請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48179完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃青真 | |
| dc.contributor.author | Chin Hsu | en |
| dc.contributor.author | 徐瑨 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:48:09Z | - |
| dc.date.available | 2014-07-06 | |
| dc.date.copyright | 2011-07-06 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-05-17 | |
| dc.identifier.citation | (1977) Report of the American Institute of Nurtition ad hoc Committee on Standards for Nutritional Studies. J. Nutr. 107, 1340-8.
Aguwa CN & Mittal GC (1983) Abortifacient effects of the roots of Momordica angustisepala. J. Ethnopharmacol. 7, 169-73. Akihisa T, Higo N, Tokuda H, Ukiya M, Akazawa H, Tochigi Y, Kimura Y, Suzuki T & Nishino H (2007) Cucurbitane-type triterpenoids from the fruits of Momordica charantia and their cancer chemopreventive effects. J. Nat. Prod. 70, 1233-9. Ali L, Khan AK, Mamun MI, Mosihuzzaman M, Nahar N, Nur-e-Alam M & Rokeya B (1993) Studies on hypoglycemic effects of fruit pulp, seed, and whole plant of Momordica charantia on normal and diabetic model rats. Planta Med. 59, 408-12. Amita M, Takahashi T, Tsutsumi S, Ohta T, Takata K, Henmi N, Hara S, Igarashi H, Takahashi K & Kurachi H (2010) Molecular mechanism of the inhibition of estradiol-induced endometrial epithelial cell proliferation by clomiphene citrate. Endocrinology 151, 394-405. Anila L & Vijayalakshmi NR (2000) Beneficial effects of flavonoids from Sesamum indicum, Emblica officinalis and Momordica charantia. Phytother Res 14, 592-5. Badawi AF & Badr MZ (2003) Expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-gamma and levels of prostaglandin E2 and 15-deoxy-delta12,14-prostaglandin J2 in human breast cancer and metastasis. Int. J. Cancer 103, 84-90. Bhathena SJ & Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 76, 1191-201. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA & Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753-8. Burstein HJ, Demetri GD, Mueller E, Sarraf P, Spiegelman BM & Winer EP (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res. Treat. 79, 391-7. Campbell S, Mehan K, Tunstall R, Febbraio M & Cameron-Smith D (2003) 17beta-estradiol upregulates the expression of peroxisome proliferator-activated receptor alpha and lipid oxidative genes in skeletal muscle. J. Mol. Endocrinol. 31, 37-45. Chan WY, Tam PP & Yeung HW (1984) The termination of early pregnancy in the mouse by beta-momorcharin. Contraception 29, 91-100. Chang CI, Chen CR, Liao YW, Cheng HL, Chen YC & Chou CH (2008) Cucurbitane-type triterpenoids from the stems of Momordica charantia. J. Nat. Prod. 71, 1327-30. Chang CI, Chen CR, Liao YW, Shih WL, Cheng HL, Tzeng CY, Li JW & Kung MT (2010) Octanorcucurbitane triterpenoids protect against tert-butyl hydroperoxide-induced hepatotoxicity from the stems of Momordica charantia. Chem. Pharm. Bull. (Tokyo). 58, 225-9. Chen CR, Liao YW, Wang L, Kuo YH, Liu HJ, Shih WL, Cheng HL & Chang CI (2010) Cucurbitane triterpenoids from Momordica charantia and their cytoprotective activity in tert-butyl hydroperoxide-induced hepatotoxicity of HepG2 cells. Chem. Pharm. Bull. (Tokyo). 58, 1639-42. Cheng HL, Huang HK, Chang CI, Tsai CP & Chou CH (2008) A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J. Agric. Food Chem. 56, 6835-43. Cheng WY, Kuo YH & Huang CJ (2007) Isolation and identification of novel estrogenic compounds in yam tuber (Dioscorea alata Cv. Tainung No. 2). J. Agric. Food Chem. 55, 7350-8. Clericuzio M, Mella M, Vita-Finzi P, Zema M & Vidari G (2004) Cucurbitane triterpenoids from Leucopaxillus gentianeus. J. Nat. Prod. 67, 1823-8. Cummings SR, Eckert S, Krueger KA, Grady D, Powles TJ, Cauley JA, Norton L, Nickelsen T, Bjarnason NH, Morrow M, Lippman ME, Black D, Glusman JE, Costa A & Jordan VC (1999) The Effect of Raloxifene on Risk of Breast Cancer in Postmenopausal Women. JAMA 281, 2189-97. Czerny B, Pawlik A, Juzyszyn Z & Mysliwiec Z (2004) The effect of tamoxifen and fluoride on bone mineral density, biomechanical properties and blood lipids in ovariectomized rats. Basic Clin Pharmacol Toxicol 95, 162-5. Dang ZC, Audinot V, Papapoulos SE, Boutin JA & Lowik CW (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma ) as a molecular target for the soy phytoestrogen genistein. J. Biol. Chem. 278, 962-7. Dayan G, Lupien M, Auger A, Anghel SI, Rocha W, Croisetière S, Katzenellenbogen JA & Mader S (2006) Tamoxifen and Raloxifene Differ in Their Functional Interactions with Aspartate 351 of Estrogen Receptor α. Mol. Pharmacol. 70, 579-88. Deroo BJ & Korach KS (2006) Estrogen receptors and human disease. J. Clin. Invest. 116, 561-70. Duan H, Takaishi Y, Momota H, Ohmoto Y & Taki T (2002) Immunosuppressive constituents from Saussurea medusa. Phytochemistry 59, 85-90. Durocher Y, Perret S, Thibaudeau E, Gaumond M-H, Kamen A, Stocco R & Abramovitz M (2000) A Reporter Gene Assay for High-Throughput Screening of G-Protein-Coupled Receptors Stably or Transiently Expressed in HEK293 EBNA Cells Grown in Suspension Culture. Anal. Biochem. 284, 316-26. DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ & McDonnell DP (2008) 27-Hydroxycholesterol Is an Endogenous Selective Estrogen Receptor Modulator. Mol. Endocrinol. 22, 65-77. Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D & Koeffler HP (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc. Natl. Acad. Sci. U. S. A. 95, 8806-11. Erosa-Rejon G, Pena-Rodriguez LM & Sterner O (2009) Secondary Metabolites from Heliotropium angiospermum. J. Mex. Chem. Soc. 53, 44-47. Faddy HM, Robinson JA, Lee WJ, Holman NA, Monteith GR & Roberts-Thomson SJ (2006) Peroxisome proliferator-activated receptor alpha expression is regulated by estrogen receptor alpha and modulates the response of MCF-7 cells to sodium butyrate. Int. J. Biochem. Cell Biol. 38, 255-66. Fisher CR, Graves KH, Parlow AF & Simpson ER (1998) Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc. Natl. Acad. Sci. U. S. A. 95, 6965-70. Glidewell-Kenney C, Hurley LA, Pfaff L, Weiss J, Levine JE & Jameson JL (2007) Nonclassical estrogen receptor alpha signaling mediates negative feedback in the female mouse reproductive axis. Proc. Natl. Acad. Sci. U. S. A. 104, 8173-7. Harinantenaina L, Tanaka M, Takaoka S, Oda M, Mogami O, Uchida M & Asakawa Y (2006) Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem. Pharm. Bull. (Tokyo). 54, 1017-21. Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y & Keith JC, Jr. (2003) Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 144, 4241-9. Hodges R & Porte AL (1964) The structure of loliolide : A terpene from lolium perenne. Tetrahedron 20, 1463-67. Hong YH, Wang SC, Hsu C, Lin BF, Kuo YH & Huang CJ (2011) Phytoestrogenic Compounds in Alfalfa Sprout ( Medicago sativa ) beyond Coumestrol. J. Agric. Food Chem. 59, 131-7. Hsieh RW, Rajan SS, Sharma SK, Guo Y, DeSombre ER, Mrksich M & Greene GL (2006) Identification of ligands with bicyclic scaffolds provides insights into mechanisms of estrogen receptor subtype selectivity. J. Biol. Chem. 281, 17909-19. Huang CJ & Wu MC (2002) Differential effects of foods traditionally regarded as 'heating' and 'cooling' on prostaglandin E(2) production by a macrophage cell line. J. Biomed. Sci. 9, 596-606. Jaber BM, Gao T, Huang L, Karmakar S & Smith CL (2006) The Pure Estrogen Receptor Antagonist ICI 182,780 Promotes a Novel Interaction of Estrogen Receptor-{alpha} with the 3',5'-Cyclic Adenosine Monophosphate Response Element-Binding Protein-Binding Protein/p300 Coactivators. Mol. Endocrinol. 20, 2695-710. Jayasooriya AP, Sakono M, Yukizaki C, Kawano M, Yamamoto K & Fukuda N (2000) Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J. Ethnopharmacol. 72, 331-6. Johnson EJ, Hammond BR, Yeum KJ, Qin J, Wang XD, Castaneda C, Snodderly DM & Russell RM (2000) Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am. J. Clin. Nutr. 71, 1555-62. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Misso ML, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S & Simpson ER (2001) Aromatase-deficient (ArKO) mice accumulate excess adipose tissue. J. Steroid Biochem. Mol. Biol. 79, 3-9. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S & Simpson ER (2000) Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl. Acad. Sci. U. S. A. 97, 12735-40. Ju YH, Clausen LM, Allred KF, Almada AL & Helferich WG (2004) beta-Sitosterol, beta-Sitosterol Glucoside, and a Mixture of beta-Sitosterol and beta-Sitosterol Glucoside Modulate the Growth of Estrogen-Responsive Breast Cancer Cells In Vitro and in Ovariectomized Athymic Mice. J. Nutr. 134, 1145-51. Kalu DN & Chen C (1999) Ovariectomized murine model of postmenopausal calcium malabsorption. J. Bone Miner. Res. 14, 593-601. Kamei Y, Suzuki M, Miyazaki H, Tsuboyama-Kasaoka N, Wu J, Ishimi Y & Ezaki O (2005) Ovariectomy in mice decreases lipid metabolism-related gene expression in adipose tissue and skeletal muscle with increased body fat. J. Nutr. Sci. Vitaminol. (Tokyo). 51, 110-7. Kaye AM (1983) Enzyme induction by estrogen. J. Steroid Biochem. 19, 33-40. Keller H, Givel F, Perroud M & Wahli W (1995) Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements. Mol. Endocrinol. 9, 794-804. Kenny AM, Mangano KM, Abourizk RH, Bruno RS, Anamani DE, Kleppinger A, Walsh SJ, Prestwood KM & Kerstetter JE (2009) Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial. Am. J. Clin. Nutr. 90, 234-42. Khanna P, Jain SC, Panagariya A & Dixit VP (1981) Hypoglycemic activity of polypeptide-p from a plant source. J. Nat. Prod. 44, 648-55. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S & Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863-70. Lacroix M & Leclercq G (2004) Relevance of Breast Cancer Cell Lines as Models for Breast Tumours: An Update. Breast Cancer Res. Treat. 83, 249-89. Leung SO, Yeung HW & Leung KN (1987) The immunosuppressive activities of two abortifacient proteins isolated from the seeds of bitter melon (Momordica charantia). Immunopharmacology 13, 159-71. Li QY, Chen HB, Liu ZM, Wang B & Zhao YY (2007) Cucurbitane triterpenoids from Momordica charantia. Magn. Reson. Chem. 45, 451-6. Love RR, Mazess RB, Barden HS, Epstein S, Newcomb PA, Jordan VC, Carbone PP & DeMets DL (1992) Effects of Tamoxifen on Bone Mineral Density in Postmenopausal Women with Breast Cancer. N. Engl. J. Med. 326, 852-56. Lu PW, Briody JN, Howman-Giles R, Trube A & Cowell CT (1994) DXA for bone density measurement in small rats weighing 150-250 grams. Bone 15, 199-202. Ma H, Sprecher HW & Kolattukudy PE (1998) Estrogen-induced production of a peroxisome proliferator-activated receptor (PPAR) ligand in a PPARgamma-expressing tissue. J. Biol. Chem. 273, 30131-8. Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Kuroda M, Mimaki Y, Sashida Y, Takahashi K, Kawada T, Nakagawa K & Kitahara M (2003) A licorice ethanolic extract with peroxisome proliferator-activated receptor-gamma ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. J. Nutr. 133, 3369-77. Malnick SD, Shaer A, Soreq H & Kaye AM (1983) Estrogen-induced creatine kinase in the reproductive system of the immature female rat. Endocrinology 113, 1907-9. Manabe M, Takenaka R, Nakasa T & Okinaka O (2003) Induction of anti-inflammatory responses by dietary Momordica charantia L. (bitter gourd). Biosci. Biotechnol. Biochem. 67, 2512-7. Matsuda H, Li Y, Murakami T, Matsumura N, Yamahara J & Yoshikawa M (1998) Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem. Pharm. Bull. (Tokyo). 46, 1399-403. Matsuda H, Nakamura S, Murakami T & Yoshikawa M (2007) Structure of New Cucurbitane-Type Triterpenes and Glycosides, Karavilagenins D and E, and Karavilosides VI, VII, VIII, IX, X, and IX, from the Fruit of Momordica charantia. Heterocycles 71, 331-41. McDonnell DP, Connor CE, Wijayaratne A, Chang C-y & Norris JD (2002) Definition of the molecular and cellular mechanisms underlying the tissue-selective agonist/antagonist activities of selective estrogen receptor modulators. Recent Prog. Horm. Res. 57, 295-316. McKenna NJ & O'Malley BW (2002) Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators. Cell 108, 465-74. Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA & Shay N (2003) Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J. Nutr. 133, 1238-43. Michael MS, Badr MZ & Badawi AF (2003) Inhibition of cyclooxygenase-2 and activation of peroxisome proliferator-activated receptor-gamma synergistically induces apoptosis and inhibits growth of human breast cancer cells. Int. J. Mol. Med. 11, 733-6. Mimaki Y, Doi S, Kuroda M & Yokosuka A (2007) Triterpene glycosides from the stems of Akebia quinata. Chem. Pharm. Bull. (Tokyo). 55, 1319-24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. Mosselman S, Polman J & Dijkema R (1996) ER beta: identification and characterization of a novel human estrogen receptor. FEBS letters 392, 49-53. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S & Spiegelman BM (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol. Cell 1, 465-70. Mulholland DA, Sewram V, Osborne R, Pegel KH & Connolly JD (1997) Cucurbitane triterpenoids from the leaves of Momordica foetida. Phytochemistry 45, 391-95. Murakami T, Emoto A, Matsuda H & Yoshikawa M (2001) Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L. Chem. Pharm. Bull. (Tokyo). 49, 54-63. Naseem MZ, Patil SR, Patil SR, Ravindra & Patil SB (1998) Antispermatogenic and androgenic activities of Momordica charantia (Karela) in albino rats. J. Ethnopharmacol. 61, 9-16. Nerurkar PV, Pearson L, Efird JT, Adeli K, Theriault AG & Nerurkar VR (2005) Microsomal triglyceride transfer protein gene expression and ApoB secretion are inhibited by bitter melon in HepG2 cells. J. Nutr. 135, 702-6. Nettles KW & Greene GL (2005) Ligand control of coregulator recruitment to nuclear receptors. Annu. Rev. Physiol. 67, 309-33. Nettles KW, Sun J, Radek JT, Sheng S, Rodriguez AL, Katzenellenbogen JA, Katzenellenbogen BS & Greene GL (2004) Allosteric control of ligand selectivity between estrogen receptors alpha and beta: implications for other nuclear receptors. Mol. Cell 13, 317-27. Newill H, Loske R, Wagner J, Johannes C, Lorenz RL & Lehmann L (2007) Oxidation products of stigmasterol interfere with the action of the female sex hormone 17beta-estradiol in cultured human breast and endometrium cell lines. Mol. Nutr. Food Res. 51, 888-98. Nishikawa S, Yasoshima A, Doi K, Nakayama H & Uetsuka K (2007) Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6J and BALB/cA mice. Exp. Anim. 56, 263-72. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK & Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395, 137-43. Obst JM & Seamark RF (1975) Hormone studies on ewes grazing an oestrogenic (Yarloop clover) pasture during the reproductive cycle. Aust. J. Biol. Sci. 28, 279-90. Oseni T, Patel R, Pyle J & Jordan VC (2008) Selective estrogen receptor modulators and phytoestrogens. Planta Med. 74, 1656-65. Ososki AL & Kennelly EJ (2003) Phytoestrogens: a review of the present state of research. Phytother. Res. 17, 845-69. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustafsson JA & Carlquist M (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 18, 4608-18. Ramalhete C, Mansoor TA, Mulhovo S, Molnar J & Ferreira MJ (2009) Cucurbitane-type triterpenoids from the African plant Momordica balsamina. J. Nat. Prod. 72, 2009-13. Reid G, Denger S, Kos M & Gannon F (2002) Human estrogen receptor-alpha: regulation by synthesis, modification and degradation. Cell. Mol. Life Sci. 59, 821-31. Reiss NA & Kaye AM (1981) Identification of the major component of the estrogen-induced protein of rat uterus as the BB isozyme of creatine kinase. J. Biol. Chem. 256, 5741-9. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM & Mangelsdorf DJ (2000) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289, 1524-9. Ricketts ML, Moore DD, Banz WJ, Mezei O & Shay NF (2005) Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. J. Nutr. Biochem. 16, 321-30. Roelens F, Heldring N, Dhooge W, Bengtsson M, Comhaire F, Gustafsson J-Å, Treuter E & De Keukeleire D (2006) Subtle Side-Chain Modifications of the Hop Phytoestrogen 8-Prenylnaringenin Result in Distinct Agonist/Antagonist Activity Profiles for Estrogen Receptors α and β. J. Med. Chem. 49, 7357-65. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM & Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288, 321-33. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP & Tucker KL (2009) Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J. Bone Miner. Res. 24, 1086-94. Saunders PT (1998) Oestrogen receptor beta (ER beta). Rev. Reprod. 3, 164-71. Shelly W, Draper MW, Krishnan V, Wong M & Jaffe RB (2008) Selective estrogen receptor modulators: an update on recent clinical findings. Obstet. Gynecol. Surv. 63, 163-81. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA & Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927-37. Shibib BA, Khan LA & Rahman R (1993) Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem. J. 292 ( Pt 1), 267-70. Shimizu H, Ohtani K, Kato Y, Tanaka Y & Mori M (1996) Withdrawal of [corrected] estrogen increases hypothalamic neuropeptide Y (NPY) mRNA expression in ovariectomized obese rat. Neurosci. Lett. 204, 81-4. Simpson E, Jones M, Misso M, Hewitt K, Hill R, Maffei L, Carani C & Boon WC (2005) Estrogen, a fundamental player in energy homeostasis. J. Steroid Biochem. Mol. Biol. 95, 3-8. Small GM, Burdett K & Connock MJ (1985) A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem. J. 227, 205-10. Somjen D, Amir-Zaltsman Y, Gayer B, Kulik T, Knoll E, Stern N, Lu LJ, Toldo L & Kohen F (2002) 6-Carboxymethyl genistein: a novel selective oestrogen receptor modulator (SERM) with unique, differential effects on the vasculature, bone and uterus. J. Endocrinol. 173, 415-27. Somjen D, Lundgren S & Kaye AM (1997) Sex and depot-specific stimulation of creatine kinase B in rat adipose tissues by gonadal steroids. J. Steroid Biochem. Mol. Biol. 62, 89-96. St. Paul M (1999) Approved Method of the American Association of Cereal Chemist. Stepka W, Wilson KE & Madge GE (1974) Antifertility investigation on Momordica. Lloydia 37, 645. Suchanek KM, May FJ, Robinson JA, Lee WJ, Holman NA, Monteith GR & Roberts-Thomson SJ (2002) Peroxisome proliferator–activated receptor α in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinog. 34, 165-71. Suzuki T, Hayashi S, Miki Y, Nakamura Y, Moriya T, Sugawara A, Ishida T, Ohuchi N & Sasano H (2006) Peroxisome proliferator-activated receptor gamma in human breast carcinoma: a modulator of estrogenic actions. Endocr. Relat. Cancer 13, 233-50. Tan MJ, Ye JM, Turner N, Hohnen-Behrens C, Ke CQ, Tang CP, Chen T, Weiss HC, Gesing ER, Rowland A, James DE & Ye Y (2008) Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 15, 263-73. Tsukamoto S, Aburatani M & Ohta T (2005) Isolation of CYP3A4 Inhibitors from the Black Cohosh (Cimicifuga racemosa). Evid Based Complement Alternat Med 2, 223-26. Ukiya M, Akihisa T, Tokuda H, Toriumi M, Mukainaka T, Banno N, Kimura Y, Hasegawa J & Nishino H (2002) Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on epstein-barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. J. Agric. Food Chem. 50, 6710-5. Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW & Mangelsdorf DJ (2007) 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat. Med. 13, 1185-92. Valdes LJ, 3rd (1986) Loliolide from Salvia divinorum. J. Nat. Prod. 49, 171. von Angerer E, Biberger C, Holler E, Koop R & Leichti S (1994) 1-carbamoylalkyl-2-phenylindoles: Relationship between side chain structure and estrrogen antagonism. J. Steroid Biochem. Mol. Biol. 49, 51-62. Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M & et al. (1985) Cloning of the human estrogen receptor cDNA. Proc. Natl. Acad. Sci. U. S. A. 82, 7889-93. Wang X & Kilgore MW (2002) Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol. Cell. Endocrinol. 194, 123-33. Wang YH, Avula B, Liu Y & Khan IA (2008) Determination and quantitation of five cucurbitane triterpenoids in Momordica charantia by reversed-phase high-performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. Sci. 46, 133-6. Yamamoto Y, Shibata J, Yonekura K, Sato K, Hashimoto A, Aoyagi Y, Wierzba K, Yano S, Asao T, Buzdar AU & Terada T (2005) TAS-108, a Novel Oral Steroidal Antiestrogenic Agent, Is a Pure Antagonist on Estrogen Receptor α and a Partial Agonist on Estrogen Receptor β with Low Uterotrophic Effect. Clin. Cancer Res. 11, 315-22. You L, Casanova M, Bartolucci EJ, Fryczynski MW, Dorman DC, Everitt JI, Gaido KW, Ross SM & Heck Hd H (2002) Combined effects of dietary phytoestrogen and synthetic endocrine-active compound on reproductive development in Sprague-Dawley rats: genistein and methoxychlor. Toxicol. Sci. 66, 91-104. Zang C, Liu H, Bertz J, Possinger K, Koeffler HP, Elstner E & Eucker J (2009) Induction of endoplasmic reticulum stress response by TZD18, a novel dual ligand for peroxisome proliferator-activated receptor α/γ, in human breast cancer cells. Mol. Cancer Ther. 8, 2296-307. Zhang J, Guo H, Tian Y, Liu P, Li N, Zhou J & Guo D (2007) Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochemistry 68, 2523-30. 王思晴 (2009) 苜宿芽乙酸乙酯萃物中雌激素活性成分之分離純化及其對雌激素依賴型癌細胞和骨骼細胞株之效應, 台灣大學. 吳夢婷 (2008) 數種具植物雌激素活性材料對卵巢剔除鼠代謝症候群及鈣代謝之影響, 臺灣大學. 林甫容 (2002) 以鼠肝癌細胞株 H4IIEC3 初探幾種 PPAR alpha 活化物對維生素 E 代謝產物 alpha-CEHC 生成之影響, 臺灣大學. 洪永瀚 (2008) 苜蓿芽乙酸乙酯萃取物改善 MRL-lpr/lpr 自體免疫鼠病程發展之探討, 臺灣大學. 許婉貞 (2009) 以卵巢剔除小鼠探討數種植物雌激素化合物/萃物之雌激素相關生理活性, 台灣大學. 趙哲毅 (2003) 苦瓜活化過氧化體增殖劑活化受器及改變脂質代謝相關基因之表現, 臺灣大學. 鄭瑋宜 (2007) 山藥具雌激素活性成份之單離與鑑定研究, 臺灣大學. 謝婉郁 (2005) 山苦瓜改善血糖血脂代謝異常之效應探討, 臺灣大學. 鍾誠珠 (2009) 代謝症候群動物模式之評估探討, 臺灣大學. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48179 | - |
| dc.description.abstract | 婦女在停經後因體內雌激素濃度下降,而產生更年期症候群,長期更面臨罹患骨質疏鬆、心血管疾病、代謝症候群之風險增高。許多研究致力於尋找具有雌激素受器選擇性調節劑 (SERM) 功能之植物雌激素,以取代有副作用之賀爾蒙替代療法 (HRT)。我們發現山苦瓜乙酸乙酯萃物之不皂化物區分 (non-saponifiable fraction, NS) 可促進雌激素受器 (Estrogen receptor, ER) 之轉錄活性,暗示山苦瓜可能含有植物雌激素活性成份。本實驗之目的即為探討山苦瓜之植物雌激素效應,並從山苦瓜中純化分離出具有雌激素活性之成份並鑑定其結構,進一步以雌激素依賴型癌細胞,探討其在雌激素相關生理作用中所扮演之可能角色。
先以三週齡剛離乳之母鼠,初探討餵食山苦瓜是否影響雌激素作用之相關生理狀態。將12 隻三週齡剛離乳之母鼠依體重隨機分為 B組 (basal diet,n=4)、E2 組 (2 mg 17β-estradiol/kg diet) 及 BGP 組 (5% 山苦瓜凍乾粉末)。結果發現 E2 組小鼠之陰道開口時間顯著較 B 組提早了 4.5 天 (p<0.01),而 BGP 組亦提早了 1.8 天 (p = 0.12)。繼以陰道抹片觀察其動情週期的變化,發現 BGP 組小鼠停留於動情期 (Estrus phase) 的時間佔完所有時間之 61%,顯著較 B 組停留於動情期之時間 (41%) 長 (p<0.01),而 E2 組小鼠則是長期處於動情期 (100%,p<0.01)。 次以卵巢剔除母鼠,餵以高油飼料 (HF 組) 或分別添加 E2、5%山苦瓜凍乾粉末 (BGP 組)、0.2% 不皂化物區分 (NS組) 等飼料15 週或 30 週。結果山苦瓜與 NS 的攝取不會產生如 E2 補充時子宮脹大的效果。餵食實驗飼料三週後進行鈣平衡分析實驗,則觀察到E2 組 (n=5) 糞便鈣排出量較其控制組 (HF 組) 少 (p<0.01),鈣平衡 (p=0.12) 與鈣保留率 (p=0.07) 則有較高之趨勢。而 BGP 組 (n=5) 亦有糞便鈣與尿鈣排出量較少的現象 (p<0.01),且 BGP 組與 NS 組之鈣平衡及鈣保留率均提升至與 E2 組沒有顯著差異的效果 (p>0.05)。顯示山苦瓜中成份對缺乏雌激素所引起之骨質疏鬆應有預防保護之功效。乃進一步對其雌激素活性成份進行純化分離如下。 將山苦瓜凍乾粉依序以乙酸乙酯及 95% 酒精萃取,再以開放式管柱層析及製備式 HPLC 分別對乙酸乙酯萃取物之不皂化物區分 (NS) 及酒精萃取物之酸水解產物 (acid-hydrolyzed product, AH) 進行純化分離,並利用ER轉錄活性分析 (transactivation assay) 追蹤活性成份。結果從 NS 中分得葉黃素、loliolide、植醇以及一已知之cucurbitane-type 三萜類化合物5β,19-epoxycucurbita-6,24-dien-3β,23-diol (6);從 AH 中單離出五個cucurbitane-type 三萜類新化合物,經結構鑑定知其分別為 cucurbita-6,22(E),24-trien-3β-ol-19,5β-olide (1)、 4β,19-epoxycucurbita-6,22(E),24-trien-3β,19-diol (2)、3β-hydroxycucurbita-5(10),6,22(E),24-tetraen-19-al (3)、19-dimethoxycucurbita-5(10),6,22(E),24-tetraen-3β-ol (4) 與 19-nor-cucurbita-5(10),6,8,22(E),24-pentaen-3β-ol (5)。在沒有細胞毒性之濃度處理下,除了化合物 3 與 4,其餘化合物均可活化 ER 轉錄活性。然而相對於輕微活化 ER 的效果,化合物 1、2、3、5與 6 則可以顯著拮抗 E2 所誘發之 ER 轉錄活性。而這些化合物中除了化合物 3 與 4 不具活化 PPARγ 之能力,其他化合物則亦有活化 PPARα與 PPARγ 轉錄活性之效果。 最後以雌激素依賴型乳癌細胞 MCF-7 與子宮內膜癌細胞 Ishikawa 探討山苦瓜區分物及各單離成份之雌激素相關效應。先以 MTT 分析 MCF-7 與 Ishikawa 細胞之增生,結果顯示葉黃素與化合物 2、3、6 可顯著降低 MCF-7之 MTT吸光值。而除了化合物 4 不影響 Ishikawa 之細胞增生,葉黃素及其他五個三萜類化合物均會顯著降低 Ishikawa 之 MTT 吸光值。又在 E2 共同處理下,葉黃素與六個三萜類化合物均可顯著抑制 E2 所誘發之 MCF-7 與 Ishikawa細胞增生,且降低 Ishikawa 細胞內源性 ALP 的活性。而以相同濃度處理非雌激素依賴型癌細胞 MDA-MB-231,則不影響其 MTT 吸光值。 綜之,本研究自酸水解山苦瓜萃物 (AH) 中單離出 5 個新的三萜類化合物,期中 4 個具有植物雌激素活性,另自 NS 中也找到 4 個植物雌激素化合物。這些化合物具有顯著之拮抗雌激素活性。 | zh_TW |
| dc.description.abstract | Postmenopausal women suffer not only from the menopausal syndromes but also higher risks of osteoporosis, cardiovascular diseases and metabolic syndrome. Some phytoestrogens have been characterized as selected estrogen receptor modulator (SERM) and regarded as one of the substitute for hormone-replacement therapy which was shown to have adverse events. The Cucurbitaceae plant Momordica charantia (MC, bitter gourd) is a common tropical vegetable and has been used in traditional medicine. We have found the the non-saponifiable fraction (NS) of a wild bitter gourd (BG) extract activated transcription via estrogen receptors (ER). Studies in this thesis thus aimed at identifying and characterizing phytoestrogenic compounds in BG.
To assess the in vivo estrogen-related response of BG, 3 groups (n=4/group) of weanling C57BL/6J female mice were respectively fed a basal diet (B), basal diet supplemented with E2 (2 mg 17β-estradiol/kg diet) or BGP (5% bitter gourd powder). The vaginal opening of mice treated with E2 and BGP were respectively, 4.5 days (p<0.01) and 1.8 days (p=0.12) earlier than those of the B group. Results of vaginal smear examination indicated that the E2 group persisted on the estrus stage while BGP group showed a prolonged estrus stage (61%) that was longer than B group (41%)(p<0.01). To assess more in vivo estrogen-related response, ovariectomized mice fed a high fat diet (HF group) were supplemented with E2 (E2 group), 5% bitter gourd powder (BGP group) or 0.2% non-saponifiable fraction from ethyl acetate extract of BG (NS group) for 15 or 30 weeks. The uterus weight was significantly higher in the E2 group (p<0.05) but not in the BGP and the NS group. In the calcium balance analysis after 3 weeks feeding, the fecal Ca excretion was less (p<0.01), and the Ca balance (p=0.12) and Ca retention (p=0.07) were higher in the E2 group. The fecal and urinary Ca excretion of the BGP group were also less (p<0.01) than the control group. The Ca balance and Ca retention of BGP and NS groups were also improved and comparable to those of the E2 group (p>0.05). These results implied that BG may be beneficial for estrogen deficiency. To elucidate the phytoestrogenic compounds in BG, a cell-based ER transactivation assay were used to track the active compounds. Lyophilized powders of BG fruits were exhaustively extracted with ethyl acetate (EA) and 95% ethanol (EtOH), sequentially. The non-saponifiable fraction (NS) of the EA extract as well as the acid-hydrolyzed EtOH extract (AH) was fractionated by repeated column chromatography and isolates were further purified by preparative HPLC or RP-HPLC. Lutein, loliolide, phytol, and one known cucurbitane-type triterpenoid 5β,19-epoxycucurbita-6,24-dien-3β,23-diol (6) were identified from NS. Five new cucurbitane-type triterpenoids, cucurbita-6,22(E),24-trien-3β-ol-19,5β-olide (1), 4β,19-epoxycucurbita-6,22(E),24-trien-3β,19-diol (2), 3β-hydroxycucurbita-5(10),6,22(E),24-tetraen-19-al (3), 19-dimethoxycucurbita-5(10),6,22(E),24-tetraen-3β-ol (4), together with 19-nor-cucurbita-5(10),6,8,22(E),24-pentaen-3β-ol (5) were isolated from AH. Except for compound 3 and 4, the remaining compounds showed weak agonistic activity via ERα and β in the non-cytotoxic concentration range. Compounds 1, 2, 3, 5 and 6 showed significant antagonist activity on ERs in the transactivation assay. These ER active extract/compounds were then assessed for their effect on the proliferation of estrogen-dependent human breast cancer cell MCF-7 and endometrial-derived Ishikawa cells by MTT assay in the absence or presence of 1 nM E2. Lutein, compound 2, 3 and 6 significantly reduced the MTT values of MCF-7. Except for compound 4, lutein and the remaining 5 cucurbitane-type triterpenoids significantly reduced the MTT values of Ishikawa cells. All the 6 cucurbitane-type triterpenoids decreased the ER target gene ALP activity of Ishikawa cells. Besides, lutein and all the 6 cucurbitane-type triterpenoids antagonized the proliferation effect of 1 nM E2 in both of these estrogen-dependent cancer cell lines. These inhibition effects were not observed in the estrogen-independent MDA-MB-231 cells within a similar concentration range. In conclusion, five new cucurbitane-type triterpenoids were isolated and identified from the AH of Momordica charantia, and four of them showed estrogenic/antiestrogenic activities. Besides, another four known compounds were isolated and identified from the NS as phytoestrogens of MC. These compounds showed significant antagonistic activity toward E2. These results provide basic evidence that Momordica charantia might be a source of beneficial phytoestrogens isolated and identified. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:48:09Z (GMT). No. of bitstreams: 1 ntu-100-D93b47304-1.pdf: 8614664 bytes, checksum: b20547fcb339dd18fedc876e760d8fc2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iv 縮寫對照表 vii 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 1 一、雌激素 1 二、雌激素受器 (estrogen receptor, ER) 2 三、選擇性雌激素受器調節器 (SERM) 5 四、ER subtype-specific ligand binding 7 五、PPAR 與 ER 之關聯研究 8 六、山苦瓜之簡介 11 第三節 研究假說與架構 14 一、研究假說 15 二、實驗設計 15 第二章 山苦瓜對離乳小鼠與卵巢剔除鼠之雌激素效應 16 第一節 前言 16 第二節 材料與方法 17 一、實驗大綱 17 二、動物飼養及卵巢剔除手術 18 三、實驗飼料 19 四、陰道開口時間與抹片觀察 (離乳小鼠實驗) 21 五、口服葡萄糖耐受測試 (Oral glucose tolerance test, OGTT) (卵巢剔除鼠之高油飼料實驗) 22 六、動物犧牲與樣品收集 23 七、血糖與血脂分析 23 八、肝臟過氧化體 Acyl-CoA Oxidase (ACO) 活性分析 (卵巢剔除鼠之高油飼料實驗) 24 九、組織 creatine kinase (CK) 活性分析 (離乳小鼠實驗) 27 十、脂質吸收分析 (卵巢剔除鼠之高油飼料實驗) 28 十一、鈣平衡與骨鈣含量分析 29 十二、統計分析 30 第三節 結果 31 一、離乳小鼠實驗 31 二、卵巢剔除鼠實驗 41 第四節 討論 56 一、雌激素與山苦瓜的攝入對正常母鼠體內生理活性之影響 56 二、雌激素、山苦瓜與不皂化物 (NS) 的攝入對卵巢剔除鼠體內生理活性之影響 58 第五節 結論 60 第三章 山苦瓜活化 ER 成份之純化分離與結構鑑定 61 第一節 前言 61 第二節 材料與方法 61 一、細胞培養與轉錄活性分析 61 二、山苦瓜樣品處理與化學成分分離及鑑定 66 第三節 結果 73 一、山苦瓜不皂化物 NS 對 ER 轉錄活性的影響 73 二、以 GC-MS 初探不皂化物 NS 內已知成份 76 三、山苦瓜不皂化物 NS 經管柱層析之區分活化 ER 轉錄活性之效果 76 四、山苦瓜酒精萃取物與其酸水解產物之 ER 活性分析 81 五、山苦瓜酒精萃物之酵素水解產物之活性分析 82 六、山苦瓜中具 ER 活性成分之純化分離與結構鑑定 84 七、山苦瓜中單一活性成分對 ER 轉錄活性的影響 98 第四節 討論 103 一、單離活性成份之材料製備策略 103 二、山苦瓜中具有 ER 活性之化合物 104 第五節 結論 108 第四章 山苦瓜活化 ER 成份對雌激素依賴型癌細胞之效應 109 第一節 前言 109 第二節 材料與方法 109 一、MCF-7 細胞增生實驗 109 二、Ishikawa 細胞增生與內源性 Alkaline phosphatase (ALP) 活性分析 111 三、MDA-MB-231 細胞存活率實驗 113 第三節 結果 114 一、山苦瓜萃物與活性成分對 MCF-7 細胞增生的影響 114 二、山苦瓜粗萃物與活性成分對Ishikawa細胞增生與內源性 ALP 活性的影響 118 三、山苦瓜中 cucurbitane-type triterpenoids 成分對 MDA-MB-231 細胞存活率的影響 122 四、以 colony formation test 分析山苦瓜區分及活性成份對 MCF-7 細胞增生的影響 124 第四節 討論 125 第五節 結論 127 第五章 山苦瓜活化 ER 成份對 PPAR 轉錄活性的影響 129 第一節 前言 129 第二節 材料與方法 129 第三節 結果 130 第四節 討論 133 第五節 結論 136 第六章 綜合討論與結論 137 第一節 綜合討論 137 第二節 結論 141 第七章 參考文獻 142 附錄 光譜圖 152 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植物雌激素 | zh_TW |
| dc.subject | 雌激素受器 | zh_TW |
| dc.subject | 山苦瓜 | zh_TW |
| dc.subject | 轉錄活性分析 | zh_TW |
| dc.subject | 卵巢剔除鼠 | zh_TW |
| dc.subject | 雌激素依賴型癌細胞 | zh_TW |
| dc.subject | estrogen receptor | en |
| dc.subject | Momordica charantia | en |
| dc.subject | estrogen-dependent carcinoma | en |
| dc.subject | transactivation assay | en |
| dc.subject | ovariectomized mice | en |
| dc.subject | phytoestrogen | en |
| dc.title | 自山苦瓜單離植物雌激素及其化學鑑定與生物活性探討 | zh_TW |
| dc.title | Isolation, Chemical Identification and Biological Characterization of Phytoestrogens from Wild Bitter Gourd (Momordica Charantia) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭悅雄,吳文惠,趙蓓敏,嚴孟祿,楊健志,林璧鳳 | |
| dc.subject.keyword | 山苦瓜,雌激素受器,植物雌激素,轉錄活性分析,卵巢剔除鼠,雌激素依賴型癌細胞, | zh_TW |
| dc.subject.keyword | Momordica charantia,estrogen receptor,phytoestrogen,transactivation assay,ovariectomized mice,estrogen-dependent carcinoma, | en |
| dc.relation.page | 181 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-05-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 8.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
