICUS GROWTH AND PRODUCT YIELD FROM ELEVATED LEVELS OF XYLOSE OR GLUCOSE IN CONTINUOUS CULTURES, Applied and Environmental Microbiology 57, 579-585. 21. Lang, J. M., and Cirillo, V. P. (1987) GLUCOSE-TRANSPORT IN A KINASELESS SACCHAROMYCES-CEREVISIAE MUTANT, Journal of Bacteriology 169, 2932-2937. 22. Terkuile, B. H., and Opperdoes, F. R. (1991) GLUCOSE-UPTAKE BY TRYPANOSOMA-BRUCEI - RATE-LIMITING STEPS IN GLYCOLYSIS AND REGULATION OF THE GLYCOLYTIC FLUX, Journal of Biological Chemistry 266, 857-862. 23. Angyal, S. J. (1991) THE COMPOSITION OF REDUCING SUGARS IN SOLUTION - CURRENT ASPECTS, Advances in Carbohydrate Chemistry and Biochemistry 49, 19-35. 24. Burant, C. F., Takeda, J., Brotlaroche, E., Bell, G. I., and Davidson, N. O. (1992) FRUCTOSE TRANSPORTER IN HUMAN SPERMATOZOA AND SMALL-INTESTINE IS GLUT5, Journal of Biological Chemistry 267, 14523-14526. 25. Mavrias, D. A., and Mayer, R. J. (1973) METABOLISM OF FRUCTOSE IN SMALL-INTESTINE .1. EFFECT OF FRUCTOSE FEEDING ON FRUCTOSE TRANSPORT AND METABOLISM IN RAT SMALL-INTESTINE, Biochimica Et Biophysica Acta 291, 531-537. 26. White, L. W., and Landau, B. R. (1965) SUGAR TRANSPORT AND FRUCTOSE METABOLISM IN HUMAN INTESTINE IN VITRO, Journal of Clinical Investigation 44, 1200-&. 27. Vandam, H. E., Kieboom, A. P. G., and Vanbekkum, H. (1986) THE CONVERSION OF FRUCTOSE AND GLUCOSE IN ACIDIC MEDIA - FORMATION OF HYDROXYMETHYLFURFURAL, Starch-Starke 38, 95-101. 28. Moreau, C., Durand, R., Razigade, S., Duhamet, J., Faugeras, P., Rivalier, P., Ros, P., and Avignon, G. (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites, Applied Catalysis a-General 145, 211-224. 29. Roman-Leshkov, Y., Chheda, J. N., and Dumesic, J. A. (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312, 1933-1937. 30. Braun, G. (1937) alpha-Cellobiose octaacetate, Organic Syntheses 17, 36-39. 31. Macgregor, A. W., and Ballance, D. L. (1980) HYDROLYSIS OF LARGE AND SMALL STARCH GRANULES FROM NORMAL AND WAXY BARLEY CULTIVARS BY ALPHA-AMYLASES FROM BARLEY MALT, Cereal Chemistry 57, 397-402. 32. Hanes, C. S. (1932) Studies on plant amylases. I. The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley, Biochemical Journal 26, 1406-1421. 33. Updegraf.Dm. (1969) SEMIMICRO DETERMINATION OF CELLULOSE IN BIOLOGICAL MATERIALS, Analytical Biochemistry 32, 420-&. 34. Freudenberg, K., and Blomqvist, G. (1935) The hydrolysis of cellulose and its oglio saccharides, Berichte Der Deutschen Chemischen Gesellschaft 68, 2070-2082. 35. Freudenberg, K., Kuhn, W., Durr, W., Bolz, F., and Steinbrunn, G. (1930) The hydrolysis of polysaccharide (14. Report on lignin and cellulose), Berichte Der Deutschen Chemischen Gesellschaft 63, 1510-1530. 36. Roberfroid, M. B. (2005) Introducing inulin-type fructans, British Journal of Nutrition 93, S13-S25. 37. Abrams, S. A., Griffin, I. J., Hawthorne, K. M., Liang, L., Gunn, S. K., Darlington, G., and Ellis, K. J. (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents, American Journal of Clinical Nutrition 82, 471-476. 38. Coudray, C., Tressol, J. C., Gueux, E., and Rayssiguier, Y. (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats, European Journal of Nutrition 42, 91-98. 39. Holloway, L., Moynihan, S., Abrams, S. A., Kent, K., Hsu, A. R., and Friedlander, A. L. (2007) Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women, British Journal of Nutrition 97, 365-372. 40. Kaur, N., and Gupta, A. K. (2002) Applications of inulin and oligofructose in health and nutrition, Journal of Biosciences 27, 703-714. 41. Roberfroid, M. B. (1999) Concepts in functional foods: The case of inulin and oligofructose, Journal of Nutrition 129, 1398S-1401S. 42. Roberfroid, M., and Slavin, J. (2000) Nondigestible oligosaccharides, Critical Reviews in Food Science and Nutrition 40, 461-480. 43. Ohta, K., Hamada, S., and Nakamura, T. (1993) PRODUCTION OF HIGH-CONCENTRATIONS OF ETHANOL FROM INSULIN BY SIMULTANEOUS SACCHARIFICATION AND FERMENTATION USING ASPERGILLUS-NIGER AND SACCHAROMYCES-CEREVISIAE, Applied and Environmental Microbiology 59, 729-733. 44. Saha, B. C. (2006) Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693, Enzyme and Microbial Technology 39, 991-995. 45. Saito, K., and Tomita, F. (2000) Difructose anhydrides: Their mass-production and physiological functions, Bioscience Biotechnology and Biochemistry 64, 1321-1327. 46. McDonald, E. J., and Jackson, R. F. (1940) Structure of difructose anhydride III (difructofuranose 1,2',2,3'-anhydride), Journal of Research of the National Bureau of Standards 24, 181-204. 47. Suzuki, T., Hara, H., Kasai, T., and Tomita, F. (1998) Effects of difructose anhydride III on calcium absorption in small and large intestines of rats, Bioscience Biotechnology and Biochemistry 62, 837-841. 48. Shiga, K., Nishimukai, M., Tomita, F., and Hara, H. (2006) Ingestion of difructose anhydride III, a non-digestible disaccharide, prevents gastrectomy-induced iron malabsorption and anemia in rats, Nutrition 22, 786-793. 49. Shiga, K., Nishimukai, M., Tomita, F., and Hara, H. (2006) Ingestion of difructose anhydride III, a non-digestible disaccharide, improves postgastrectomy osteopenia in rats, Scandinavian Journal of Gastroenterology 41, 1165-1173. 50. Suzuki, T., and Hara, H. (2004) Various nondigestible saccharides open a paracellular calcium transport pathway with the induction of intracellular calcium signalling in human intestinal Caco-2 cells, Journal of Nutrition 134, 1935-1941. 51. Minamida, K., Shiga, K., Sujaya, I. N., Sone, T., Yokota, A., Hara, H., Asano, K., and Tomita, F. (2005) Effects of difructose anhydride III (DFA III) administration on rat intestinal microbiota, Journal of Bioscience and Bioengineering 99, 230-236. 52. Tamura, A., Mita, Y., Shigematsu, N., Hara, H., and Nishimura, N. (2006) Different effects of difructose anhydride III and inulin-type fructans on caecal microbiota in rats, Archives of Animal Nutrition 60, 358-364. 53. Deslongchamps, P. (1975) STEREOELECTRONIC CONTROL IN CLEAVAGE OF TETRAHEDRAL INTERMEDIATES IN HYDROLYSIS OF ESTERS AND AMIDES, Tetrahedron 31, 2463-2490. 54. Koutek, B., Prestwich, G. D., Howlett, A. C., Chin, S. A., Salehani, D., Akhavan, N., and Deutsch, D. G. (1994) INHIBITORS OF ARACHIDONOYL ETHANOLAMIDE HYDROLYSIS, Journal of Biological Chemistry 269, 22937-22940. 55. Clifford, M. N. (1999) Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture 79, 362-372. 56. Vanhoof, G., Goossens, F., Demeester, I., Hendriks, D., and Scharpe, S. (1995) PROLINE MOTIFS IN PEPTIDES AND THEIR BIOLOGICAL PROCESSING, Faseb Journal 9, 736-744. 57. Dinh, T. P., Carpenter, D., Leslie, F. M., Freund, T. F., Katona, I., Sensi, S. L., Kathuria, S., and Piomelli, D. (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation, Proceedings of the National Academy of Sciences of the United States of America 99, 10819-10824. 58. Freeman, G. G., and Hopkins, R. H. (1936) The mechanism of degradation of starch by amylases. III. Mutarotation of fission products, Biochemical Journal 30, 451-456. 59. Yang, C. H., Huang, Y. C., Chen, C. Y., and Wen, C. Y. (2010) Expression of Thermobifida fusca thermostable raw starch digesting alpha-amylase in Pichia pastoris and its application in raw sago starch hydrolysis, Journal of Industrial Microbiology & Biotechnology 37, 401-406. 60. Withers, S. G. (2001) Mechanisms of glycosyl transferases and hydrolases, Carbohydrate Polymers 44, 325-337. 61. Zhang, Y. H. P., and Lynd, L. R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems, Biotechnology and Bioengineering 88, 797-824. 62. Irvine, J. C., and Steele, E. S. (1915) The mechanism of mutarotation in aqueous solution, Journal of the Chemical Society 107, 1230-1240. 63. Capon, B., and Walker, R. B. (1974) KINETICS AND MECHANISM OF MUTAROTATION OF ALDOSES, Journal of the Chemical Society-Perkin Transactions 2, 1600-1610. 64. Guderian, A., Dechert, G., Zeyer, K. P., and Schneider, F. W. (1996) Stochastic resonance in chemistry .1. The Belousov-Zhabotinsky reaction, Journal of Physical Chemistry 100, 4437-4441. 65. Cervellati, R., Honer, K., Furrow, S. D., Neddens, C., and Costa, S. (2001) The Briggs-Rauscher reaction as a test to measure the activity of antioxidants, Helvetica Chimica Acta 84, 3533-3547. 66. Kolaranic, L., and Schmitz, G. (1992) MECHANISM OF THE BRAY-LIEBHAFSKY REACTION - EFFECT OF THE OXIDATION OF IODOUS ACID BY HYDROGEN-PEROXIDE, Journal of the Chemical Society-Faraday Transactions 88, 2343-2349. 67. Lambert, J. L., and Fina, G. T. (1984) IODINE CLOCK REACTION-MECHANISMS, Journal of Chemical Education 61, 1037-1038. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48223 | - |
| dc.description.abstract | 拉曼光譜學是用來研究分子與晶格的振動及旋轉模式的分析技術. 拉曼散射,一種光的非彈性散射, 是由觀察者C.V.Raman的名字來命名. 自從這位印度科學家在1928年利用太陽光觀察到此現象, 科學家們便逐漸的開始對拉曼散射產生興趣. 有別於其他分析技術, 拉曼光譜學有著以下特點.
第一點, 由於拉曼光譜學是一種光學分析技術, 所以是一種非侵入式且非破壞的分析方法. 第二點, 不同的分子其化學結構與鍵結必定有所不同, 使得他們擁有獨一無二的振動模式. 若利用拉曼光譜學來進行分析, 就可以獲得高專一性的分子指紋. 這項特點讓拉曼光譜學可以輕易的分辨出同分異構物的差異, 這是其他分析方法如質譜儀無法辦到的.第三點, 樣品製備的條件門檻相對簡單. 無論是固態, 液態或氣態, 有機物或無機物都可以進行分析. 樣品本身也不需經過特殊處理, 這是紅外線吸收光譜等分析技術無法相比的. 另外由於只有雷射光源照射到的部分才會產生拉曼散射, 所以樣品的體積可以十分微小 (雷射光點大小約 2 微米). 如果是玻璃或石英包裝樣品, 甚至可以透過包裝直接進行分析而不需拆封. 最後一點, 現在市面上已經有許多商業化的拉曼光譜分析儀器, 使用起來相當簡單, 只需幾秒鐘就可以得到所需的資料. 綜合上述優點, 拉曼光譜分析學已經成為現今相當有力的化學分析方法. 為了進一步改善, 而其他相關的拉曼光譜技術也被後人陸續發展出來. 例如表面增強拉曼光譜學 (可增強拉曼訊號強度), 顯微拉曼光譜學 (可改善空間解析度)以及共振拉曼光譜學 (可取得特殊資訊). 此論文可以概分為兩大研究主軸. 在第一部分中, 我們親自架設了一套探針增強式拉曼光譜系統. 並利用此系統當作分析工具, 藉由其同時擁有表面增強式拉曼光譜的訊號加強以及原子力顯微鏡的高空間解析度的優點, 進一步觀察石墨表面上的奈米尺度缺陷. 同時, 根據實驗的數據結果, 我們也提出一方法來評估此探針增強式拉曼光譜系統在量測如石墨這類非均相物質時的訊號增強係數. 在第二部分, 我們試著利用拉曼光譜技術進一步探討醣類分子在進行水解反應時的反應機制與動力學. 醣水解反應在中性以及弱酸環境被認為是一種由於質子濃度增加以至於溶液酸鹼度降低的自催化反應, 但是卻缺乏直接的證據證明真正的催化物為何. 在此, 我們藉由在不同的反應溫度(80~100℃)與溶液酸鹼度(pH1~pH5)進行兩種雙醣系統(雙果醣以及纖維二醣)的水解反應, 來觀察醣類水解時自催化反應的真正催化物為何, 並且推論出一反應機制來解釋此現象. 這項重大的發現或許可以使得纖維素等多醣體的水解反應效率大幅提升. | zh_TW |
| dc.description.abstract | Raman spectroscopy is a method to observe the vibration behavior of molecules when they are excited by photons. Since C.V. Raman discovered the Raman scattering effect in 1928, people have gradually paid their attention on this interesting subject. Compare with other analytical techniques, Raman spectroscopy has several distinguishing features.
First, this is an optical methodology thus no destructive damage or invasive behavior will take place. Second, each molecule has its own chemical structure so their vibration modes are highly specific like a chemical fingerprint. Isomers can be distinguished easily even they have identical chemical structure formula and molecular weight. Third, the demands for sample preparation are relative simple. It could be organic or inorganic; solids, liquids or gas. And because the laser spot size is only 1~2 | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:49:23Z (GMT). No. of bitstreams: 1 ntu-100-D94223029-1.pdf: 5986605 bytes, checksum: 983b33a05b9ab546d5057a193d774bdc (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Acknowledgement …………………………………………………………….… I
Chinese layout …………….……………………………………………………… II English layout ………………..……………………………….………………… IV Catalog …………………………………………………………………………... VI Figure content …………………………………………………………………… XI Abbreviation …………….……………………………………………………… XV PART 1 Using Tip-Enhanced Raman Spectroscopy as a Tool for Nano-scale Materials Identification. Abstract …………………………………………………………………………… 2 Chapter 1 Introduction ………………………………………………….………. 3 1.1 Purpose of this work ……………………………………………..………. 3 1.2 Raman spectroscopy ………………………………………….….………. 4 1.2.1 Historical background ……………………………..…….…..….. 4 1.2.2 Basic principles …………………………………………..…..…. 5 1.2.3 Applications ……………………………………………..……… 6 1.3 Atomic force microscopy (AFM) ……………….…………………..…… 9 1.3.1 Contact mode ………………….……....……………………..... 10 1.3.2 Non-contact mode ………….……..….………………….…….. 10 1.3.3 Taping mode ………………...……..….……………..………… 11 1.4 Surface enhanced Raman spectroscopy (SERS) ……………….………. 11 1.4.1 Electromagnetic theory ………………...……………..……….. 13 1.4.2 Chemical theory ……………………...……….……..………… 14 1.5 Tip-enhanced Raman spectroscopy (TERS) ………...…………..……… 15 1.5.1 Principle of TERS ……………………………….…………….. 15 1.6 Allotropes of carbon …………………………...………………..……… 16 1.6.1 Importance of carbon allotropes ………………………………. 16 1.6.2 Types of carbon allotropes …………………..………………… 17 1.6.2.1 Graphite ……………………………………..…………… 17 1.6.2.2 Graphene ……………………………………...……….… 19 1.6.2.3 Fullerene ……………………………………...………….. 21 1.7 Graphite and graphite defects ……………………………………….….. 24 1.7.1 Difference in Raman spectra ……………………….………….. 25 1.7.2 Explanations ………………………………………...…………. 26 1.8 Focused ion beam (FIB) ……………………………………...………… 27 1.8.1 Basic principles ……………………………………..……….… 27 1.8.2 Applications ………………………………………...…………. 29 Chapter 2 Experiments …………………………………………….………….. 31 2.1 Instrument …………………………………………………….………… 31 2.1.1 Focused ion beam (FIB) ……………………………………….. 31 2.1.2 Sputtering chamber ………………………………...………….. 31 2.1.3 Scanning electron microscopy (SEM) ………………………… 32 2.1.4 TERS system …………………………………………..…….… 33 2.2 Sample preparation ……………………………………………...……… 35 2.2.1 SiC nanoislands on Si substrate …………………….…………. 35 2.2.2 FIB bombarded graphite ………………………………………. 36 2.2.3 Ag coated tip ……………………………………….………..… 38 Chapter 3 Results and Discussion …………………………………………….. 42 3.1 Fabrication of Ag coated tips ………………………………..……..…… 42 3.1.1 Quality control of Ag coated tips ……………………………… 42 3.1.2 Optimize protocols for making a “good” tip …….……………. 43 3.1.3 Single Ag bead on tip apex by FIB bombardment ………….… 44 3.2 SERS of graphite defect ………………..………………….…………… 45 3.3 Polarization dependence of graphite defect ……..………..……………. 48 3.3.1 Graphite sample with native well-orientate defects …………… 48 3.3.2 Experimental data ……………………………….…………….. 49 3.4 TERS of graphite defect ……………..……..……………...…………… 51 3.4.1 Native graphite defect …………………………………………. 51 3.4.2 FIB bombarded graphite defect ……………..………………… 52 3.5 Evaluation of enhancing power ……………………..….…………….… 54 Chapter 4 Conclusion …………………………………………………………. 57 4.1 Establishing protocols to fabricate “good” tips for TERS …………..….. 57 4.2 Demonstration of TERS on FIB-irradiated graphite defect …..……..….. 57 4.3 Calculate the enhancing power of anisotropic materials ………….……. 58 Reference ……………………………………………………………………….... 59 PART 2 Monitoring the Hydrolysis of Saccharides with Raman Spectroscopy Abstract ………………………………………………………………………….. 70 Chapter 1 Introduction ………………………………………………………… 71 1.1 Purpose of this work ……………………………………..……………... 71 1.2 Carbohydrates ………………...………………………………..……….. 72 1.2.1 Importance of carbohydrates …………………..…….………… 72 1.2.2 Monosaccharides …………………………..………….……..… 73 1.2.2.1 Glucose ………………………………..………….……… 75 1.2.2.2 Fructose ……………………………………………..…… 77 1.2.3 Disaccharides ………………………...…………….………..… 79 1.2.3.1 Cellobiose …………………………………………..…… 79 1.3 Difructose anhydrides …………………………………………..……… 80 1.4 Hydrolysis of saccharides ………………………..………….……….… 81 1.4.1 Glycosidic bond ………………………………………..……… 81 1.4.2 Mechanism ……………………..……………………………… 82 1.5 Mutarotation ………………………………..……………………..….… 84 1.6 Autocatalytic reaction ………………..……………………………….… 85 1.6.1 Reaction orders ……………………………….……………..… 86 1.6.2 Examples ………………………………………………….…… 87 Chapter 2 Experiment ……………………..…………………………...……… 88 2.1 Sample preparation ……………..…………………...…………..……… 88 2.2 Instrumental setup ………………………………….………….…..…… 89 2.3 Theoretical calculation ……………………………..…….………..…… 89 2.4 Monitoring of DFA III hydrolysis …………………..……………..…… 90 2.4.1 Raman spectra of DFA III powder and solution …………….… 90 2.4.2 DFA III hydrolysis with different temperature (80~100℃) ....… 90 2.4.3 DFA III hydrolysis in strong acid (pH1~pH3) …..………...… 90 2.4.4 DFA III hydrolysis with catalyst (fructose) assistance ….…… 91 2.4.5 DFA III hydrolysis in weak acid with catalyst assistance …… 91 2.5 Hydrolysis of Cellobiose w/o catalyst (glucose) assistance ….…..…… 91 Chapter 3 Results and Discussion ………..….……………………….……… 92 3.1 Difructose anhydride III …………………….………………..…..…… 92 3.1.1 Raman spectrum of DFA III ………………………………….. 92 3.1.2 Peak assignment of DFA III ...………………….….…….…… 93 3.1.3 pH effect on Raman spectra ……………………….….……… 95 3.1.4 DFA III hydrolysis …..……………………………….…….… 95 3.1.5 DFA III hydrolysis with different temperature ………….…… 97 3.1.6 DFA III hydrolysis with catalyst (fructose) assistance …….… 99 3.1.7 DFA III hydrolysis in weak acid with catalyst assistance.…… 100 3.2 Reaction kinetics …………………..……………………….………..… 101 3.3 Mechanism of autocatalytic reaction in DFA III hydrolysis …….…..… 103 3.4 Hydrolysis of cellobiose ………………………………..…….……..… 104 3.4.1 Cellobiose hydrolysis in strong acid…………………….….… 105 3.4.2 Cellobiose hydrolysis with catalyst (glucose) ……………...… 107 Chapter 4 Conclusion ………..………………………………………….…… 109 4.1 Establish a fundamental basis of Raman spectra of DFAs ……..…...… 109 4.2 Observation of new autocatalytic pathway …………………….……… 109 Reference ……………………………………………………………………….. 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙果醣 | zh_TW |
| dc.subject | 拉曼 | zh_TW |
| dc.subject | 探針增強式拉曼 | zh_TW |
| dc.subject | 石墨 | zh_TW |
| dc.subject | 醣 | zh_TW |
| dc.subject | 水解 | zh_TW |
| dc.subject | 自催化反應 | zh_TW |
| dc.subject | Raman spectroscopy | en |
| dc.subject | autocatalytic reaction | en |
| dc.subject | difructose anhydride (DFA) | en |
| dc.subject | hydrolysis | en |
| dc.subject | glycosidic bond | en |
| dc.subject | disaccharides | en |
| dc.subject | graphite | en |
| dc.subject | tip-enhanced Raman spectroscopy (TERS) | en |
| dc.title | 藉由拉曼光譜偵測奈米尺度物質以及研究化學反應動力學 | zh_TW |
| dc.title | Using Raman Spectroscopy for Nanoscale Material Detection and Chemical Reaction Kinetics Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 王玉麟(Yuh-Lin Wang) | |
| dc.contributor.oralexamcommittee | 王俊凱(Jun-Kai Wang),林景泉,劉志毅 | |
| dc.subject.keyword | 拉曼,探針增強式拉曼,石墨,醣,水解,自催化反應,雙果醣, | zh_TW |
| dc.subject.keyword | Raman spectroscopy,tip-enhanced Raman spectroscopy (TERS),graphite,disaccharides,glycosidic bond,hydrolysis,difructose anhydride (DFA),autocatalytic reaction, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-03-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
