Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燦堯(Tsanyao Frank Yang)
dc.contributor.authorJin-Lun Chuangen
dc.contributor.author莊謹綸zh_TW
dc.date.accessioned2021-05-14T17:47:54Z-
dc.date.available2017-03-13
dc.date.available2021-05-14T17:47:54Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-11
dc.identifier.citationAberg, G. (1995). The use of natural strontium isotopes as tracers in environmental studies Biogeochemical Monitoring in Small Catchments, 309-322: Springer.
Aberg, G., Jacks, G., Wickman, T. and Hamilton, P. J. (1990). Strontium isotopes in trees as an indicator for calcium availability. Catena, 17(1), 1-11.
Asikainen, M. (1981). State of disequilibrium between 238U, 234U, 226Ra and 222Rn in groundwater from bedrock. Geochim. Cosmochim. Acta, 45(2), 201-206.
Aubert, D., Probst, A., Stille, P. and Viville, D. (2002). Evidence of hydrological control of Sr behavior in stream water (Strengbach catchment, Vosges mountains, France). Applied Geochemistry, 17(3), 285-300.
Bain, D.C. and Bacon, J.R. (1994). Strontium isotopes as indicators of mineral weathering in catchments. Catena 22(3), 201–214.
Basu, A.R., Jacobsen, S.B., Poreda, R.J., Dowling, C.B. and Aggarwal, P.K. (2001). Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record. Science, 293(5534), 1470–1473.
Bertin, C. and Bourg, A. C. (1994). Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing. Environmental science & technology, 28(5), 794-798.
Biscaye, P. E., Chesselet, R. and Prospero, J. M. (1974). Rb/Sr, 87Sr/86Sr isotope system as an index of provenance of continental dusts in open Atlantic Ocean, J. Rech. Atmosph., 8, 819-829.
Blum, J. D., Yigal, E. and Brown, K. (1993). 87Sr/86Sr Ratios of Sierra Nevada Stream Waters: Implications for Relative Mineral Weathering Rates. Geochim. Cosmochim. Acta, 57(21), 5019-5025.
Brass, G. W. (1976). The variation of the marine 87Sr/86Sr ratio during Phanerozonic time: interpretation using a flux model. Geochimica et Cosmochimica Acta, 40(7), 721-730.
Bullen, T.D., Krabbenhoft, D.P. and Kendall, C. (1996). Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta, 60(10), 1807–1821.
Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B. (1982). Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10(10), 516-519.
Chang, L.S. (1967). A biostratigraphic study of the Tertiary in the Coastal Range, Eastern Taiwan, based on smaller foraminifera (I. southern part). Proc. Geol. Soc. China, 10, 64-76.
Chang, L.S. (1968). A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera. (II. Northern Part). Proc. Geol. Soc. China, 11, 19-33.
Chen, C. H., Jahn, B. M., Lee, T., Chen, C. H., and Cornichet, J. (1990). Sm-Nd isotopic geochemistry of sediments from Taiwan and implications for the tectonic evolution of southeast China. Chemical Geology, 88(3), 317-332.
Chen, C.H. and Lee, T.P. (1990). A Nd–Sr isotopic study on river sediments of Taiwan. Proc. Geol. Soc. China, 33(4), 339–350.
Chen, C.T. A., Zhang, J., Peng, T. R., and Hagiwara, T. (2005). Exploratory sampling of submarine groundwater discharge in Taiwan. Geochemistry, 39, 165-171.
Chen, W.S. and Wang, Y. (1988). The Plio-Pleistocene basin development in the Coastal Range of Taiwan. Acta Geol. Taiwanica, 26, 37-56.
Cheng, M. C., You, C. F., Lin, F. J., Chung, C. H., and Huang, K. F. (2010). Seasonal variation in long-range transported dust to a subtropical islet offshore northern Taiwan: Chemical composition and Sr isotopic evidence in rainwater. Atmospheric Environment, 44(28), 3386-3393.
Chu, H. Y., and You, C. F. (2007). Dissolved constituents and Sr isotopes in river waters from a mountainous island–the Danshuei drainage system in northern Taiwan. Applied Geochemistry, 22(8), 1701-1714.
Chyi, L.L., Quick, T.J., Yang, T.F. and Chen, C-H. (2010). The experimental investigation of soil gas radon migration mechanisms and its implication in earthquake forecast. Geofluids,10(4), 556-563.
Chyi, L.L., Quick, T.J., Yang, T.F. and Chen, C-H. (2011). The origin and detection of spike-like anomalies in soil gas radon time series. Geochemical Journal, 45(6), 431-438.
Clarke, W.B., Jenkins, W.J. and Top, Z. (1976). Determination of tritium by mass‐spectrometric measurement of 3He. International Journal of Applied Radiation and Isotopes, 27(9), 515-522.
Cook, P. G. and Herczeg, A. L. (2000). Environmental tracers in subsurface hydrology: Springer Science & Business Media.
Cook, P. G., Favreau, G., Dighton, J. C., and Tickell, S. (2003). Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology, 277(1), 74-88.
Dunne, T. and Leopold, L.B. (1978) Water in Environmental Planning: Macmillan.
Durridge Company, Inc. (2009). RAD 7 RAD H2O owner’s manual.
Durridge Company, Inc. (2014). RAD 7 radon detector user manual.
Ellins, K. K., Roman-Mas, A., and Lee, R. (1990). Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico. Journal of Hydrology, 115(1-4), 319-341.
Elsinger, R.J. and Moore, W. (1983). Gas exchange in the Pee Dee River based on 222Rn evasion. Geophys. Res. Lett., 10(6), 443-446.
Faure, G. (1986) Principles of lsotope Geology, 2nd edition. John Wiley & Sons. New York.
Fu, C.C., Yang, T.F., Du, J., Walia, V., Chen, Y.G., Liu, T.K. and Chen, C-H. (2008). Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan. Radiation Measurements, 43, S348-S352.
Fu, C.C., Yang, T.F., Walia, V. and Chen, C-H. (2005). Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochemical Journal, 39, 427-439.
Fu, C.C., Yang, T.F., Walia, V., Liu, T.K., Lin, S.J., Chen, C-H. and Hou, C.S. (2009) Variations of soil-gas composition around the active Chihshang Fault in a plate suture zone, eastern Taiwan. Radiation Measurements, 44(9), 940-944.
Gaillardet, J., Dupre, B. and Allegre, C.J. (1997) Chemical and physical denudation in the Amazon river basin. Chem. Geol., 142(3), 141–173.
Graham, D.W. (2002). Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. Reviews in Mineralogy and Geochemistry, 47(1), 247-317.
Grosbois, C., Negrel, Ph., Fouillac, C. and Grimaud, D. (2000). Dissolved load of the Loire River: chemical and isotopic characterization. Chem. Geol. 170(1), 179–201.
Gunnar, J., Goran, A., and Hamilton, J. (1989). Calcium budgets for catchments as interpreted by strontium isotopes. Nordic hydrology, 20(2), 85-96.
Han, Y.L., M.C.Tom Kuo, K.C. Fan, C.J. Chiang, and Y.P. Lee (2006). Radon Distribution in Groundwater of Taiwan. Hydrogeology Journal, 14(1-2), 173-179.
Hilton, D. R., Hoogewerff, J. A., Bergen, M. J. A. and Hammerschmidt, K. (1992). Mapping magma source in the east Sunda-Banda arcs, Indonesia: Constrains from helium isotopes. Geochimica et Cosmochimica Acta, 56(2), 851-859.
Hogan, J.F. and Blum, J.D. (2003). Tracing hydrologic flow paths in a small forested watershed using variations in 87Sr/86Sr, Ca/Sr, Ba/Sr and d18O. Water Resour. Res., 39(10), 1282–1293.
Holland, P.W. and Emerson, D.E. (1987). A Determination of the He‐4 Content of near‐Surface Atmospheric Air within the Continental United‐States. Journal of Geophysical Research:Solid Earth(1978-2012), 92(B12): 12557‐12566.
Jahn, B. M. (1988). Pb-Pb dating of young marbles from Taiwan. Nature, 332, 429-432.
Jahn, B.M., Chi, W.R. and Yui, T. F. (1992). A late Permian formation of Taiwan (marbles from Chia-li well no.1): Pb-Pb isochron and Sr isotopic evidence, and its regional geological significance. Jour. Geol. Soc. China, 35(2), 193-218.
Kalbus, E., Reinstorf, F., and Schirmer, M. (2006). Measuring methods for groundwater–surface water interactions: a review. Hydrology and Earth System Sciences, 10(6), 873-887.
Kipfer, R., Aeschbach-Hertig, W., Peeters, F., and Stute, M. (2002). Noble gases in lakes and ground waters. In Porcelli, D., Ballentine, C., and Wieler, R., editors, Noble gases in geochemistry and cosmochemistry, volume 47 of Rev. Mineral. Geochem., pages 615-700. Mineralogical Society of America, Geochemical Society, Washington, DC.
Kuo, M.C., Fan, K., Kuochen, H. and Chen, W. (2006a). A mechanism for anomalous decline in radon precursory to an earthquake. Groundwater, 44(5), 642-647.
Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H. and Lee, Y. (2006b). Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake. Journal of Environmental Radioactivity, 88, 101-106.
Lan, C. Y., Lee, C. S., Shen, J. J. S., Lu, C. Y., Mertzman, S. A., and Wu, T. W. (2002). Nd-Sr isotopic composition and geochemistry of sediments from Taiwan and their implications. Western Pacific Earth Sciences, 2(2), 205-222.
Lan, C.Y., Lee C.S., Yui, T.F., Chu, H.T. and Jahn, B.M. (2008). The tectono-thermal events of Taiwan and their relationship with SE China. Terr. Atmos. Ocean. Sci., 19(3), 257-278.
Land, M., Ingri, J., Andersson, P.S. and Ohlander, B. (2000). Ba/Sr, Ca/Sr, and 87Sr/86Sr ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Appl. Geochem., 15(3), 311–325.
Liu, H. C., You, C. F., Chung, C. H., Huang, K. F., and Liu, Z. F. (2011). Source variability of sediments in the Shihmen Reservoir, Northern Taiwan: Sr isotopic evidence. Journal of Asian Earth Sciences, 41(3), 297-306.
Lott, D.E. (2001). Improvements in noble gas separation methodology: A nude cryogenic trap. Geochemistry Geophysics Geosystems, 2(12), GC000202.
Mamyrin, B. and Tolstikhin, I.N. (1984). Helium isotopes in nature: Elsevier.
Matsuda, J., Matsumoto, T., Sumino, H., Nagao, K., Yamamoto, J., Miura, Y., Kaneoka, I., Takahata,N. and Sano, Y. (2002). The 3He/4He ratio of the new internal He Standard of Japan (HESJ). Geochemical Journal, 36(2), 191-195.
McCarthy, K. A., McFarland, W. D., Wilkinson, J. M., and White, L. D. (1992). The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. Journal of Hydrology, 135(1), 1-12.
Negrel, P., and Pauwels, H. (2003). Interaction between the different water bodies in catchments in Brittany (France): characterizing multiple sources in waters through isotopic tracing. Water Air Soil Pollut, 151, 261-285.
O'Connor, D.J. (1967). The temporal and spatial distribution of dissolved oxygen in streams. Water Resour. Res., 3(1), 65-79.
O'Connor, D.J. and Dobbins, W.E. (1958). Mechanism of reaeration in natural streams. Am. Soc. Civil Eng. Trans., 123(1), 641-666.
Ooe, G. (1939) Geologic map of Taiwan. Taito sheet, Government, General of Taiwan. No. 861.
Ozima, M., and Podosek, F.A. (2002). Noble gas geochemistry. Cambridge University Press.
Palmer, M.R., Edmond, J.M. (1992). Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta, 56(5), 2099–2111.
Peng, T.R., Wang, C.H., Hsu, S.M., Wang, G.S., Su, T.W. and Lee, J.F. (2010). Identification of groundwater sources of a local-scale creep slope: using environmental stable isotopes as tracers. Jour. Hydrol., 381(1), 151-157.
Piper, A.M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions‐American Geophysical Union, 25(6), 914‐928.
Sano, Y., Takahata, N., Igarashi, G., Koizumi, N., and Sturchio, N.C. (1998). Helium degassing related to the Kobe earthquake. Chemical geology, 150(1), 171-179.
Singhal, B. B. S., and Gupta, R. P. (2010). Applied hydrogeology of fractured rocks: Springer Science & Business Media.
Stanley, R.S., Hill, L.B., Chang, H.C. and Hu, H.N. (1981). A transect through the metamorphic core of the central mountains southern Taiwan. Mem. Geol. Soc. China, 4, 443-473.
Teng, L.S. (1979) Petrographical study of the Neogene sandstones of the Coastal Range. Eastern Taiwan (northern part). Acta Geol. Taiwan, 20, 129-155.
Walia, V., Lin, S.J., Fu, C.C., Yang, T.F., Hong, W.L., Wen, K.L. and Chen, C-H. (2010). Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan. Applied Geochemistry, 25, 602-607.
Walia, V., Lin, S.J., Hong, W.L., Fu, C.C., Yang, T.F., Wen, K.L. and Chen, C-H. (2009). Continuous temporal soil-gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan. Radiation Measurements, 44, 934-939.
Walia, V., Su, T.C., Fu, C.C. and Yang, T.F. (2005). Spatial variations of radon and helium concentrations in soil gas across the Shan-Chiao fault, Northern Taiwan. Radiation Measurements, 40, 513-516.
Wang, C.H., Kuo, C.H., Peng, T.R., Chen, W.F., Liu, T.K., Chiang, C.J., Liu, W.C. and Hung, J.J. (2001) Isotope characteristics of Taiwan groundwaters. Western Pacific Earth Sciences, 1(4), 415-428.
Weiss R. F. (1970a) Dissolved gases and total inorganic carbon in sea water: distribution, solubilities, and shipboard gas chromatography. Ph.D. thesis, Univ. of Calif., San Diego, 130 pp.
Weiss R. F. (1970b). The solubility of nitrogen, oxygen and argon in water and sea water. Deep-Sea Res., 17, 721-735.
Yang, T.F., Chou, C.Y., Chen, C.H., Chyi, L.L. and Jiang, J.H. (2003). Exhalation of radon and its carrier gases in SW Taiwan. Radiation Measurements, 36(1-6), 425-429.
Yang, T.F., Walia, V., Chyi, L.L., Fu, C.C., Chen, C-H., Liu, T.K., Song, S.R., Lee, C.Y. and Lee, M. (2005). Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiation Measurements, 40, 496-502.
Yen, T.P. (1960). A Stratigraphical study on the Tananao schist in northern Taiwan. Bull. Geol. Surv. Taiwan, 12, 53-66.
Yen, T.P. (1963). The metamorphic belts within the Tananao schist terrain of Taiwan. Proc. Geol. Soc. China, 6, 72-74.
Yen, T.P. (1970). Structural analysis of the Slate Formation of Taiwan. Bull. Geol. Surv. Taiwan, 21, 1-51.
Yen, T.P. and Yang, Y.T. (1954) On the crystalline limestone containing fuchsite in the Tananao Schist of eastern Taiwan. Formosan Science, 8, 99-101.
Yui, T.F. and C.Y. Lan (1991). Isotopic compositions of Tananao marble in the Tungao area, northeastern Taiwan: a chronological consideration. Spec. Pub. Central Geol. Surv., 5, 161-172.
王源、陳文山(1996)台灣東部海岸山脈地質,台灣地質之七,經濟部中央地質調所編印,1–101。
王源、楊昭男、陳文山(1991)花蓮地質圖幅及說明書,臺灣五萬分之一地質圖幅第 35 號,經濟部中央地質調查所出版,共 55 頁。
江崇榮,黃智昭,陳瑞娥(2002)屏東平原之地下水補注區。經濟部中央地質調查所彙刊,第15 期,17-47 頁。
江崇榮、汪中和(2002)以氫氧同位素組成探討屏東平原之地下水補助源。經濟部中央地質調查所彙刊,第15期,49-67頁。
江崇榮、陳瑞娥、賴慈華、黃智昭(2005)濁水溪沖積扇地下水區之補注區與補注探討。經濟部中央地質調查所彙刊,第18 號,1-29 頁。
何春蓀(1982)台灣地體構造的演變-台灣地體構造圖說明書。經濟部出版,中文共 110 頁,英文共 126 頁。
吳念儒(2009)綠島火山岩中晶體與溫泉噴氣氦同位素比值之研究。國立台灣大學地質科學研究所碩士論文,共70頁。
宋聖榮,劉佳玫(2003)台灣的溫泉。遠足文化,台北縣新店市,共 205 頁。
李錦發(2000)東勢地質圖幅及說明書,臺灣五萬分之一地質圖幅第 18 號,經濟部中央地質調查所出版,共117頁。
沈正嘉(1996)台灣變質岩區鈉雲母之研究。國立成功大學地球科學研究所碩士論文,共89頁。
林其郁(2012)臺灣地區水體中水氡之空間分布初探。國立台灣大學海洋研究所碩士論文,共65頁。
邱俊銘(2010)宜蘭平原土壤逸氣調查及其大地構造隱示。國立台灣大學地質科學研究所碩士論文,共85頁。
徐鐵良(1956)台灣東部海岸山脈地質。台灣省地質調查所彙刊,第8號,15-41。
能邦科技顧問公司(2005)臺灣地區地下水資源 : 94年修訂版。經濟部水利署。
高雨瑄(2006)花蓮溪流域地下水與地表水之氫、氧同位素組成之時空分布特徵。逢甲大學水利工程學系碩士論文,共122頁。
許世孟、柯建仲、冀樹勇、林燕初、黃智昭、王詠絢(2010)台灣山區地下水資源探勘-潛藏台灣山區地下的保命水。土木水利,第三十七卷,第六期,第 11-18 頁。
陳文山(1988)台灣海岸山脈沉積盆地之演化及其在地體構造上之意義。國立台灣大學地質科學研究所博士論文,共 304 頁。
陳文福(2005)台灣的地下水。遠足文化,台北縣新店市,共213頁。
陳艾荻(2010)台灣溫泉水中溶解氣成分研究。國立台灣大學地質科學研究所碩士論文,共 130 頁。
陳維民(1985)花蓮銅門地區大南澳片岩之岩相構造學研究。國立台灣大學地質科學研究所碩士論文,共69頁。
陳肇夏、何信昌、謝凱旋、羅偉、林偉雄、張徽正、黃鑑水、林啟文、陳正恆、楊昭男、李元希(2000)五十萬分之一台灣地質圖,經濟部中央地質調查所。
彭宗仁(1995)宜蘭地區天水和地下水中穩定碳、氫、氧及放射性碳、氚之環境同位素研究。台灣大學地質學研究所博士論文,共248頁。
楊燦堯(2000)陽明山國家公園大屯火山群噴氣之氦同位素比值研究。國家公園學報,第10期,73-94頁。
經濟部中央地質調查所(2005)台灣地區地下水觀測網第三期-水文地質調查研究計畫-地下水碳十四、氚及水質分析研究 (2/3)。
經濟部中央地質調查所(2007)易淹水地區上游集水區地質調查與資料庫建置第 1 期 96 年度-集水區水文地質對坡地穩定性影響之調查評估」報告。
經濟部中央地質調查所(2010)台灣山區地下水資源研究整體計畫-第一期台灣中段山區流域水文地質調查及圖幅繪編 (1/4)。
經濟部中央地質調查所(2011)台灣山區地下水資源研究整體計畫-第一期台灣中段山區流域水文地質調查及圖幅繪編 (2/4)。
經濟部中央地質調查所(2013)台灣山區地下水資源研究整體計畫-第一期 102 年度。
經濟部中央地質調查所(2013)台灣山區地下水資源研究整體計畫-第一期台灣中段山區流域水文地質調查及圖幅繪編 (4/4)。
經濟部中央地質調查所(2014)臺灣南段山區地下水資源調查計畫-臺灣南段山區流域水文地質調查及圖幅繪編 (1/4)。
經濟部水利署(2012)中部山區水資源與地下水補注交互機制之探討。
經濟部水利署(2012)台灣地區地下水觀測網整體計畫精要成果彙編。
經濟部水利署(2013)台灣地區(北、中、南、東部地區)近十年雨量與歷年平均年雨量比較概況。水利統計簡訊,第 255 期。
經濟部水利署(2013)濁水溪水系地面水與地下水交互變動機制之研究。
經濟部水利署水利規劃試驗所(2011)大甲溪石岡壩下游河段河床穩定方案之研究-總報告。
謝孟龍、鄧屬予(1994)米崙礫岩的岩相及沉積環境。地質,第十四卷,第一期,第 201-217 頁。
簡銘成、杜永昌、汪中和、丁澈士(2011)應用氫氧穩定同位素分析地下水補注之研究,農業工程學報,57(3),61-74。
羅偉(1993)大禹嶺地質圖幅及說明書,臺灣五萬分之一地質圖幅第 27 號,經濟部中央地質調查所出版,共 87 頁。
羅偉、何恭睿(2012)臺灣中央山脈東翼地質區和平溪以南的地質調查與地質特性。地工技術,第 131 期,第 15-22 頁。
羅偉、吳樂群、陳華玟(1999)國姓地質圖幅及說明書,臺灣五萬分之一地質圖幅第 25 號,經濟部中央地質調查所出版,共 71 頁。
羅偉、楊昭男(2002)霧社地質圖幅及說明書,臺灣五萬分之一地質圖幅第 26 號,經濟部中央地質調查所出版,共 59 頁。
羅偉、劉佳玫、楊昭男、王執明(2009)新城地質圖幅及說明書,臺灣五萬分之一地質圖幅第 28 號,經濟部中央地質調查所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4815-
dc.description.abstract據估計台灣全區天然地下水資源,在總蘊含量 17,332 百萬立方公尺內,有 72% 是屬於在山區蘊含的部分,而在平地區則只有不到三成的蘊含量,所以台灣山區地下水為豐富水資源蘊藏區。本研究希望利用惰性氣體(氦氣、氡氣)以及鍶同位素作為台灣中部山區地下水的示蹤方法,並輔以其他水化學之分析(陰陽離子、氫氧同位素),探討台灣中部山區地下水含水層特性、深淺井裂隙連通性以及地下水與河水的混合關係,以協助山區地下水循環模式之建立,提供水資源利用及管理之重要資訊。
本研究共取十一處「台灣山區地下水資源研究整體計畫-第一期」所建置之地下水位觀測井地下水樣本以及二十處河水樣本,採樣範圍涵蓋了大甲溪流域、立霧溪流域、美崙溪流域以及花蓮溪流域。研究結果顯示,台灣中部山區地下水與溪水皆由天水補注而來,地下水與溪水水質型態大致可分為兩類,以 Ca(HCO3)2 型及 NaHCO3 類型為主,地下水與河水受控於碳酸鹽溶解和矽酸鹽風化的岩石交互作用。地下水含水層特性主控於區域性的水文地質條件,如果水文地質條件相似,就可能產生相同的結果,並依據地球化學特性的不同,可分為四種含水層。分別為(一)降雨或地表水入滲補注快速的含水層、(二)降雨或地表水入滲補注快速,但受現地高鈾含量岩屑影響的含水層、(三)因含水岩層破碎少、含泥量高造成裂隙堵塞連通性差或有較多阻水層(砂頁互層、厚層硬泥岩等),使得降雨入滲補注速率緩慢,地下水在地底下滯留時間較長、(四)地下水層的裂隙及破碎帶(例如:斷層)連通至深部含水層。而陸源氦-4濃度、水中溶解氡氣濃度、氚-氦定年有較為顯著特性幫助區分地下水含水層
水體來源混合的部分,立霧溪流域支流匯入影響少,利用不同的地球化學示蹤劑(氡氣、鍶同位素)計算比例相近,LW-03 站位於2013年兩量較多時有約 9.72~12.7%的地下水供應河流基流,而2014年兩量較少時則有約 43.5~45.2%的地下水供應量;大甲溪流域因在大雨後五日採樣及支流匯入的影響,導致不同的地球化學示蹤劑計算比例相差甚遠,利用氡氣估算的地下水補注河水結果偏低,而用鍶同位素估算值與前人基流指數分析結果較相近。在 DJ-3 站利用氡氣計算出 CHW-10(八仙山)地下水補注比例約 3.00%,鍶同位素則為 58.1%,在 DJ-8 利用氡氣計算出 CHW-07(和平)地下水補注比例約 0.30%,鍶同位素則為 54.7%。
本研究顯示惰性氣體適合用來研究山區地下水含水層的分層特性,此外,水中溶解氡氣及鍶同位素在支流少的流域中為探討地下水與河水關聯性的良好示蹤劑,可以廣泛運用於臺灣其他流域,並提供重要資訊,幫助建立台灣山區地下水體的循環模式。
zh_TW
dc.description.abstractTotal amount of natural groundwater resources in Taiwan has been estimated as 17,332 Mm3 of which ca. 72% is distributed in mountainous region, and less than 30% distributed in plain area. Therefore, mountainous region is a potential area which contains abundant water resources in Taiwan. We expect to distinguish the characters of different groundwater aquifers and the mixing relationship between groundwater and stream which could help to build hydrological circulating model of groundwater in mountainous region of Taiwan and offer important information for managing water resources.
In this study, 11 groundwater samples are collected from the monitoring wells of the CGS funded project (An integrated investigation of groundwater resources in Taiwan mountainous area: Phase I) and, 20 river samples in Dajia Basin, Liwu Basin, Meilun Basin and Hualien Basin are also collected. In addition to the major ions and hydrogen/oxygen isotopes of water samples, we applied noble gases (helium, radon) and strontium isotopic ratio as tracers of groundwater flow and sources in study area.
Most of the hydrogen and oxygen isotopic values fall on the local meteoric water line of Taiwan. It revealed that groundwater source in studied area is mainly from the precipitation. Besides, the geochemical data show that the groundwater and stream water samples in this study are mostly belonging to the category of Ca(HCO3)2 type and NaHCO3 type. It appears that the water compositions are mainly controlled by both processes of carbonate dissolution and silicate weathering. Furthermore, local hydro-geological condition plays an important role to differentiate the geochemical characters of groundwater in different aquifers. If the hydro-geological conditions are similar, different groundwater aquifers would show similar geochemical characters. According to the geochemical characters, we can differentiate four types of groundwater aquifer: (1) recharging by rainfall and runoff infiltration quickly, (2) recharging quickly and effecting by radiogenic regolith in situ (3) recharging slowly with more aquitards, and (4) deeper groundwater migrating along fractures or fault in studied areas. Furthermore, we can suggest that the results of terrigenic helium-4 concentration, dissolved radon concentration, and tritium-helium dating are useful tools to distinguish geochemical characters of groundwater from different aquifers.
The results show that the influx of tributaries did not play an important role for the main stram in Liwu Basin. We obtain similar results of groundwater discharging percent into stream by different geochemical tracers (radon and strontium isotopic ratio) estimation. We received a relative low groundwater discharge percent of about 9.72~12.7% to stream base flow at Liwu river (LW-03 site), due to high amount of rainfall occurred in 2013. Nevertheless, we got a much higher groundwater discharge percent of about 43.5~45.2% into stream in 2014, which may be due to less rainfall during this year. Furthermore, the influx of tributaries may be more important for Dajia Basin, because we obtained different fractions of groundwater discharging to stream estimating by radon and strontium isotopic ratios. There was about 3.00% and 58.1% groundwater discharged to Dajia river (DJ-3 site) by radon and strontium isotopic ratios respectively. At DJ-8 site, there was 0.30% and 54.7% groundwater contributed Dajia river by radon and strontium isotopic ratios respectively.
Above of all, this study reveals that the noble gases are considered as sensitive tracers for differentiating the characteristics of groundwater aquifer in mountainous region of Taiwan due to their unique geochemical characteristics. Besides, dissolved radon and strontium isotopic ratio are very useful tracers for understanding the relationship between groundwater and stream in the basins if there are less tributaries. The tracers could be used for others basin in Taiwan, and offer essential information, helping to build hydrological circulating model of groundwater in mountainous region of Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:47:54Z (GMT). No. of bitstreams: 1
ntu-104-R01224110-1.pdf: 10164669 bytes, checksum: d28125bf02db16d788d02e2a5bc79153 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents第一章 緒論................................................................................................ 1
1-1 前言....................................................................................................................... 1
1-2 研究動機與目的................................................................................................... 1
第二章 研究區域背景................................................................................ 4
2-1 地質背景............................................................................................................... 4
2.1.1 花蓮地區地質概述(立霧溪、美崙溪、花蓮溪流域)………………...… 6
2.1.1.1 中央山脈西翼地質區…………………………………………..…...… 6
2.1.1.2 中央山脈東翼地質區…………………………………………….....… 7
2.1.1.3 海岸山脈地質區……………………………………………..………... 9
2.1.1.4 東部縱谷地質區……………………………………………...…….... 11
2.1.2 台中地區地質概述(大甲溪流域)….…………………............................. 11
2.1.2.1 中央山脈西翼地質區….………………….......................................... 11
2.1.2.2 西部麓山帶….……………………….………..................................... 13
2-2 水文地質背景..................................................................................................... 16
2.2.1 山區水文地質概念模型.............................................................................. 16
2.2.2 花蓮地區水文地質概述(立霧溪、美崙溪、花蓮溪流域)….…..……… 17
2.2.3 台中地區水文地質概述(大甲溪流域)….………………......................... 23
第三章 前人研究...................................................................................... 27
3-1 氫氧同位素研究................................................................................................. 27
3-2 水中溶解氡氣研究............................................................................................. 30
3-3 鍶同位素之研究................................................................................................. 35
第四章 採樣地點與方法.......................................................................... 39
4-1 採樣地點............................................................................................................. 39
4-2 採樣方法............................................................................................................. 42
第五章 研究方法與原理…...................................................................... 45
5-1 主要研究氣體之特性…………………………………………………………. 45
5.1.1 地下水中溶解惰性氣體之來源.................................……………………. 45
5.1.2 氦同位素的應用………………………………………………………….. 49
5.1.3 氡氣...............……………………………………………………………... 50
5-2 氦同位素分析儀器與方法……………………………………………………. 52
5.2.1 稀有氣體純化系統………………………...…………………….……..… 53
5.2.2 儀器誤差與校正………………………………………………………….. 56
5-3 水中溶解氡氣分析儀器與方法......................................................................... 57
5.3.1 儀器分析原理.............................................................................................. 58
5.3.2 實驗方法與步驟.......................................................................................... 63
5.3.3 儀器誤差與校正.......................................................................................... 65
5-4 離子層析儀......................................................................................................... 66
5-5 氫氧同位素分析儀器與原理............................................................................. 67
5-6 鍶同位素分析儀器與原理................................................................................. 68
5.6.1 鍶同位素分析前處理程序.......................................................................... 68
5.6.2 鍶同位素分析儀器...................................................................................... 69
第六章 分析結果...................................................................................... 70
6-1 氫氧同位素分析結果......................................................................................... 70
6.1.1 花蓮地區(立霧溪、美崙溪、花蓮溪流域)............................................... 70
6.1.2 台中地區(大甲溪流域).............................................................................. 74
6-2 水化學分析結果................................................................................................. 77
6.2.1 花蓮地區(立霧溪、美崙溪、花蓮溪流域)............................................... 77
6.2.2 台中地區(大甲溪流域).............................................................................. 81
6-3 氦同位素分析結果............................................................................................. 85
6.3.1 花蓮地區(立霧溪、美崙溪、花蓮溪流域)............................................... 85
6.3.2 台中地區(大甲溪流域).............................................................................. 87
6-4 水中溶解氡氣分析結果......................................................................................... 88
6.4.1 花蓮地區(立霧溪、美崙溪、花蓮溪流域)............................................... 88
6.4.2 台中地區(大甲溪流域).............................................................................. 92
6-5 鍶同位素分析結果............................................................................................. 97
6.5.1 花蓮地區(立霧溪流域).............................................................................. 97
6.5.2 台中地區(大甲溪流域).............................................................................. 98
七、綜合討論............................................................................................ 100
7-1 大甲溪流域地下水深淺含水層連通性........................................................... 100
7-2 山區地下水含水層之地球化學特性............................................................... 109
7-3 花蓮地區(立霧溪、美崙溪、花蓮溪流域)............................................... 112
7.3.1 花蓮地區山區地下水含水層之氣體地球化學特性................................ 112
7.3.2 花蓮地區山區地地下水深淺含水層連通性............................................ 120
7-4 地表水與地下水交互作用............................................................................... 127
7.4.1 花蓮地區(立霧溪流域)............................................................................ 127
7.4.1.1 河水與地下水混合模式..................................................................... 127
7.4.1.2 立霧溪流域山區地下水補注河流比例............................................. 130
7.4.2 台中地區(大甲溪流域)............................................................................ 135
7.4.2.1 河水與地下水混合模式..................................................................... 135
7.4.2.2 大甲溪流域山區地下水補注河流比例............................................. 145
7-5 立霧溪流域與大甲溪流域水體循環模式比較............................................... 149
第八章 結論............................................................................................ 153
第九章 參考文獻.................................................................................... 155
附錄一 花蓮地區山區觀測井地下水採樣基本資料表.......................................... 163
附錄二 花蓮地區溪水採樣基本資料表.................................................................. 164
附錄三 花蓮地區山區觀測井地下水氣體地球化學分析結果總表...................... 165
附錄四 花蓮地區山區觀測井地下水水體地球化學分析結果總表...................... 166
附錄五 花蓮地區溪水氣體地球化學分析結果總表.............................................. 167
附錄六 花蓮地區溪水水體地球化學分析結果總表.............................................. 168
附錄七 台中地區大甲溪流域山區觀測井地下水採樣基本資料表...................... 169
附錄八 台中地區大甲溪流域溪水採樣基本資料表.............................................. 169
附錄九 台中地區大甲溪流域山區觀測井地下水氣體地球化學分析結果總表.. 170
附錄十 台中地區大甲溪流域山區觀測井地下水水體地球化學分析結果總表.. 170
附錄十一 台中地區大甲溪流域溪水氣體地球化學分析結果總表...................... 171
附錄十二 台中地區大甲溪流域溪水水體地球化學分析結果總表...................... 171
dc.language.isozh-TW
dc.title台灣中部山區地下水及河流之地球化學示蹤劑研究zh_TW
dc.titleGeochemical tracers for the groundwater and streams in mountainous regions of central Taiwanen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉聰桂,陳文福,王詠絢,許世孟
dc.subject.keyword地球化學示蹤劑,山區地下水,惰性氣體,鍶同位素,zh_TW
dc.subject.keywordGeochemical tracers,groundwater in mountainous regions,noble gas,strontium isotopic ratio,en
dc.relation.page172
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-02-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf9.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved