Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48175
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor郭鐘金
dc.contributor.authorHsiao-Chun Linen
dc.contributor.author林曉君zh_TW
dc.date.accessioned2021-06-15T06:48:03Z-
dc.date.available2016-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citationAggarwal, S.K., and R. MacKinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 16:1169-1177.
Ahern, C.A., and R. Horn. 2004. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27:303-307.
Ahern, C.A., and R. Horn. 2005. Focused electric field across the voltage sensor of potassium channels. Neuron. 48:25-29.
Akabas, M.H., D.A. Stauffer, M. Xu, and A. Karlin. 1992. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science. 258:307-310.
Antz, C., M. Geyer, B. Fakler, M.K. Schott, H.R. Guy, R. Frank, J.P. Ruppersberg, and H.R. Kalbitzer. 1997. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature. 385:272-275.
Armstrong, C.M. 1969. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol. 54:553-575.
Armstrong, C.M., and F. Bezanilla. 1973. Currents related to movement of the gating particles of the sodium channels. Nature. 242:459-461.
Armstrong, C.M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 70:567-590.
Asamoah, O.K., J.P. Wuskell, L.M. Loew, and F. Bezanilla. 2003. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron. 37:85-97.
Bezanilla, F. 2002. Voltage sensor movements. J Gen Physiol. 120:465-473.
Bezanilla, F. 2005. Voltage-gated ion channels. IEEE Trans Nanobioscience. 4:34-48.
Bezanilla, F., and C.M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 60:588-608.
Campos, F.V., B. Chanda, B. Roux, and F. Bezanilla. 2007. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc Natl Acad Sci U S A. 104:7904-7909.
Catterall, W.A. 1986. Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem. 55:953-985.
Cha, A., G.E. Snyder, P.R. Selvin, and F. Bezanilla. 1999. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature. 402:809-813.
Chanda, B., O.K. Asamoah, R. Blunck, B. Roux, and F. Bezanilla. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature. 436:852-856.
Choi, K.L., R.W. Aldrich, and G. Yellen. 1991. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A. 88:5092-5095.
Claydon, T.W., M.R. Boyett, A. Sivaprasadarao, K. Ishii, J.M. Owen, H.A. O'Beirne, R. Leach, K. Komukai, and C.H. Orchard. 2000. Inhibition of the K+ channel kv1.4 by acidosis: protonation of an extracellular histidine slows the recovery from N-type inactivation. J Physiol. 526 Pt 2:253-264.
Demo, S.D., and G. Yellen. 1991. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron. 7:743-753.
Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 280:69-77.
Durell, S.R., and H.R. Guy. 1992. Atomic scale structure and functional models of voltage-gated potassium channels. Biophys J. 62:238-247; discussion 247-250.
Fernandez-Ballester, G., F. Gavilanes, J.P. Albar, M. Criado, J.A. Ferragut, and J.M. Gonzalez-Ros. 1995. Adoption of beta structure by the inactivating 'ball' peptide of the Shaker B potassium channel. Biophys J. 68:858-865.
Gandhi, C.S., and E.Y. Isacoff. 2002. Molecular models of voltage sensing. J Gen Physiol. 120:455-463.
Guy, H.R., and P. Seetharamulu. 1986. Molecular model of the action potential sodium channel. Proc Natl Acad Sci U S A. 83:508-512.
Hartmann, H.A., G.E. Kirsch, J.A. Drewe, M. Taglialatela, R.H. Joho, and A.M. Brown. 1991. Exchange of conduction pathways between two related K+ channels. Science. 251:942-944.
Hodgkin, A.L., and A.F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117:500-544.
Holmgren, M., M.E. Jurman, and G. Yellen. 1996. N-type inactivation and the S4-S5 region of the Shaker K+ channel. J Gen Physiol. 108:195-206.
Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 250:533-538.
Isacoff, E.Y., Y.N. Jan, and L.Y. Jan. 1991. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature. 353:86-90.
Islas, L.D., and F.J. Sigworth. 1999. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels. J Gen Physiol. 114:723-742.
Islas, L.D., and F.J. Sigworth. 2001. Electrostatics and the gating pore of Shaker potassium channels. J Gen Physiol. 117:69-89.
Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003a. X-ray structure of a voltage-dependent K+ channel. Nature. 423:33-41.
Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003b. The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 423:42-48.
Karlin, A., and M.H. Akabas. 1998. Substituted-cysteine accessibility method. Methods Enzymol. 293:123-145.
Kumanovics, A., G. Levin, and P. Blount. 2002. Family ties of gated pores: evolution of the sensor module. FASEB J. 16:1623-1629.
Larsson, H.P., O.S. Baker, D.S. Dhillon, and E.Y. Isacoff. 1996. Transmembrane movement of the shaker K+ channel S4. Neuron. 16:387-397.
Liman, E.R., P. Hess, F. Weaver, and G. Koren. 1991. Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature. 353:752-756.
Logothetis, D.E., S. Movahedi, C. Satler, K. Lindpaintner, and B. Nadal-Ginard. 1992. Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron. 8:531-540.
Lopez, G.A., Y.N. Jan, and L.Y. Jan. 1991. Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels. Neuron. 7:327-336.
Lu, Z., A.M. Klem, and Y. Ramu. 2001. Ion conduction pore is conserved among potassium channels. Nature. 413:809-813.
MacKinnon, R., R.W. Aldrich, and A.W. Lee. 1993. Functional stoichiometry of Shaker potassium channel inactivation. Science. 262:757-759.
Mah, V., and F. Jalilehvand. 2010. Cadmium(II) complex formation with glutathione. J Biol Inorg Chem. 15:441-458.
Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 271:213-216.
Morais-Cabral, J.H., Y. Zhou, and R. MacKinnon. 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature. 414:37-42.
Murata, Y., H. Iwasaki, M. Sasaki, K. Inaba, and Y. Okamura. 2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature. 435:1239-1243.
Murrell-Lagnado, R.D., and R.W. Aldrich. 1993. Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J Gen Physiol. 102:949-975.
Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H. Takahashi, H. Nakayama, Y. Kanaoka, N. Minamino, and et al. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312:121-127.
Papazian, D.M., X.M. Shao, S.A. Seoh, A.F. Mock, Y. Huang, and D.H. Wainstock. 1995. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron. 14:1293-1301.
Papazian, D.M., L.C. Timpe, Y.N. Jan, and L.Y. Jan. 1991. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature. 349:305-310.
Ruta, V., J. Chen, and R. MacKinnon. 2005. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell. 123:463-475.
Sasaki, M., M. Takagi, and Y. Okamura. 2006. A voltage sensor-domain protein is a voltage-gated proton channel. Science. 312:589-592.
Schneider, M.F., and W.K. Chandler. 1973. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 242:244-246.
Schoppa, N.E., K. McCormack, M.A. Tanouye, and F.J. Sigworth. 1992. The size of gating charge in wild-type and mutant Shaker potassium channels. Science. 255:1712-1715.
Seoh, S.A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron. 16:1159-1167.
Soler-Llavina, G.J., M. Holmgren, and K.J. Swartz. 2003. Defining the conductance of the closed state in a voltage-gated K+ channel. Neuron. 38:61-67.
Starace, D.M., and F. Bezanilla. 2001. Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. J Gen Physiol. 117:469-490.
Starace, D.M., and F. Bezanilla. 2004. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature. 427:548-553.
Starkus, J.G., Z. Varga, R. Schonherr, and S.H. Heinemann. 2003. Mechanisms of the inhibition of Shaker potassium channels by protons. Pflugers Arch. 447:44-54.
Stuhmer, W., F. Conti, H. Suzuki, X.D. Wang, M. Noda, N. Yahagi, H. Kubo, and S. Numa. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature. 339:597-603.
Tempel, B.L., D.M. Papazian, T.L. Schwarz, Y.N. Jan, and L.Y. Jan. 1987. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science. 237:770-775.
Tombola, F., M.M. Pathak, and E.Y. Isacoff. 2005. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron. 45:379-388.
Yang, N., A.L. George, Jr., and R. Horn. 1996. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 16:113-122.
Yang, N., and R. Horn. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 15:213-218.
Yellen, G., M.E. Jurman, T. Abramson, and R. MacKinnon. 1991. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science. 251:939-942.
Zagotta, W.N., T. Hoshi, and R.W. Aldrich. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 250:568-571.
Zhou, M., J.H. Morais-Cabral, S. Mann, and R. MacKinnon. 2001. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature. 411:657-661.
Zhou, Y., J.H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature. 414:43-48.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48175-
dc.description.abstractShaker鉀離子通道由四個次單元所組成,一個次單元含有六個穿膜區段S1-S6。S1-S4形成電位感應區,負責感應膜兩側電位的變化。S5-S6則是孔洞區,控制鉀離子的通透。細胞膜去極化之後,感應電荷會穿越細胞膜,而感應電荷的移動則會使通道產生形變,導致離子通道的開啟與不活化。N型不活化通常以ball and chain的模型來解釋,離子通道的N端會去堵塞孔洞的內口區,進而阻擋了離子的進出。
在這個研究中,我們在N端G6、L7、Y8和S4上的L366分別做點突變,並利用置換胞內溶液離子成分後,觀察電流的行為變化,以檢視N端不活化球和S4之間的交互作用。當胞內以MTSET灌流時,L7C和L7C L366C會迅速的被MTSET所修飾,不活化行為完全消失,且電流明顯增大,但兩者被MTSET修飾的效果沒有明顯差異。而N端單C突變受到胞內Cd2+的影響,會大幅降低快速不活化的程度,L366C則不受胞內Cd2+的影響。一旦N端單C突變搭配上L366C突變,則快速不活化行為程度的降低會比N端單C突變小,不只電流殘餘較少,不活化速率也較快。最後,利用改變胞內環境的pH值觀察N端單H突變和L366E突變的電流變化,當pH值從7.4降到5.9時,WT和N端單H突變不活化行為的程度都會降低,而且電流峰值會降到原來的一半,但是N端單H突變搭配上L366E突變,改變pH值並不會影響電流的不活化行為,電流峰值也不會降低。
綜合結果,我們認為L366和面臨水洞的N端胺基酸應該是靠得很近,換言之,在休息態時,L366可能處在近於N端胺基酸的位置上,使得N端單C突變和L366C突變大部分可形成雙硫鍵,減輕胞內Cd2+的作用,而且使N端單H突變和L366E突變之間有靜電交互作用。因此,S4的運動和N端之間的交互作用,可能在Shaker鉀離子通道上扮演門閥調控的重要角色。
zh_TW
dc.description.abstractThe Shaker K+ channel is composed of four subunits, and each subunit has six transmembrane segments S1-S6. S1-S4 presumably form the voltage-sensing domain, and are responsible for sensing changes in transmembrane voltage. S5-S6 contribute to the pore domain which conducts the permeating potassium ions. Upon depolarization, the voltage sensors move across the membrane, and the movement of the gating charges would induce further conformational changes that lead to channel opening and inactivation. N-type inactivation is usually explained with the ‘ball-and-chain’ model, in which the N-terminus of the channel occludes the internal pore mouth and prevents ion flux.
In this study, we made several point mutations on G6、L7、Y8 of N-terminus and S4,and then observed the behavior of these mutant channels in different intracellular solutions in order to examine the interaction between the N-terminus and S4. We found that L7C and L7C L366C mutant channels were modified by MTSET rapidly, with macroscopic inactivation completely abolished and very much increased current amplitude by the modification. But there is no significant difference, including the kinetics of modification, in MTSET modification between L7C and L7C L366C. Intracellular Cd2+ also decreased the extent of inactivation of single cysteine mutants of N-terminus, but has no apparent effect on the L366C mutant channels. However, once these single cysteine mutants of N-terminus was coexpressed with L366C mutant, the attenuation of inactivation became much lighter. The macroscopic inactivation kinetics were faster and the steady-state currents were smaller. Moreover, we examined the possible interactions between single histidine mutants of N-terminus and L366E. When intracellular pH were lowered from 7.4 to5.9, the inactivation of wild-type and single mutants of N-terminus became weaker, with the peak current reduced to half of the original value. However, changes of intracellular pH would have no effect on either fast inactivation or peak current in double mutant channels, involving both histidine replacement in the N-terminus and L366E.
Altogether, these findings suggest that the side chain of residues L366 and L7 are in close proximity, resulting in the formation of the disulfide bond between single mutants of N-terminus and L366C to alleviate the effect of intracellular Cd2+, and the electrostatic interaction between single histidine mutants of N-terminus and L366E. Thus, the possible interaction between the movement of S4 and the N-terminus may play an important role in the gating control of the Shaker K+ channel.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:48:03Z (GMT). No. of bitstreams: 1
ntu-100-R97441009-1.pdf: 7451794 bytes, checksum: 52674fe4f4b235529b4138c0d3def36d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents第一章 導論..........................................................1
第二章 材料與方法.....................................................10
第三章 結果.........................................................14
第四章 討論.........................................................23
圖次
附圖................................................................32
圖1 WT、L7C、L366C、L7C L366C受胞內1mM MTSET修飾前、進程、後之原始記錄電流及3uM MTSET修飾之電流變化和時間作圖.............33
圖2 WT、L7C、L366C、L7C L366C受胞內1mM MTSET修飾前後之活化曲線、不活化曲線.....................................................35
圖3 WT、L7C、L366C、L7C L366C受胞內MTSET修飾前後之電流峰值和殘餘電流比例、電流峰值變化 ........................................36
圖4 N端G6C、L7C、Y8C單突變通道在胞內以Cd2+灌流前後的原始記錄電流........................................ ....................37
圖5 N端G6、L7、Y8搭配L366之雙C突變和L366C單突變在胞內以Cd2+灌流前後的原始記錄電流.................... ......................38
圖6 N端G6、L7、Y8、S4的L366單突變和N端分別搭配S4之雙突變通道,以1uM Cd2+灌流前後的活化曲線以及不活化曲線.....................39
圖7 N端G6、L7、Y8、S4的L366單突變和N端分別搭配S4之雙突變通道,以1uM Cd2+灌流前後之電流峰值和殘餘電流比例....................41
圖8 N端G6、L7、Y8、S4的L366單突變和N端分別搭配S4之雙突變通道,以1uM Cd2+灌流前後之不活化速率的比較..........................42
圖9 N端G6、L7、Y8、S4的L366單突變和N端分別搭配S4之雙突變通道,以1uM Cd2+灌流前後的電流峰值變化...............................43
圖10 WT及N端的G6H、L7H、Y8H單突變通道在不同pH值(pH7.4和pH5.9)環境下之記錄電流........................ ........................44
圖11 L366E及N端G6H、L7H、Y8H分別搭配L366E之雙突變通道受胞內在不同pH值(pH7.4和pH5.9)環境下之原始記錄電流......................45
圖12 N端G6、L7、Y8、S4的L366單突變和N端分別搭配S4之雙突變通道,在不同pH值(pH7.4和pH5.9)環境的活化曲線以及不活化曲線..........46
圖13 L366E及N端G6H、L7H、Y8H分別搭配L366E之雙突變通道受胞內在不同pH值(pH7.4和pH5.9)環境典型的電流-電壓關係圖(I-V curve)和電流峰值變化..........................................................48
圖14 L366E及N端G6H、L7H、Y8H分別搭配L366E之雙突變通道受胞內在不同pH值(pH7.4和pH5.9)不活化行為的原始電流、在不同prepulse下的time to peak值比較..................................................50
圖15 N端G6、L7、Y8、S4的L366單突變和N端分別搭配S4之雙突變通道,在不同pH值(pH7.4和pH5.9)環境之電流峰值和殘餘電流比例.........52
圖16 N端G6、L7、Y8、S4的L366單突變和N端分別搭配S4之雙突變通道,在不同pH值(pH7.4和pH5.9)環境之不活化速率的比較...............53
圖 17 Shaker突變通道處於休息態時,胞內在不同狀況下, N端不活化球和S4的交互作用模式之假想圖(N端不活化球以L7為例) ............... ...54
附表................................................................56
參考文獻............................................................60
dc.language.isozh-TW
dc.subjectN端zh_TW
dc.subject鉀離子通道zh_TW
dc.subject快速不活化zh_TW
dc.subjectS4en
dc.subjectfast inactivationen
dc.subjectShaker channelen
dc.subjectN terminusen
dc.titleShaker鉀離子通道第四穿膜區段與N端間之相互作用zh_TW
dc.titleThe Interaction between S4 and N-terminus in Shaker K+ Channelsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃榮棋,楊雅晴
dc.subject.keyword鉀離子通道,快速不活化,N端,zh_TW
dc.subject.keywordShaker channel,fast inactivation,N terminus,S4,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
Appears in Collections:生理學科所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
7.28 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved