Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48164
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭淑芬(Soofin Cheng)
dc.contributor.authorMei-Ju Chenen
dc.contributor.author陳美如zh_TW
dc.date.accessioned2021-06-15T06:47:46Z-
dc.date.available2021-08-18
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citationReferences
1. J.R. Rostrup-Nielsen, J. Sehested and J.K. Norskov, Adv. Catal., 47, 65 (2002).
2. Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, Science, 301, 935 (2003).
3. H. Igarashi, T. Fujino and M. Watanabe, J. Electroanal. Chem., 391, 119 (1995).
4. R.A. Lemons, J. Power Sources, 29, 251 (1990).
5. G. Avgouropoulos, T. Ioannides, C. H. Papadopoulou, J. Batista, S. Hocevar and H. K. Matralis, Catal. Today, 75, 157 (2002).
6. S. H. Oh and R. M. Sinkevitch, J. Catal., 142, 254 (1993).
7. J. B. Wang, S. Lin and T. Huang, Appl. Catal. A, 232, 107 (2002).
8. G. Sedmak, S. Hocevar and J. Levec, J. Catal., 213, 135 (2003).
9. D.H. Kim and J.E. Cha, Catal. Lett., 86, 107 (2003).
10. W.B. Kim, T. Voitl, G.J. Rodrı´guez-Rivera, S.T. Evans and J.A. Dumesic, Angew. Chem. Int. Ed., 44, 778 (2005).
11. S. D. Park, J. M. Vohs and R. J. Gorte, Nature, 404, 265 (2000).
12. S. D. Park, J. M. Vohs and R. J. Gorte, Appl. Catal. A., 200, 55 (2000).
13. H. Kim, S. D. Park, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 148, A693 (2001).
14. S. W. Zha, A. Moore, H. Abernathy and M. L. Lin, J. Electrochem. Soc., 151, A1128 (2004).
15. B. D. Madsen and S. A. Barnett, Solid State Ionics, 176, 2545 (2005).
16. M. D. Gross, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 154, B694 (2007).
17. Z. F. Zhou, R. Kumar, S. T. Thakur, L. R. Rudnick, H. Schobert and S. N. Lvov, J. Power Sources, 171, 856 (2007).
18. 黃鎮江, 燃料電池, 全華科技圖書股份有限公司, 台北, 台灣(2003).
19. V. V. Kharton, F. M. B. Marques and A. Atkinson, Solid State Ionics, 174, 135 (2004).
20. A. J. Jacobson, Chem. Mater., 22, 660 (2010).
21. H. Inaba and H. Tagaea, Solid State Ionics, 83, 1 (1996).
22. N. J. Kim, B. H. Kim and D. Lee, J. Power Sources, 90, 139 (2000).
23. F. Y. Wang, S. Y. Chen and S. Cheng, Electrochem. Commun., 6, 743 (2004).
24. F. Y. Wang, B. Z. Wan and S. Cheng, J. Solid State Electrochem., 9, 168 (2005).
25. F. Y. Wang, S. Y. Chen, Q. Wang, S. Yu and S. Cheng, Catalysis Today, 97, 189 (2004).
26. Y. Ji, J. Liu, T. M. He, J. X. Wang and W. H. Su, J. Alloys Compd., 389, 317 (2005).
27. Y. F. Zheng, M. Zhou, L. Ge, S. J. Li, H. Chen and L. C. Guo, J. Alloys Compd., 509, 1244 (2011).
28. M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ionics, 129, 63 (2000).
29. B. C. H. Steele, Solid State Ionics, 129, 95 (2000).
30. M. Goedickemeier and L. J. Gauckler, J. Electrochem. Soc., 145, 414 (1998).
31. A. Atkinson, Solid State Ionics, 95, 249 (1997).
32. H. A. Harwig, J. Inorg. Gen. Chem., 444, 151 (1978).
33. H. A. Harwig and A. G. Gerards, J. Solid State Chem., 26, 265 (1978).
34. J. Molenda, K. Świerczek and W. Zając, J. Power Sources, 173, 657 (2007).
35. B. A. Boukamp, Nat. Mater., 2, 294 (2003).
36. J. C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero- López, W. Z. Zhou and J. T. Irvine, Nature, 439, 568 (2006).
37. Z. L. Zhan and S. A. Barnett, Science, 308, 844 (2005).
38. M. D. Gross, J. M. Vohs and R. J. Gorte, Electrochem. Solid-State Lett., 10, B65 (2007).
39. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).
40. S. Park, R. Craciun, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 146, 3603 (1999).
41. S. W. Zha, A. Moore, H. Abernathy and M. L. Liu, J. Electrochem. Soc., 151, A1128 (2004).
42. E. P. Murray, T. Tsai and S. A. Barnett, Nature, 400, 649 (1999).
43. J. Fleig, Annu. Rev. Mater. Res., 33, 361 (2003).
44. C. R. Xia and M. L. Liu, Adv. Mater., 14, 521 (2002).
45. C. R. Xia and M. L. Liu, Solid State Ionics, 144, 249 (2001).
46. T. Ishihara, T. Kudo, H. Matsuda and Yusaku Takita, J. Electrochem. Soc., 142(5), 1519 (1995).
47. C. W. Sun, R. Hui and J. Roller, J. Solid State Electrochem., 14, 1125 (2010).
48. S. C. Singhal, Solid State Ionics, 135, 305 (2000).
49. B. C. H. Steele, Solid State Ionics, 129, 95 (2000).
50. R. Doshi, V.L. Richards, J.D. Carter, X. Wang, M. Krumpelt, J. Electrochem. Soc., 146, 1273 (1999).
51. M. J. L. Ostergard and M. Mogensen, Electrochemica Acta, 38, 2015 (1993).
52. M. J. L. Ostergard, C. Clausen, C. Bagger and M. Mogensen, Electrochemica Acta, 40, 1971 (1995).
53. C. Jin, J. Liu, W. M. Guo and Y. H. Zhang, J. Power Sources, 183, 506 (2008).
54. X. J. Chen, Q. L. Liu, S. H. Chan, N. P. Brandon and K. A. Khor, Electrochem. Commun., 9, 767 (2007).
55. E.P. Murray and S.A. Barnett, Solid State Ionics, 143, 265 (2001).
56. V. Dusastre and J. A. Kilner, Solid State ionics, 126, 163 (1999).
57. E. Barsoukov, and J. Ross Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, P.224, Wiley Interscience, New Jersey (2005).
58. R. M. ormerod, Chem. Soc. Rev., 32, 17 (2003).
59. H. Taimatsu, K. Wada and H. Kaneko, J. Am. Ceram. Soc., 75, 401 (1992).
60. Z. G. Lu, J. Hardy, J. Templeton and J. Stevenson, J. Power Sources, 196, 39 (2011).
61. S. I. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro and J. Mizusaki, Solid State Ionics, 181, 1713 (2010).
62. L. F. Nie, M. F. Liu, Y. J. Zhang and M. L. Liu, J. Power Sources, 195, 4704 (2010).
63. X. Y. Lou, S. Z. Wang, Z. Liu, L. Yang and M. L. Liu, Solid State Ionics, 180, 1285 (2009).
64. Y. Liu, S. Zha and M. L. Liu, Chem. Mater., 16, 3502 (2004).
65. J. D. Nicholas and S. A. Barnett, J. Electrochem. Soc., 157, B536 (2010).
66. L. W. Tai, M. M. Nasrallah and H. U. Anderson, J. Solid State Chem., 118, 117 (1995).
67. K. T. Lee, D. M. Bierschenk and A. Manthiram, J. Electrochem. Soc., 153, A1255 (2006).
68. H. Lee and H.S. Kim, J. Ind. Eng. Chem., 12, 175 (2006).
69. J. Larminie, A.L. Dicks, Fuel Cell Systems Explained, Wiley, New York, p251 (2003).
70. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
71. S.H. Oh, R.M. Sinkevitch, J. Catal. 142 (1993) 254-262.
72. J.B. Wang, S. Lin, T. Huang, Appl. Catal. A 232 (2002) 107-120.
73. G. Sedmak, S. Hocevar, J. Levec, J. Catal. 213 (2003) 135-150.
74. D.H. Kim, J.E. Cha, Catal. Lett. 86 (2003) 107-112.
75. W.B. Kim, T. Voitl, G.J. Rodrı´guez-Rivera, S.T. Evans, J.A. Dumesic, Angew. Chem. Int. Ed. 44 (2005) 778-782.
76. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 171 (1997) 93-105.
77. O. Korotkikh, R. Farrauto, Catal. Today 62 (2000) 249-254.
78. I.H. Son, A.M. Lane, Catal. Lett. 76 (2001) 151-154.
79. A. Manaslip, E. Gulari, Appl. Catal. B 37 (2002) 17-25.
80. D.H. Kim, M.S. Lim, Appl. Catal. A 224 (2002) 27-38.
81. R.M. Torres Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal. 168 (1997) 125-127
82. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 182 (1999) 430-440.
83. G.K. Bethke, H.H. Kung, Appl. Catal. A 194 (2000) 43-53.
84. R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal. 199 (2001) 48-59.
85. M.M. Schubert, V. Plzak, J. Garche, R.J. Behm, Catal. Lett. 76 (2001) 143-150.
86. J.H. Chen, J.N. Lin, Y.M. Kang, W.Y. Yu, C.N. Kuo, B.Z. Wan, Appl. Catal. A, 291 (2005) 162-169
87. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
88. Y.Z. Chen, B.J. Liaw, C.W. Huang, Appl. Catal. A, 302 (2006) 168-176
89. A. Martínez-Arias, A.B. Hungría, G. Munuera and D. Gamarra, Appl. Catal. B, 65 (2006) 207-216
90. G. Avgouropoulos and T. Ioannides, Appl. Catal. A, 244 (2003) 155-167.
91. G. Avgouropoulos, T. Ioannides, H.K. Matralis, J. Batista and S. Hocevar, Catal. Lett., 73 (2001) 33-40.
92. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
93. P. Shuk and M. Greenblatt, Solid State Ionics, 116, 217 (1999).
94. L. Navarro, F. Marques and J. Frade, J. Electrochem. Soc., 144, 267 (1997).
95. S. Lübke and H. D. Wiemhöfer, Solid State Ionics, 117, 229 (1999).
96. Y.Z. Chen, B.J. Liaw and C.W. Huang, Appl. Catal. A, 302, 168 (2006).
97. E. Barsoukov, and J. Ross Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, P.7, Wiley Interscience, New Jersey (2005).
98. C. C. Chen, M. M. Nasrallah, and H. U. Anderson, Proceedings of the Third International Symposium on Solid Oxide Fuel Cells, edited by S. C. Singhal and H. Iwahara, 598-612, Pennington, NJ: The Electrochemical Society, (1993).
99. FCSH-100 manual, MatrialsMates, Italy, P. 6-10, (2008).
100. J. Doe and R. Hill, Electrochem. Solid-State Lett., 8, A389 (2005).
101. H. Ullmann, N. Trofimenko, Solid State Ionics, 119, 1 (1999).
102. C. R. Xia and M. L. Liu, Solid State Ionics, 144, 249 (2001).
103. C. R. Xia and M. L. Liu, Adv. Mater., 14, 521 (2002).
104. T. Ishihara, T. Kudo, H. Matsuda and Yusaku Takita, J. Electrochem. Soc., 142(5), 1519 (1995).
105. S. Carter, A. Selcuk, R.J. Chater, J. Kajda, J.A. Kilner, B.C.H. Steele, Solid State Ionics, 53–56, 597 (1992).
106. H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Solid State Ionics, 132, 279 (2000).
107. E. P. Murray, M. J. Sever, S. A. Barnett, Solid State Ionics, 148, 27 (2002).
108. H. J. Hwang, J. W. Moon, S. H. Lee, E. A. Lee, J. Power Sources, 145, 243 (2005).
109. Y. J. Leng, S. H. Chan and Q. L. Liu, Int. J. Hydrogen Energy, 33, 3808 (2008).
110. C. R. Xia, W. Rauch, F. L. Chen and M. L. Liu, Solid State Ionics, 149, 11 (2002).
111. X. G. Zhang, M. Robertson, S. Yick, C. Deĉes-Petit, E. Styles, W. Qu, Y. S. Xie, R. Hui, J. Roller, O. Kesler, R. Maric, D. Ghosh, J. Power Sources, 160, 1211 (2006).
112. Y. B. Lin and S. A. Barnett, Solid State Ionics, 179, 420 (2008).
113. F. S. Baumann, J. Fleig, G. Cristiani, B. Stuhlhofer, H. U. Habermeier and J. Maier, J. Electrochem. Soc., 154(9), B931 (2007).
114. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
115. H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, J. Mater. Sci., 23, 1036 (1988).
116. P. Shuk and M. Greenblatt, Solid State Ionics, 116, 217 (1999).
117. Z. Tianshu, P. Hing, H. Huang and J. Kilner, Solid State Ionics 148, 567, (2002).
118. V. Dusastre and J. A. Kilner, Solid State Ionics, 126, 163 (1999).
119. F. Y. Wang, S. Cheng, C. H. Chung and B. Z. Wan, J. Solid State Electrochem., 10, 879 (2006).
120. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
121. A. Atkinson, V. V. Khartron and F. M. B. Marques, Solid State Ionics, 174, 135 (2004).
122. S. P. S. Badwal, Solid State Ionics, 52, 23 (1992).
123. S. P. S. Badwal, F. T. Ciacchi, D. Milosevic, Solid State Ionics, 136-137, 91 (2000).
124. D. L. Maricle, T. E. Swarr, S. Karavolis, Solid State Ionics, 52, 173 (1992).
125. L. Navarro, F. Marques and J. Frade, J. Electrochem. Soc., 144, 267 (1997).
126. V. N. Tikhonovich, V. V. Kharton, E. N. Naumovich and A. A. Savitsky, Solid State Ionics, 106, 197 (1992).
127. S. Lübke and H. D. Wiemhöfer, Solid State Ionics, 117, 229 (1999).
128. V. V. Kharton, A. P. Viskup, F. M. Figueiredo, E. N. Naumovich, A. A. Yaremchenko and F. M. B. Marques, Electrochemica Acta, 46, 2879 (2001).
129. M. Nauer and B. C. H. Steele, J. Euro. Ceram. Soc., 12, 267 (1993).
130. P. Shuk, M. Greenblatt, Solid State Ionics, 116, 217, (1999).
131. W.R. Grove 'On Voltaic Series and the Combination of Gases by Platinum', Philosophical Magazine and Journal of Science XIV (1839), 127-130.
132. W.R. Grove 'On a Gaseous Voltaic Battery', Philosophical Magazine and Journal of Science XXI (1842), 417-420.
133. H. Lee, H.S. Kim, “Polymer Electrolyte Membranes for Fuel Cell“, J. Ind. Eng. Chem., 12 (2006) 175-183.
134. J.R. Rostrup-Nielsen, J. Sehested, J.K. Norskov, Adv. Catal. 47 (2002) 65-138.
135. Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301 (2003) 935-938.
136. H. Igarashi, T. Fujino, M. Watanabe, J. Electroanal. Chem. 391 (1995) 119-123.
137. R.A. Lemons, J. Power Sources 29 (1990) 251-264.
138. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
139. S.H. Oh, R.M. Sinkevitch, J. Catal. 142 (1993) 254-262.
140. J.B. Wang, S. Lin, T. Huang, Appl. Catal. A 232 (2002) 107-120.
141. G. Sedmak, S. Hocevar, J. Levec, J. Catal. 213 (2003) 135-150.
142. D.H. Kim, J.E. Cha, Catal. Lett. 86 (2003) 107-112.
143. W.B. Kim, T. Voitl, G.J. Rodrı´guez-Rivera, S.T. Evans, J.A. Dumesic, Angew. Chem. Int. Ed. 44 (2005) 778-782.
144. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 171 (1997) 93-105.
145. O. Korotkikh, R. Farrauto, Catal. Today 62 (2000) 249-254.
146. I.H. Son, A.M. Lane, Catal. Lett. 76 (2001) 151-154.
147. A. Manaslip, E. Gulari, Appl. Catal. B 37 (2002) 17-25.
148. D.H. Kim, M.S. Lim, Appl. Catal. A 224 (2002) 27-38.
149. R.M. Torres Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal. 168 (1997) 125-127
150. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 182 (1999) 430-440.
151. G.K. Bethke, H.H. Kung, Appl. Catal. A 194 (2000) 43-53.
152. R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal. 199 (2001) 48-59.
153. M.M. Schubert, V. Plzak, J. Garche, R.J. Behm, Catal. Lett. 76 (2001) 143-150.
154. J.H. Chen, J.N. Lin, Y.M. Kang, W.Y. Yu, C.N. Kuo, B.Z. Wan, Appl. Catal. A, 291 (2005) 162-169
155. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
156. Y.Z. Chen, B.J. Liaw, C.W. Huang, Appl. Catal. A, 302 (2006) 168-176
157. A. Martínez-Arias, A.B. Hungría, G. Munuera and D. Gamarra, Appl. Catal. B, 65 (2006) 207-216
158. G. Avgouropoulos and T. Ioannides, Appl. Catal. A, 244 (2003) 155-167.
159. G. Avgouropoulos, T. Ioannides, H.K. Matralis, J. Batista and S. Hocevar, Catal. Lett., 73 (2001) 33-40.
160. A. Martínez-Arias, A.B. Hungría, M. Fernández-García, J.C. Conesa and G. Munuera, J. Power Sources, 151 (2005) 32-42.
161. A. Gurbani, J.L. Ayastuy, M.P. González-Marcos, J.E. Herrero, J.M. Guil and M.A. Gutiérrez-Ortiz, Int. J. Hydrogen Energy, 34 (2009) 547-553
162. D.H. Kim and J.E. Cha, Catal. Lett., 86 (2003) 107-112.
163. D. Garmarra, A. Martínez-Arias, J. Catal. 263 (2009) 189-195
164. D. Gamarra, C. Belver, M. Fernández-García, and Arturo Martínez-Arias, J. Am. Chem. Soc., 129 (2007) 12064-12065
165. J.E. Spainier, R.D. Robinson, F. Zhang, S. Chan and I.P. Herman, Phys. Rev. B 64 (2001) 245407
166. A. Gómez-Cortés, Y. Márquez, J. Arenas-Alatorre and G. Díaz, Catal. Today, 133-135 (2008) 743-749
167. F.Y. Wang, S. Cheng, B.Z. Wan, C.H. Chung and M.J. Chen, Ceram. Int., 34 (2008) 1989-1992
168. C.S. Polster, H. Nair, C.D. Baertsch, J. Catal. 266 (2009) 308-319.
169. Manual of X-ray Absorption Spectroscopy, National Synchrotron Radiation Research Center, Hsinchu, Taiwan (2000).
170. M. Hatanaka, N. Takahashi, N. takahashi, T. Tanabe, Y. Nagai, A. Suda, H. Shinjoh, J. Catal. 266 (2009) 182-190.
171. J. R. Rostrup-Nielson, T. Rostrup-Nielson, Cattech, 6, 150 (2002).
172. J. C. Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng., 59, 720 (1981).
173. J. C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, Can. J. Chem. Eng., 63, 605, (1985).
174. E. Santacesaria, S. Carra, Appl. Catal., 5, 345 (1983).
175. R. A. Lemons, J. Power Sources, 29, 251 (1990).
176. H. Igarashi, T. Fujino, M. Watanabe, J. Electroanal. Chem., 391, 119 (1995).
177. G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H. K. Matralis, Catal. Today, 75, 157 (2002).
178. J. B. Wang, S. Lin, T. Huang, Appl. Catal. A, 232, 107 (2002).
179. G. Sedmak, S. Hocevar, J. Levec, J. Catal., 213, 135 (2003).
180. D. H. Kim, J. E. Cha, Catal. Lett., 86, 107 (2003).
181. M. J. Kahlich, A. Gasteiger, R. J. Behm, J. Catal., 171, 93 (1997).
182. O. Korotkikh, R. Farrauto, Catal. Today, 62, 249 (2000).
183. I. H. Son, A. M. Lane, Catal. Lett., 76, 151 (2001).
184. A. Manaslip, E. Gulari, Appl. Catal. B, 37, 17 (2002).
185. D. H. Kim, M. S. Lim, Appl. Catal. A, 224, 27 (2002).
186. R. M. Torres Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal., 168, 125 (1997).
187. M. J. Kahlich, A. Gasteiger, R. J. Behm, J. Catal., 182, 430 (1999).
188. G. K. Bethke, H. H. Kung, Appl. Catal. A, 194, 43 (2000).
189. R. J. H. Grisel, B. E. Nieuwenhuys, J. Catal., 199, 48 (2001).
190. M. M. Schubert, V. Plzak, J. Garche, R. J. Behm, Catal. Lett., 76, 143 (2001).
191. G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H. Matralis, Catal. Today, 75, 157 (2002).
192. G. Avgouropoulos, T. Ioannides, M. Matralis, J. Batista, S. Hocevar, Catal. Lett., 73, 33 (2001).
193. A. Trovarelli, C. Leitenmburg, G. Dolcetti, Chemtech, 27, 32 (1997).
194. M. H. Yao, R. J. Baird, F. W. Kunz, T. E. Hoost, J. Catal., 166, 67 (1997).
195. P. J. Schmitz, R. K. Usmen, C. R. Peters, G. W. Graham, R. W. McCabe, Appl. Surf. Sci., 72, 181 (1993).
196. C. E. Hori, H. Permana, K. Y. S. Ng, A. Brenner, K. More, K. M. Rahmoeller, D. Belton, Appl. Catal. B, 16, 105 (1998).
197. P. Fornasiero, R. Dimonte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, J. Catal., 151, 168 (1995).
198. A. Martinez-Arias, M. Fernandez-Garcia, O. Galvez, J. M. Coronado, J. A. Anderson, J. Catal., 195, 207 (2000).
199. Y. Z. Chen, B. J. Liaw, H. C. Chen, Int. J. Hydrogen Energy, 31, 427 (2006).
200. Y. Z. Chen, B. J. Liaw, C. W. Huang, Appl. Catal. A, 302, 168 (2000).
201. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
202. S. C. Wu, Master thesis, Department of Chemistry, National Taiwan University, Taipei, Taiwan (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48164-
dc.description.abstract摘要
此論文內容囊括四大部分。首先,複合陰極材料的研究結果發現,
以重量比50% La0.6Sr0.4Co0.2Fe0.8O3 (6428LSCoF) to Ce0.7Pr0.3O2-δ(30CPO) or Ce0.7Pr0.28Mg0.02O2-δ(28,2-CPMgO)的複合陰極,可有效降低陰極極化電阻,進而提升單電池效能。相較於20CGO-6428LSCoF, 30CPO-6428LSCoF複合陰極,以50% 28,2-CPMgO-6428LSCoF複合陰極組裝之單電池,可獲得開路電壓0.74V、最大電流密度1110 mA/cm2與最高功率密度297 mW/cm2之最佳單電池效能。
第二部份研究結果顯示,氧化鈰材料於還原氣氛下之電子導電特性,可藉由鐠的摻雜達到抑制的效果,抑制程度隨鐠的摻雜量增加而增加。其中,以25CPO材料於空氣、還原氣氛下,具有相當之氧離子與電子導電率,但其電子導電率卻隨時間逐漸降低。此外,引入少量鎂的共摻雜,不僅可提升CPO材料於空氣下之氧離子導電率,還可維持其於還原氣氛下電子導電率,不隨時間改變。進而發現,25,2-CPMgO材料,於空氣、還原氣氛下之氧離子、電子導電率幾近相當且不隨時間衰退。第三,藉由引入CPO材料作為陽極與電解質層間之緩衝層,
不僅可抑制因20CGO電解質電子導電特性導致開路電壓降低的現象,進而提升單電池之開路電壓,也因CPO材料之高氧離子導電率特性,降低了歐姆極化電阻,更加改善單電池效能。相較於沒有CPO緩衝層的引入,引入緩衝層的單電池具有較佳電池效能。以25,2-CPMgO作為緩衝層的單電池,具有開路電壓0.8V、最大電流密度1090 mA/cm2與最高功率密度為285 mW/cm2之單電池效能。
除此之外,開路電壓可維持至少140小時,只有3.75%的衰減。
最後,將CPO材料,作為富氫環境下CO選擇性氧化反應觸媒之載體的應用。利用原位X光吸收光譜(In-situ XAS)的鑑定技術,探討CuO/CeO2觸媒於富氫環境下CO選擇性反應條件下,反應位置與觸媒失活現象的研究與探討。CO轉換率隨反應溫度升高而增加,於140-160度時可達100% CO轉換率。反之,當反應溫度高於120度,CO2選擇率隨溫度升高而降低。此外,原位X光吸收光譜的結果顯示,當反應溫度高於120度時,氧化銅開始還原成金屬態銅。因此,金屬態銅為氫氧化成水之活性位置,而Cu2+可能會是CO氧化成CO2的活性位置。相較於氧化鈰,雖然鐠摻雜氧化鈰材料具有較高氧離子導電率,但以鐠摻雜氧化鈰作為載體支撐氧化銅之觸媒,對於富氫環境下CO選擇性氧化反應的催化活性卻是負效應。其中,以dd4-20CuCeO2-δ 觸媒可達最佳催化活性。於130度,可達95% CO轉換率與98% CO2選擇率。

關鍵字:固態氧化物燃料電池,鐠摻雜氧化鈰,複合陰極,CO選擇性氧化反應,原位X光吸收光譜與銅鈰氧化物觸媒
zh_TW
dc.description.abstractAbstract
The thesis includes four parts. In the first part, optimal weight ratio of 50% of La0.6Sr0.4Co0.2Fe0.8O3 (6428LSCoF)
to Ce0.7Pr0.3O2-δ(30CPO) or Ce0.7Pr0.28Mg0.02O2-δ(28,2-CPMgO) composite cathodes can effectively reduce polarization resistance and result in high cell performance of the single cells assembled with 60NiO-20CGO anode, 20CGO electrolyte and the composite cathodes. The optimal cell performance of 0.74 V, 1110 mA/cm2 and 297 mW/cm2 was obtained at 700˚C on the cell with the 50% 28,2-CPMgO-6428LSCoF composite cathode. In the second part, it was found that the degree of suppression of electronic conductivity of doped ceria material increases with the amount of Pr dopant. Of Pr doped ceria materials, 25CPO has nearly the same conductivities in air and in reducing atmosphere, but the conductivity in reducing atmosphere declines with time. It was also found that co-doping small amount of Mg in CPO not only enhances the oxide ion conductivity in air, but also retains the conductivity in reducing atmosphere with time. The nearly equal conductivities under air and reducing atmosphere
could be obtained by the 2% Mg co-doped 25CPO (25,2-CPMgO) material. In the third part, the Pr doped ceria was introduced in between the anode and electrolyte as a buffer layer to impede the reduction of electrolyte during cell operation. The single cells with the buffer layers had better cell performances than that without the buffer layer. The optimal cell OCV, current density and power density of 0.8 V, 1090 mA/cm2 and 285 mW/cm2 were obtained on the cell with 25,2-CPMgO buffer layer and 50% 28,2-CPMgO-6428LSCoF composite cathode at 700˚C. Moreover, the OCV could be obtained for 140 h with only 3.75% degradation.
In the last part, Pr-doped CeO2 was used as the catalyst support of preferential oxidation (PROX) of CO.
The active sites and deactivation behaviors of CuO/CeO2 catalysts for the preferential oxidation (PROX) of CO
in H2-rich environment were examined by in-situ X-ray absorption spectroscopy. The CO conversion increased with
increasing reaction temperature, while the CO2 selectivity decreased, especially at temperatures higher than 120˚C.
100% CO conversions can be achieved over CuO/dx-CeO2 at 140-160˚C. In-situ Cu K-edge XAS revealed that CuO was reduced
to metallic Cu when the reaction temperature was higher than 120˚C, accompanying with the decline in CO2 selectivity. Thus, the active site for H2 oxidation to water would be metallic Cu, and the Cu2+ might be the active species for CO oxidation of to CO2. For Pr-doped ceria supported CuO catalysts, although the Pr-doped ceria materials have higher oxide ion conductivity than CeO2, it has a negative effect on the catalytic activity of CO preferential oxidation under H2-rich atmosphere. The best catalytic activity was obtained over the dd4-20CuCeO2-δ catalyst in CO preferential oxidation under H2-rich atmosphere. The T95 was 130˚C with S95 of 98%.
Keyword: SOFC, Pr-doped ceria, composite cathode, CO PROX, in-situ XAS and CuO/CeO2 catalyst.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:47:46Z (GMT). No. of bitstreams: 1
ntu-100-D95223028-1.pdf: 5266232 bytes, checksum: 9ecb8b0363aae5d0e04b731e647c2227 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContent
摘要…………………………………………………………………………………….I
Abstract……………………………………………………………………………....III
Content………………………………………………………………………….……VI
Figure index……………………………………………………………………….…XI
Table index………………………………………………………………………....XIX
Chapter 1 Introduction………………………………………………………………1
1.1 Fuel cells…………………………………………………………………………..1
1.2 Solid oxide fuel cell…………………………………………………………....….4
1.2.1 Principle…………………………………………………………………….4
1.2.2 Electrolyte…………………………………………………………………..7
1.2.3 Anode……………………………………………………………...………14
1.2.4 Cathode………………………………………………………….…………17
1.3 Proton Exchange Membrane Fuel Cell……………………………...…………...22
1.3.1 Hydrogen Production……………………………………………………...22
1.4 Summaries of Literatures Review……………………..……………………..….25
1.5 Motivations………………………………………………………………….…...27
Chapter 2 Chemicals and Instruments…………………………………………….28
2.1 Chemicals………………………………………………………………………...28
2.2 Characterization and Instruments………………………………………………...29
2.2.1 Powder X-ray Diffraction…………………………………………………..29
2.2.2 AC Impedance Spectroscopy……………………………………………….29
2.2.3 Solid Oxide Fuel Cell Tester…………………………………………….....32
2.2.4 Scanning Electron Microscopy (SEM)……………………………...……...34
Chapter 3 Reduction of Polarization of IT-SOFC by Using Composite Cathode with Pr Doped Ceria and LSCoF………………………………………...………...35
3.1 Introduction………………………………………………………………………35
3.2 Experimental…………………………………………………...………………...37
3.2.1 Materials Preparation………………………………………………….…...37
3.2.2 Cell Fabrication……………………………………………………….……38
3.2.3 Electrochemical Measurement……………………………………...……...39
3.3 Results and Discussion………………………………………………………..….39
3.3.1 Effect of Gas Flow Rate on Cell Performance…………………………......39
3.3.2 Effect of Electrolyte Thickness on Cell Performance……………….......…40
3.3.3 Effect of Doped Ceria Content in Composite Cathode………………...…..41
3.3.4 Cross Sectional SEM Images……………………………………...……….42
3.3.5Chemical compatibility……………………………………………......……42
3.3.6. Effect of Doped Ceria Materials in Composite Cathode on Cell
Performance……………………………………………………...………….43
3.3.7 Effect of 28,2-CPMgO Material Content on Cell Performance…………....45
3.4 Summaries………………………………………………………………………..47
Chapter 4 Stabilities of Pr Doped Ceria Materials in Various Atmospheres……………………………………………………………………..…..61
4.1 Introduction……………………………………………………………………....61
4.2 Experimental……………………………………………………………...……...62
4.2.1 Materials Preparation………………………………………………….…...62
4.2.2 Electrochemical Measurement……………………………………...…..….64
4.2.3 In-situ XRD in Various Atmospheres……………………………………....64
4.3 Results and Discussion…………………………………………………………...65
4.3.1 Conductivities in Various Atmospheres………………………………….…65
4.3.2 In-situ XRD in Various Atmospheres…………………………………....…69
4.4 Summaries……………………………………………….……………………….74
Chapter 5 Electrochemical Properties of A Single Cell with Pr Doped Ceria Buffer Layer………………………….…………………………………...…………84
5.1 Motivation…………………………………………………………………..…....84
5.2 Experimental………………………………………………………………...…...85
5.2.1 Materials Preparation………………………………………….…………...85
5.2.2 Cell Fabrication……………………………………………….……………85
5.2.3 Electrochemical Measurement……………………………………...……...86
5.3 Results and Discussion…………………………………………………………...87
5.3.1 Effect of Pr Doped Ceria Buffer Layer………………………………...…..87
5.3.2 Optimization of Cell Performance……………………………………..…..89
5.3.2-A. Effect of NiO Content in Anode…………………………………....…...89
5.3.2-B. Effect of The Weight of Buffer Layer…….………………………...…..90
5.4 Summaries………………………………………………………………………..92
Chapter 6 In-situ X-ray Absorption Spectroscopy Studies of the Active Sites of CuO/CeO2 Catalysts in PROX Reaction…………………………………….…...102
6.1 Introduction……………………………………………………………………..102
6.2 Experimental…………………………………………………...……………….105
6.2.1 Catalysts Preparation…………………………………………….………..105
6.2.2 Characterization………………………………………………….………..106
6.2.3 Catalytic Activity Tests…………………………………………...……….107
6.3 Results and Discussion………………………………………………………….108
6.3.1 Characterization of CuO/CeO2 Catalysts………………………....………108
6.3.2 Catalytic Activities of CuO/CeO2 Catalysts…………………………...….110
6.3.3 In-situ XANES Spectroscopy…………………………………………..…111
6.3.4 Regeneration………………………………………………………………115
6.4 Summaries………………………………………………………………………117
Chapter 7 Effect of Doped Ceria as Supports of CuO Catalysts for CO Preferential Oxidation under H2-rich Environment………………………..…...130
7.1 Introduction……………………………………………………………………..130
7.2 Experimental………………………………………………………………...….133
7.2.1 Catalysts Preparation………………………………………………….…..133
7.2.2 Characterization……………………………………………………….…..133
7.2.3 Catalytic Activity Tests…………………………………………...……….134
7.3 Results and Discussion………………………………………………………….135
7.3.1 Characterization…………………………..……………………………….135
7.3.2 Catalytic Activities………………………………………………………..137
7.4 Summaries………………………………………………………………………138
Chapter 8 Conclusions…………………………………………………………….143
8.1. Pr Doped Ceria and La0.6Sr0.4Co0.2Fe0.8O3 Composite Cathode…………...…...143
8.2. Stabilities of Pr Doped Ceria Materials in Various Atmospheres…………........143
8.3. Effect of Pr Doped Ceria as A Buffer Layer on Single Cell Performance……..144
8.4. In-situ XAS Studies of CuO/CeO2 Catalysts for CO Preferential Oxidation in H2-rich Atmosphere……………………………………………….………………...145
8.5. Effect of Doped Ceria supports of CuO Catalysts for CO Preferential Oxidation in H2-rich Atmosphere……………………………………..…………………...……...145
References………………………………………….…………………………...….146
Appendix…………………………………………………………………………...162
dc.language.isoen
dc.subject原位X光吸收光譜與銅鈰氧化物觸媒zh_TW
dc.subject固態氧化物燃料電池zh_TW
dc.subject鐠摻雜氧化鈰zh_TW
dc.subject複合陰極zh_TW
dc.subjectCO選擇性氧化反應zh_TW
dc.subjectPr-doped ceriaen
dc.subjectin-situ XAS and CuO/CeO2 catalyst.en
dc.subjectCO PROXen
dc.subjectcomposite cathodeen
dc.subjectSOFCen
dc.title以鐠摻雜之氧化鈰為主體之材料的合成與鑑定及其在燃料電池上的應用zh_TW
dc.titlePreparation, Characterization and Application of Praseodymium-doped Ceria-based Materials in Fuel Cellsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee牟中原,顏溪成,王錫福,李瑞益
dc.subject.keyword固態氧化物燃料電池,鐠摻雜氧化鈰,複合陰極,CO選擇性氧化反應,原位X光吸收光譜與銅鈰氧化物觸媒,zh_TW
dc.subject.keywordSOFC,Pr-doped ceria,composite cathode,CO PROX,in-situ XAS and CuO/CeO2 catalyst.,en
dc.relation.page162
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved