請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48147完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 石明豐 | |
| dc.contributor.author | Ying-Chen Lin | en |
| dc.contributor.author | 林盈甄 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:47:20Z | - |
| dc.date.available | 2014-07-06 | |
| dc.date.copyright | 2011-07-06 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-07 | |
| dc.identifier.citation | [1] R. W. Boyd, Nonlinear Optics, Academic Press, 1st edition (1984)
[2] H. Xia, A. Ben-Amar Baranga, D. Hoffman, M. V. Romalis, Applied Physics Let-ters, Vol. 89 211104 [3] T. L. Yang, “Spin-Exchange Relaxation Free Potassium Atomic Magnetometer in the Un-shielded Environment,” M. S. thesis, Department of Physics, National Taiean University, 2008 [4] J. Belfi, G. Bevilaqua, V. Biancalan, S.Cartaleva, Y. Dancheve, L. Moi, Journal of Optical Society of America, Vol.24, No.9, September 2007 [5] T. G. Tiecke, “Properties of Potassium,” van der Waals-Zeeman institute, Univer-sity of Amsterdam, 2010. [6] Tzu Yu Wu, “Shielded three axis vector operation of a multichannel atomic mag-netometer,” M. S. thesis, Department of Physics, National Taiean University, 2009. [7] S. Appelt, A. B. Baranga, C. J. Erikson, M. V. Romalis, Physical Review A, 58, 1412, 1998. [8] S. J. Selter and M. V. Romalis, Applied Physics Letters, 85, 2004. [9] M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, Physical Review A, 77, 033408, 2008 [10] D. Budker, W. Gawlik, D. F. Kimball et al., A. Weis, Reviews of Modern Physics, 74, 2002 [11] I. K. Kominis, T. W. Kornack, J. C. Allred and M. V. Romalis, Nature, vol. 422, 596, 2003 [12] D. Budker and M. Romalis, Nature Physics, vol. 3, 2007 [13] D. Budker, D. Orlando, V. Yashchuk, American Journal of Physics, 67, 1999. [14] Cronin, A. D., R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, 1998, Physics Review Letters 80, 3719, 1998. [15] Eugene Hecht, Optics, Addison Wesley, 2001. [16] D. Macaluso and O. M. Corbino, C. R. Hebd. Seances Acad. Sci. 127, 548, 1898a. [17] D. Macaluso and O. M. Corbino, Nuovo Cimento 8, 257, 1898b. [18] D. Macaluso and O. M. Corbino, Nuovo Cimento 9, 384, 1899. [19] R. W. Wood, Philos. Meg. 44 , 1109, 1922. [20] R. W. Wood and A. Ellett, Proc. R. Soc. London 103, 1923. [21] R. W. Wood and A. Ellett, Phys. Rev. 24, 243, 1924. [22] W. Hanle, Z. Phys. 30, 93, 1924. [23] Alan Corney, Atomic and laser spectroscopy, Oxford : Clarendon Press, 2006. [24] A. Kastler, J. Phys. Radium 11, 225, 1950. [25] W. Bell and A. Bloom, Phys. Rev. 107, 1559, 1957. [26] W. Bell and A. Bloom, Phys. Rev. Lett. 6, 280, 1961. [27] H. Dehmelt, Phys. Rev. 105 1924, 1957. [28] W. Happer, 1972, Reviews of Modern Physics 44, 169-249. [29] W. Happer and A. C. Tam, 1977, Phys. Rev. A 16, 1877-1891. [30] J. C. Allred, R. N. Lyman, T. W. Kornack and M. V. Romalis, 2002, Phys. Rev. Lett. 89, 13. [31] J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchunk, D. Budker, Phys. Rev. A, 74, 053415, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48147 | - |
| dc.description.abstract | 理論上,鹼金屬原子測磁計的高敏感度可和現今最敏感測磁計的超導量子干涉磁量儀(Superconducting Quantum Interference Device)媲美。在本實驗中,利用溫度約 的高密度鉀原子氣體,在外圍以μ合金(mu-metal)圍住使其可以在微小磁場下進行作用,再將原子共振態的半導體雷射光照射在原子上,使得原子在磁場下和光產生了非線性的磁光效應,接著利用量測原子自旋角動量的拉馬旋進(Larmor Precession),我們就可以得知磁場大小。在高原子密度和微小磁場下,原子和原子之間碰撞所產生的自旋角動量互相交換且衰減的情況並不明顯,所以稱為不受自旋交換衰弛影響(Spin-Exchange Relaxation Free)的鉀原子測磁計。
在這套系統,為了改善以熱空氣加熱使得荷姆霍茲線圈和 合金會過熱的情形,我們改善了加熱系統,利用375W紅外線燈泡為熱源,以石英棒為熱源傳輸,成功將原子氣體加熱到160±10℃左右,而且荷姆霍茲線圈和 合金保持在室溫狀態。此外,我們設計新的方法來找零點磁場,進而得到幾十個 頻寬的共振分佈曲線,但是此訊號並不穩定,接著我們做了一連串的測試排除各種原因和對此系統做分析。 | zh_TW |
| dc.description.abstract | Theoretically, Alkali-metal magnetometers can be accurate as SQUID which is currently the most sensitive magnetic field sensors. We use high density Potassium atom vapor as our measurement sample, which is heated to 160±10℃, and is shielded by mu-metal for near zero magnetic field operation condition to reduce the noise from the spin exchange collision. The principle of the magnetometer is based on the resonant nonlinear magneto-optical effect that Larmor precession can be used to measure the spins of polarized atoms under the influence of the magnetic field.
In order to eliminate the overheating problem of the Helmholtz Coils and mu-metal caused by the hot-air heating method, we use an infrared light bulb as a thermal source and a quartz bar to transfer the heat to the Potassium cell. The temperature of the cell has been successfully raised up to 160±10℃ with no overheating problem and the system is more stable. Furthermore, a new method of finding zero magnetic fields is presented, in which the resonant signal with around 10μG width is observed. However, the signal drifts over time. To solve this problem, we have assumed some causes and target to solve them one by one. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:47:20Z (GMT). No. of bitstreams: 1 ntu-100-R97222074-1.pdf: 2235172 bytes, checksum: b0b7f056ba3c9a43feb242cedc710023 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 iii
ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 Introduction 1 Chapter 2 Theory 4 2.1 Magneto-Optical Effects 5 2.2 Optical Pumping 8 2.3 Spin Relaxation 10 2.4 The Response of Spin Polarization to B 12 2.5 Probe Beam Detection 14 2.6 The Sensitivity of Atomic Magnetometers 15 Chapter 3 Experimental Apparatus 16 3.1 Potassium Cell and Heating System 17 3.1.1 Potassium Cell 17 3.1.2 Heating System 18 3.2 Probe Beam Detection 22 3.2.1 The Probe Laser 22 3.2.2 Electric-Optical Modulation Lock-In Amplifier 23 3.3 Pump Laser System 25 3.4 Three-Axis Helmholtz Coils 26 3.5 Magnetic Shielding 28 Chapter 4 Methods and Results 30 4.1 Simulation and Experimental Results 30 4.2 Improvements Proceeding 35 4.3 A Simple Test for Atomic Magnetometer Workability 38 Chapter 5 Conclusions and Future Works 39 REFERENCE 40 APPENDIX 42 | |
| dc.language.iso | en | |
| dc.subject | 不受自旋交換衰弛影響 | zh_TW |
| dc.subject | 原子測磁計 | zh_TW |
| dc.subject | 紅外線加熱 | zh_TW |
| dc.subject | 拉馬旋進 | zh_TW |
| dc.subject | 磁光效應 | zh_TW |
| dc.subject | Atomic magnetometer | en |
| dc.subject | Infrared heating | en |
| dc.subject | Magneto-optical effect | en |
| dc.subject | Larmor precession | en |
| dc.subject | Spin-Exchange Relaxation Free | en |
| dc.title | 在屏蔽磁場下使用紅外線加熱的鉀原子測磁計 | zh_TW |
| dc.title | Shielded Potassium Atomic Magnetometer with Infrared Heating | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳政維,楊鴻昌 | |
| dc.subject.keyword | 原子測磁計,紅外線加熱,拉馬旋進,磁光效應,不受自旋交換衰弛影響, | zh_TW |
| dc.subject.keyword | Atomic magnetometer,Spin-Exchange Relaxation Free,Larmor precession,Magneto-optical effect,Infrared heating, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-07 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
