Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48132
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍(Jiang-Jen Lin)
dc.contributor.authorYing-Chiao Wangen
dc.contributor.author王映樵zh_TW
dc.date.accessioned2021-06-15T06:46:58Z-
dc.date.available2013-07-06
dc.date.copyright2011-07-06
dc.date.issued2011
dc.date.submitted2011-06-15
dc.identifier.citationReferences
1 Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications. Springer-Verlag, Germany, 2004.
2 T. Markvart, Solar Electricity. 2nd ed.; John Wiley & Sons, Chichester, 2000.
3 M. Grätzel, Nature, 2001, 414, 338.
4 R. H. Bube, Photovoltaic Materials. Imperial College Press, London, 1998.
5 M. A. Green, Physica E, 2002, 14, 11.
6 D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys., 1954, 25, 676.
7 S. Nakamura, KRI Report No. 8 of Phase XVI. KRI, Inc., Japan, 2005.
8 M. A. Green, K. Emery, D. L. King, S. Igari and W. Warta, Progress in Photovoltaics, 2005, 13, 387.
9 S. E. Shaheen, D. S. Ginley and G. E. Jabbour, MRS Bull., 2005, 30, 10.
10 M. Grätzel, Chem. Lett., 2005, 34, 8.
11 J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Mater., 2005, 17, 66.
12 H. Spanggaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2004, 83, 125.
13 M. B. Prince, Silicon solar energy converters : Prince, M. B. J. App. Phys., May 1955, 26(5),534, Sol. Energy, 1955, 1, 62.
14 P. Rappaport, RCA Rev., 1959, 20, 373.
15 D. C. Reynolds, G. Leies, L. L. Antes and R. E. Marburger, Phys. Rev., 1954, 96, 533.
16 D. A. Jenny, J. J. Loferski and P. Rappaport, Phys. Rev., 1956, 101, 1208.
17 M. Grätzel, J. Photochem. Photobiol. A-Chem., 2004, 164, 3.
18 C. H. Henry, J. Appl. Phys., 1980, 51, 4494.
19 M. Grätzel, J. Photochem. Photobiol. A-Chem., 2005, 164, 3.
20 M. Grätzel, Inorg. Chem., 2005, 44, 6841.
21 A. N. M. Green, R. E. Chandler, S. A. Haque, J. Nelson and J. R. Durrant, J. Phys. Chem. B, 2005, 109, 142.
22 C. C. Clark, A. Marton, R. Srinivasan, A. A. N. Sarjeant and G. J. Meyer, Inorg. Chem., 2006, 45, 4728.
23 A. Marton, C. C. Clark, R. Srinivasan, R. E. Freundlich, A. A. N. Sarjeant and G. J. Meyer, Inorg. Chem., 2006, 45, 362.
24 H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, J. Phys. Chem. B, 2001, 105, 10461.
25 T. Hannappel, B. Burfeindt, W. Storck and F. Willig, J. Phys. Chem. B, 1997, 101, 6799.
26 K. Takeshita, Y. Sasaki, M. Kobashi, Y. Tanaka and S. Maeda, J. Phys. Chem. B, 2003, 107, 4156.
27 D. Kuciauskas, J. E. Monat, R. Villahermosa, H. B. Gray, N. S. Lewis and J. K. McCusker, J. Phys. Chem. B, 2002, 106, 9347.
28 J. Kallioinen, G. Benko, V. Sundstrom, J. E. I. Korppi-Tommola and A. P. Yartsev, J. Phys. Chem. B, 2002, 106, 4396.
29 J. B. Asbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik and T. Q. Lian, J. Phys. Chem. B, 1999, 103, 3110.
30 T. A. Heimer, E. J. Heilweil, C. A. Bignozzi, G. J. Meyer and J. Phys. Chem. A, 2000, 104, 4256.
31 G. Benko, J. Kallioinen, P. Myllyperkio, F. Trif, J. E. I. Korppi-Tommola, A. P. Yartsev and V. Sundstrom, J. Phys. Chem. B, 2004, 108, 2862.
32 J. B. Asbury, N. A. Anderson, E. C. Hao, X. Ai, T. Q. Lian and J. Phys. Chem. B, 2003, 107, 7376.
33 J. Kallioinen, G. Benko, P. Myllyperkio, L. Khriachtchev, B. Skarman, R. Wallenberg, M. Tuomikoski, J. Korppi-Tommola, V. Sundstrom and A. P. Yartsev, J. Phys. Chem. B, 2004, 108, 6365.
34 G. Benko, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev and V. Sundstrom, J. Am. Chem. Soc., 2002, 124, 489.
35 Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug and J. R. Durrant, J. Phys. Chem. B, 2001, 105, 7424.
36 Y. Trachibana, S. A. Haque, I. P. Mercer, J. R. Durrant and D. R. Klug, J. Phys. Chem. B, 2000, 104, 1198.
37 J. B. Asbury, E. Hao, Y. Q. Wang, H. N. Ghosh and T. Q. Lian, J. Phys. Chem. B, 2001, 105, 4545.
38 J. Kallioinen, V. Lehtovuori, P. Myllyperkio and J. Korppi-Tommola, Chem. Phys. Lett. , 2001, 340, 217.
39 D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler and N. S. Lewis, J. Phys. Chem. B, 2001, 105, 392.
40 G. Sauve, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal and N. S. Lewis, J. Phys. Chem. B, 2000, 104, 6821.
41 S. Pelet, J. E. Moser and M. Grätzel, J. Phys. Chem. B, 2000, 104, 1791.
42 I. Montanari, J. Nelson and J. R. Durrant, J. Phys. Chem. B, 2002, 106, 12203.
43 M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton and N. S. Lewis, Progress in Inorganic Chemistry, 1994, 41, 21.
44 A. Zaban, A. Meier and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 7985.
45 D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles and I. Riess, J. Phys. Chem. B, 2000, 104, 2053.
46 A. Nel, T. Xia, .L Ma¨dler and N. Li, Science, 2006, 311, 622.
47 E. Nqvqrro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg and A. Behra, Environ. Sci. Technol., 2008, 42, 8959
48 H. Yang, C. Liu, D. Yang, H. Zhang and Z. Xi, J. Appl. Toxicol. 2009, 29, 69.
49 . C. C. Chou, M. L. Chiang, W. C. Tsai and J. J. Lin, J. Phys. Chem. B, 2006, 110, 18115.
50 Y. H. Lai, C. W. Chiu, J. G. Chen, C. C. Wang, J. J. Lin, k. F. Lin and K. C. Ho, Sol. Energy Mater. Sol. Cells., 2009, 93, 1860.
51 A. F. Nogueira, C. Longo and M. A. De Paoli, Coord. Chem. Rev., 2004, 248, 1455.
52 H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, J. Phys. Chem. B, 2001, 105, 10461.
53 G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, J. Phys. Chem. B, 2001, 105, 6867
54 . H. Nusbaumer, S. M. Zakeeruddin, J. E. Mosera and M. Grätzel, Chem. Eur. J., 2003, 9, 3756.
55 H. Kroto, Science, 1988, 242, 1139.
56 R. F. Curl and R. E. Smalley, Science, 1988, 242, 1017.
57 S. Iijima, Science, 1991, 354, 56.
58 M. S. Dresselhaus, Science of Fullerenes and Carbon Nanotubes. (Academic Press inc., 1996)
59 S. Niyogi, Acc. Chem. Res., 2002, 35, 1105.
60 M. Zheng and B. A. Diner, J. Am. Chem. Soc., 2004, 126, 15490.
61 J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Nature, 1998, 391, 59.
62 T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, Nature, 1998, 391, 62.
63 P. M. Ajayan, Chem. Rev., 1999, 99, 1787.
64 Yakobson, Appl. Phys. Lett., 1998, 72, 918.
65 M. B. Nardelli, B. I. Yakobson and J. Bernholc, Phys. Rev. B, 1998, 57, R4277.
66 M. B. Nardelli, B. I. Yakobson and J. Bernholc, Phys. Rev. Lett., 1998, 81, 4656.
67 P. Zhang, P. E. Lammert and V. H. Crespi, Phys. Rev. Lett., 1998, 81, 5346.
68 D J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang and J. Q. Li, Phys. Rev. B, 2002, 66, 165440.
69 R. S. Ruoff, Lorents and C. Donald, Carbon, 1995, 33, 925.
70 M. A. Osman and D. Srivastava, Nanotechnology, 2001, 12, 21.
71 J. Hone, M. Whitney, C. Piskoti and A. Zettl, Phys. Rev. B, 1999, 59, R2514.
72 J. Hone, A. Zettl and M. Whitney, Syn. Meta., 1999, 103, 2498.
73 S. Berber, Y. K. Kwon and D. Tománek, Phys. Rev. Lett., 2000, 84, 4613.
74 Z. Yinghuai, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane and M. Takagaki, J. Am. Chem. Soc., 2005, 127, 9875.
75 K. Ajima, M. Yudasaka, T. Murakami, A. Maigne, K. Shiba and S. Iijima, Molecular Pharmaceltics, 2005, 2, 475.
76 Q. Lu, J. M. Moore, G. Huang, A. S. Mount, A. M. Rao, L. L. Larcom and P. C. Ke, Nano Lett., 2004, 4, 2473.
77 H. M. So, K. Won, Y. H. Kim, B.K. Kim, B. H. Ryu, P. S. Na, H. Kim and J. O. Lee, J. Am. Chem. Soc.,2005, 127, 11906.
78 J. N. Wohlstadter, Adv. Mater., 2003, 15, 1184.
79 J. Suhr, Nano Lett., 2006, 6, 219.
80 T. Kashiwagi, Polymer, 2005, 46, 471.
81 S. Barrau, Macromol. Rapid Commun., 2005, 26, 390.
82 J. N. Wohlstadter, J. L. Wilbur, G. B. Sigal, H. A. Biebuyck, M. A. Billadeau, L. Dong, A. B. Fischer, S. R. Gudibande, S. H. Jameison, J. H. Kenten, J. Leginus, J. K. Leland, R. J. Massey and S. J. Wohlstadter, Adv. Mater., 2003, 15, 1618.
83 W. Wu, S. Zhang, Y. Li, J. Li, L. Liu, Y. Qin, Z. X. Guo, L. Dai, C. Ye and D. Zhu, Macromolecules, 2003, 36, 6286.
84 Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, Science, 2004, 305, 1273.
85 I. Efremenko and M. Sheintuch, Langmuir, 2005, 21, 6282.
86 W. Li, X. Wang, Z. Chen, M. Waje and Y. S. Yan, Langmuir, 2005, 21, 9386.
87 K. S. Coleman, S. R. Bailey, S. Fogden and M. L. H. Green, J. Am. Chem. Soc., 2003, 125, 8722.
88 A. Adronov, Z. Yao, N. Braidy and G. A. Botton, J. Am. Chem. Soc., 2003, 125, 16015.
89 I. C. Liu, H. M. Huang, C. Y. Chang, H. C. Tsai, C. H. Hsu and R. C. C. Tsiang, Macromolecules, 2004, 37, 283.
90 L. Qu, L. M. Veca, Y. Lin, A. Kitaygorodskiy, B. Chen, A. M. McCall, J. W. Connell and Y. P. Sun, Macromolecules, 2005, 38, 10328.
91 D. Chattopadhyay, I. Galeska and F. Papadimitrakopoulos, J. Am. Chem. Soc., 2003, 125, 3370.
92 Y. Maeda, S. Kimura, Y. Hirashima, M. Y. Kanda, Y. Lian, T. Wakahara, T. Akasaka, T. Hasegawa, H. Tokumoto, T. Shimizu, H. Kataura, Y. Miyauchi, S. Maruyama, K. Kobayashi and S. Nagase, J. Phys. Chem. B, 2004, 108, 18395.
93 N. Choi, M. Kimura and H. Kata, Jpn. J. Appl. Phys., 2002, 41, 6264.
94 H. Chang, J. D. Lee, S. M. Lee and Y. H. Lee, Appl. Phys. Lett., 2001, 79, 3863.
95 J. Kong and H. Dai, J. Phys. Chem. B, 2001, 105, 2890.
96 K. Bradley, J. C. P. Gabriel, M. Briman, A. Star and G. Grüner, Phys. Rev. Lett., 2003, 91, 218301.
97 E. V. Basiuk, V. A. Basiuk, J. G. Banuelos, B. J. M. Saniger, V. A. Pokrovskiy, T. Y. Gromovoy, A. V. Mischanchuk and B. G. Mischanchuk, J. Phys. Chem. B, 2002, 106, 1588.
98 V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R.E. Smalley, J. Schmidt and Y. Talmon, Nano Lett., 2003, 3, 1379.
99 H. T. Ham, Y. S. Choi and I. J. Chung, J. Colloid Inter. Sci., 2005, 286, 216.
100 V. A. Sinani, M. K. Gheith, A. A. Yaroslavov, A. A. Rakhnyanskaya; K. Sun, A. A. Mamedov, J. P. Wicksted and N. A. Kotov, J. Am. Chem. Soc., 2005, 127, 3463.
101 A. Star, D. W. Steuerman, J. R. Heath and J. F. Stoddart, Angew. Chem., 2002, 41, 2508.
102 H. Kitano, K. Tachimoto, T. N. Hirabayashi amd H. Shinohara, Macromol. Chem. Phys., 2004, 205, 2064.
103 J. F. Stoddart, A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi and J. R. Heath, Angew. Chem., 2001, 40, 1721.
104 J. F. Stoddart, A. Star, Y. Liu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai and J. R. Heath, Macromolecules, 2003, 36, 553.
105 R. Shvartzman-Cohen, Y. Levi-Kalisman, E. Nativ-Roth and R. Yerushalmi-Rozen, Langmuir, 2004, 20, 6085.
106 E. Nativ-Roth, R. Shvartzman-Cohen, C. Bounioux, M. Florent, D. Zhang, I. Szleifer and R. Yerushalmi-Rozen, Macromolecules, 2007, 40, 3676.
107 I. Cotiuga, F. Picchioni, U. S. Agarwal, D. Wouters, J. Loos and P. J. Lemstra, Macromol. Rapid Commun. 2006, 27, 1073.
108 Y. F. Lan and J. J. Lin, J. Phys. Chem. A, 2009, 113, 8654.
109 B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
110 N. Papageorgiou, W. F. Maie, M. Grätzel, J. Electrochem. Soc. 1997, 144, 876.
111 A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
112 M. Grätzel, Prog. Photovoltaic: Res. Appl., 2006, 14, 429.
113 M. Grätzel, J. Photochem. Photobiol. A, 2004, 164, 3.
114 G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera and K. Tennakone, J. Photochem. Photobiol. A, 2004, 164, 183.
115 J. Zhang, Y. Yang, S. Wu, S. Xu, C. Zhou, H. Hu, B. Chen, H. Han and X. Zhao, Electrochim. Acta, 2008, 53, 5415.
116 J. P. Lee, B. Yoo, T. Suresh, M. S. Kang, R. Vital and K. J. Kim, Electrochim. Acta, 2009, 54, 4365.
117 D. Shi, N. Pootrakulchote, R. Li, Jin. Guo, Y. Wang, S. M, Zakeeruddin, M. Grätzel and P. Wang, J. Phys. Chem. C, 2008, 112, 17046.
118 J. Kruger, R. Plass, M. Grätzel and H. J. Matthieu, Appl. Phys. Lett., 2002, 81, 367.
119 M. Biancardo, K. West and F. C. Krebs, J. Photochem. Photobiol. A, 2007, 187, 395.
120 F. Cao, G. Oskam and P. C. Searson, J. Phys. Chem., 1995, 99, 17017.
121 J. W. Choi, G. Cheruvally, Y. H. Kim, J. Manuel, P. Raghavan, J. H. Ahn, K. W. Kim, H. J. Ahn, D. S. Choi and C. E. Song, Solid State Ion., 2007, 178, 1235.
122 H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao and J. Lin, Mater. Chem. Phys., 2008, 110, 38.
123 P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekigushi and M. Grätzel, Nat. Mater., 2003, 2, 402.
124 P. M. Ajayan, Chem. Rev., 1999, 99, 1787.
125 P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, Science, 1994, 265, 1212.
126 H. T. Ng, M. L. Foo, A. Fang, J. Li, G. Xu, S. Jaenicke, L. Chan and S. F. Y. Li, Langmuir, 2002, 18, 1.
127 F. Wang, G. Dukovic, L. E. Brus and T. F. Heinz, Science, 2005, 308, 838.
128 Z. Wang, Q. Liu, H, Zhu, H. Liu, Y. Chen and M. Yang, Carbon, 2007, 45, 285.
129 S. Banerjee, T. Hemraj-Benny and S. S. Wong, Adv. Mater., 2005, 17, 17.
130 Y. Qin, L. Liu, J. Shi, W. Wu, J. Zhang, Z. X. Guo, Y. Li and D. Zhu, Chem. Mater., 2003, 15, 3256.
131 Y. P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu and D. L. Carroll, Chem. Mater., 2001, 13, 2864.
132 H. J. Barraza, F. Pompeo, E. A. O’Rear and D. E. Resasco, Nano Lett., 2002, 2, 797.
133 G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu and P. M. Ajayan, J. Am. Chem. Soc., 2003, 125, 9258.
134 Z. Yao, N. Braidy, G. A. Botton and A. Adronov, J. Am. Chem. Soc., 2003, 125, 16015.
135 Y. Kang and T. A. Taton, J. Am. Chem. Soc., 2003, 125, 5650.
136 K. Dong, G. Zhou, X. Liu, X. Yao and S. Zhang, J. Phys. Chem. C, 2009, 113, 10013.
137 H. C. Choi, M. Shim and S. Bangsaruntip, H. J. Dai, J. Am. Chem. Soc., 2002, 124, 9058.
138 S. U. Lee, W. S. Choi and B. Hong, Sol. Energy Mater. Sol. Cells, 2010, 94, 680.
139 M. S. Akhtar, J. G. Park, H. C. Lee, S. K. Lee and O. B. Yang, Electrochim. Acta , 2009, 55, 2418.
140 K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin and K. C. Ho, J. Mater. Chem., 2010, 20, 4067.
141 M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, J. Phys. Chem. B, 2003, 107, 8981.
142 C .Y. Huang, Y. C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee and K. C. Ho, Sol. Energy Mater. Sol. Cells, 2006, 90, 2391.
143 C. Longo, J. Freitas and M. A. De Paoli, J. Photochem. Photobiol. A, 2003, 159, 33.
144 D. Baskaran, J. W. Mays and M. S. Bratcher, Chem. Mater., 2005, 17, 3389.
145 M. A. Rixman, D. Dean and C. Ortiz, Langmuir, 2003, 19, 9357.
146 L. Chai and J. Klein, J. Am. Chem. Soc., 2005, 127, 1104.
147 A. Gavezzotti, J. Phys. Chem. B , 2003, 107, 2344.
148 K. P. Sharma, V. K. Aswal and G. Kumaraswamy, J. Phys. Chem. B, 2010, 114, 10986.
149 G. I. Guerrero-García, E. González-Tovar and M. Olvera de la Cruz, Soft Matter, 2010, 6, 2056.
150 P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Grätzel, J. Am. Chem. Soc., 2003, 125, 1166.
151 G. T. K. Fey, J. G. Chen, V. Subramanian and T. Osaka, J. Power Sources, 2002, 112, 384.
152 J. van de Lagement, N. G. Park and A. J. Frank, J. Phys. Chem. B, 2000, 104, 2044.
153 J. Loos, L. V. Laake, M. Maugey, C. Zakri, C. E. Koning and A. J Hart, Adv. Funct. Mater., 2008, 18, 3226.
154 N. Grobert, Mater. Today, 2007, 10, 28.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48132-
dc.description.abstract在染料敏化太陽能電池(DSSC)的研究中,聚偏二氟乙烯-共-三氯乙烯 (p(VDF-co-HFP)) 及其衍生物普遍使用於膠態電解質。因p(VDF-co-HFP) 中的氟原子擁有較小的離子半徑及高電負度,預期能提升半固態電解質的離子導電度;為改善高分子型膠態電解質的界面及導電度的性質,在高分子電解質中加入 無機材料可降低高分子的結晶性,增進離子導離度進而提升膠態 DSSCs 整體效率。本實驗中,利用聚偏二氟乙烯-共聚-三氟乙烯 (p(VDF-co-HFP))膠化電解質,並添加均勻分散的奈米碳管,以製備半固態染料敏化太陽能電池 (DSSC)。同時,設計合成具有醯胺(amide)與亞醯胺 (imide)官能基之高分子(poly(oxyethylene)-segmented amide and imide, POEM) 並應用於分散多壁奈米碳管(MWCNT) 。在標準光源100 mW cm-2的照射下,加入0.25 wt% MWCNT/POEM混成材料於半固態DSSC,可以得到短路電流密度 (JSC)與光電轉換效率 (η)分別為15.3 mA cm-2與6.86%。電化學交流阻抗儀(electrochemical impedance spectra, EIS)的分析中,0.25 wt% 混成膠態電解質亦可得到最低的Warburg阻抗 (Rw)。相較於未加入MWCNT/POEM於膠態電解質的半固態DSSC,其JSC與η分別為9.59 mA cm-2與4.63%。利用POEM分散MWCNT不僅增加p(VDF-co-HFP)之非結晶相並且具有螯合Li+離子的作用,進一步能促進I-離子的擴散能力,使得此半固態DSSC擁有相當高之光電轉換效率。zh_TW
dc.description.abstractThe gel electrolytes consisting of a well-dispersed carbon nanotubes and poly(vinyidene fluoride-co-hexafluoro propylene) p(VDF-co-HFP) were prepared for the quasi-solid-state dye-sensitized solar cells (DSSCs). A structurally tailored oligomers with functionalities of poly(oxyethylene)-segmented amides and imides (POEM) was synthesized and used for dispersing multi-walled carbon nanotubes (MWCNTs). When incorporated into the p(VDF-co-HFP)-based gel electrolytes, the performance of thte quasi-solid-state DSSC had been enhanced. At 100 mW cm-2 irradiation, the short-circuit current density (JSC) and power-conversion efficiency (η) of the DSSC containing 0.25 wt% MWCNT/POEM hybrids gel electrolyte were found to reach the best performance of 15.3 mA cm-2 and 6.86%, respectively. The lowest Warburg resistance (Rw) of this DSSC was characterized by the electrochemical impedance spectra (EIS) analyses and found to be consistent with the high performance. By comparison, the corresponding values of JSC = 9.59 mA cm-2 and η = 4.63% for a DSSC based on the pristine p(VDF-co-HFP) gel electrolyte were attained as the reference. The existence of the well-dispersed MWCNT by POEM not only increase the amorphous state of the p(VDF-co-HFP) but also promote the chelating behavior to the Li+. The system further facilitates the diffusion of ion pair, I-/I3- in the electrolytes and benefits to DSSC performance. The fine dispersion of MWCNT in the gel electrolyte is essential in this system and evidenced mainly by transmission electric microscope (TEM).en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:46:58Z (GMT). No. of bitstreams: 1
ntu-100-R98549003-1.pdf: 8506895 bytes, checksum: 4f630abe696d7547523c67d4d05371aa (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
ACKNOWLEDGEMENTS…..…………………………………………….…………II
摘要….............................................................................................................................III
ABSTRACT...................................................................................................................IV
TABLE OF CONTENT.................................................................................................V
LIST OF FIGURES....................................................................................................VIII
LIST OF TABLES..........................................................................................................X
LIST OF SCHEMES.....................................................................................................XI
Chapter 1 Introduction ………………..........................................................................1
1.1. Background................................................................................................................1
1.2 Theoretical Background of Solar Cell ........................................................................4
1.2.1 Photoelectrochemical Cells for Solar Energy Conversion...................................6
1.2.2 Photochemistry of Semiconductor-Liquid Junctions……...................................6
1.2.3 Factors that Determine Overall Conversion Efficiency of a Solar Cell...............8
1.2.4 Dye-Sensitized Solar Cell...................................................................................10
1.2.4.1 Challenges to Further Improvement............................................................13
1.2.4.2 Mechanisms of DSSCs................................................................................15
1.3 Nanamaterials……....................................................................................................19
1.4 Motivation…….…....................................................................................................21
Chapter 2 Literature review ........................................................................................22
2.1 Various Kinds of Electrolyte.....................................................................................22
2.2. Carbon Nanotubes....................................................................................................22
2.3. Overview of Dispersibility of CNTs........................................................................26
2.3.1 Chemical Modification.......................................................................................26
2.3.2 Physical Absorption............................................................................................28
2.3.3 Geometric Shaped Diseprsion............................................................................31
2.4. Well Dispersed MWCNT on the Gel Electrolyte for DSSCs..................................32
Chapter 3 Experimental................................................................................................35
3.1 Materials ...................................................................................................................35
3.2 Preparation of Gel Electrolyte Containing MWCNT/Polyimide Hybrid..................36
3.3 Fabrication of DSSCs…………………………........................................................37
3.4 Instrumentation…………………………..................................................................38
Chapter 4 Results and discussion.................................................................................40
4.1 Synthesis of POEM and Its Dispersing Ability for MWCNTs ................................40
4.2 High Performance of DSSC with the Gel Electrolyte Containing MWCNT/POEM Hybrids………………...……………………………………………………………….43
4.3 Thermogram Studies for the MWCNT/POEM Gel Electrolyte................................49
4.4 Diffusion Behavior of I- and I3- in the Gel Electrolyte..............................................51
4.5 Electrochemical Impedance Analyses of DSSCs Containing the Gel Electrolytes..52
Chapter 5 Conclusions..................................................................................................54
Chapter 6 Suggestions……………………….…..........................................................56
Chapter 7 References....................................................................................................60
Chapter 8 Curriculum Vitae…....................................................................................73
dc.language.isoen
dc.subject半固態染料敏化太陽能電池zh_TW
dc.subject膠態電解質zh_TW
dc.subject多壁奈米碳管zh_TW
dc.subject聚亞醯胺zh_TW
dc.subjectquasi-solid-state dye-sensitized solar cellen
dc.subjectpolyimideen
dc.subjectgel electrolyteen
dc.subjectmulti-wall carbon nanotubesen
dc.title探討添加奈米碳管/聚乙醯胺混成材料於膠態電解質之交互作用與提昇染料敏化太陽能電池之性能zh_TW
dc.titleHigh Performance of Dye-Sensitized Solar Cells:
MWCNTs Installed Gel Electrolytes
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor何國川(Kuo-Chuan Ho)
dc.contributor.oralexamcommittee林金福(King-Fu Lin)
dc.subject.keyword膠態電解質,多壁奈米碳管,聚亞醯胺,半固態染料敏化太陽能電池,zh_TW
dc.subject.keywordgel electrolyte,multi-wall carbon nanotubes,polyimide,quasi-solid-state dye-sensitized solar cell,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2011-06-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved