Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48120
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳水田(Shui-Tein Chen)
dc.contributor.authorMin-Chieh Chien
dc.contributor.author紀閔介zh_TW
dc.date.accessioned2021-06-15T06:46:42Z-
dc.date.available2013-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citationReference
1. Cloos, P. A., and Christgau, S. (2004) Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity, Biogerontology 5, 139-158.
2. Reinders, J., and Sickmann, A. (2007) Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation, Biomol Eng 24, 169-177.
3. Grunewald, S., Matthijs, G., and Jaeken, J. (2002) Congenital disorders of glycosylation: a review, Pediatr Res 52, 618-624.
4. Marth, J. D., and Grewal, P. K. (2008) Mammalian glycosylation in immunity, Nat Rev Immunol 8, 874-887.
5. Balcan, E., Tuglu, I., Sahin, M., and Toparlak, P. (2008) Cell surface glycosylation diversity of embryonic thymic tissues, Acta Histochem 110, 14-25.
6. Hirschberg, C. B., and Snider, M. D. (1987) Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus, Annu Rev Biochem 56, 63-87.
7. Kukuruzinska, M. A., and Lennon, K. (1998) Protein N-glycosylation: molecular genetics and functional significance, Crit Rev Oral Biol Med 9, 415-448.
8. van den Berg, T. K., Honing, H., Franke, N., van Remoortere, A., Schiphorst, W. E., Liu, F. T., Deelder, A. M., Cummings, R. D., Hokke, C. H., and van Die, I. (2004) LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition, J Immunol 173, 1902-1907.
9. Zajonc, D. M., and Kronenberg, M. (2009) Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells, Immunol Rev 230, 188-200.
10. Apweiler, R., Hermjakob, H., and Sharon, N. (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database, Biochim Biophys Acta 1473, 4-8.
11. Bause, E. (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes, Biochem J 209, 331-336.
12. Kornfeld, R., and Kornfeld, S. (1976) Comparative aspects of glycoprotein structure, Annu Rev Biochem 45, 217-237.
13. Hubbard, S. C., and Ivatt, R. J. (1981) Synthesis and processing of asparagine-linked oligosaccharides, Annu Rev Biochem 50, 555-583.
14. Helenius, A., and Aebi, M. (2001) Intracellular functions of N-linked glycans, Science 291, 2364-2369.
15. (1997) Calnexin, calreticulin and the folding of glycoproteins, Trends Cell Biol 7, 193-200.
16. Molinari, M., and Helenius, A. (1999) Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells, Nature 402, 90-93.
17. Huppa, J. B., and Ploegh, H. L. (1998) The eS-Sence of -SH in the ER, Cell 92, 145-148.
18. Ellgaard, L., and Helenius, A. (2001) ER quality control: towards an understanding at the molecular level, Curr Opin Cell Biol 13, 431-437.
19. Ellgaard, L., Molinari, M., and Helenius, A. (1999) Setting the standards: quality control in the secretory pathway, Science 286, 1882-1888.
20. Tarentino, A. L., Gomez, C. M., and Plummer, T. H., Jr. (1985) Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F, Biochemistry 24, 4665-4671.
21. Freeze, H. H., and Varki, A. (1986) Endo-glycosidase F and peptide N-glycosidase F release the great majority of total cellular N-linked oligosaccharides: use in demonstrating that sulfated N-linked oligosaccharides are frequently found in cultured cells, Biochem Biophys Res Commun 140, 967-973.
22. Fabini, G., Freilinger, A., Altmann, F., and Wilson, I. B. (2001) Identification of core alpha 1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseadish peroxidase epitope, J Biol Chem 276, 28058-28067.
23. Paschinger, K., Staudacher, E., Stemmer, U., Fabini, G., and Wilson, I. B. (2005) Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates, Glycobiology 15, 463-474.
24. Cooper, C. A., Wilkins, M. R., Williams, K. L., and Packer, N. H. (1999) BOLD - A biological O-linked glycan database, Electrophoresis 20, 3589-3598.
25. Haltiwanger, R. S., and Lowe, J. B. (2004) Role of glycosylation in development, Annu Rev Biochem 73, 491-537.
26. Huet, G., Gouyer, V., Delacour, D., Richet, C., Zanetta, J. P., Delannoy, P., and Degand, P. (2003) Involvement of glycosylation in the intracellular trafficking of glycoproteins in polarized epithelial cells, Biochimie 85, 323-330.
27. Hanisch, F. G. (2001) O-glycosylation of the mucin type, Biol Chem 382, 143-149.
28. Amenta, P. S., Scivoletti, N. A., Newman, M. D., Sciancalepore, J. P., Li, D., and Myers, J. C. (2005) Proteoglycan-collagen XV in human tissues is seen linking banded collagen fibers subjacent to the basement membrane, J Histochem Cytochem 53, 165-176.
29. Huang, Y., Mechref, Y., and Novotny, M. V. (2001) Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis, Anal Chem 73, 6063-6069.
30. Hakomori, S. (2004) Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization, Glycoconj J 21, 125-137.
31. Bucior, I., Scheuring, S., Engel, A., and Burger, M. M. (2004) Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition, J Cell Biol 165, 529-537.
32. Hakomori, S. I. (2000) Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain, Glycoconj J 17, 143-151.
33. Lange, F., Brandt, B., Tiedge, M., Jonas, L., Jeschke, U., Pohland, R., and Walzel, H. (2009) Galectin-1 induced activation of the mitochondrial apoptotic pathway: evidence for a connection between death-receptor and mitochondrial pathways in human Jurkat T lymphocytes, Histochem Cell Biol 132, 211-223.
34. Demetriou, M., Granovsky, M., Quaggin, S., and Dennis, J. W. (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation, Nature 409, 733-739.
35. Daniels, M. A., Hogquist, K. A., and Jameson, S. C. (2002) Sweet 'n' sour: the impact of differential glycosylation on T cell responses, Nat Immunol 3, 903-910.
36. Itzkowitz, S. (1992) Carbohydrate changes in colon carcinoma, APMIS Suppl 27, 173-180.
37. Lopez-Ferrer, A., Barranco, C., and de Bolos, C. (2002) Differences in the O-glycosylation patterns between lung squamous cell carcinoma and adenocarcinoma, Am J Clin Pathol 118, 749-755.
38. Hakomori, S. (1984) Tumor-associated carbohydrate antigens, Annu Rev Immunol 2, 103-126.
39. Hakomori, S. (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives, Cancer Res 45, 2405-2414.
40. Noda, K., Miyoshi, E., Uozumi, N., Yanagidani, S., Ikeda, Y., Gao, C., Suzuki, K., Yoshihara, H., Yoshikawa, K., Kawano, K., Hayashi, N., Hori, M., and Taniguchi, N. (1998) Gene expression of alpha1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein, Hepatology 28, 944-952.
41. Li, D., Mallory, T., and Satomura, S. (2001) AFP-L3: a new generation of tumor marker for hepatocellular carcinoma, Clin Chim Acta 313, 15-19.
42. Li, F., Ten Dam, G. B., Murugan, S., Yamada, S., Hashiguchi, T., Mizumoto, S., Oguri, K., Okayama, M., van Kuppevelt, T. H., and Sugahara, K. (2008) Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells, J Biol Chem 283, 34294-34304.
43. Miyazaki, K., Ohmori, K., Izawa, M., Koike, T., Kumamoto, K., Furukawa, K., Ando, T., Kiso, M., Yamaji, T., Hashimoto, Y., Suzuki, A., Yoshida, A., Takeuchi, M., and Kannagi, R. (2004) Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers, Cancer Res 64, 4498-4505.
44. Hakomori, S. (2002) Glycosylation defining cancer malignancy: new wine in an old bottle, Proc Natl Acad Sci U S A 99, 10231-10233.
45. Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., and Kimura, N. (2004) Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis, Cancer Sci 95, 377-384.
46. Hiraiwa, N., Hiraiwa, M., and Kannagi, R. (1997) Human T-cell leukemia virus-1 encoded Tax protein transactivates alpha 1-->3 fucosyltransferase Fuc-T VII, which synthesizes sialyl Lewis X, a selectin ligand expressed on adult T-cell leukemia cells, Biochem Biophys Res Commun 231, 183-186.
47. Butcher, E. C., Lewinsohn, D., Duijvestijn, A., Bargatze, R., Wu, N., and Jalkanen, S. (1986) Interactions between endothelial cells and leukocytes, J Cell Biochem 30, 121-131.
48. Gout, S., Tremblay, P. L., and Huot, J. (2008) Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis, Clin Exp Metastasis 25, 335-344.
49. Hatakeyama, S., Sugihara, K., Nakayama, J., Akama, T. O., Wong, S. M., Kawashima, H., Zhang, J., Smith, D. F., Ohyama, C., Fukuda, M., and Fukuda, M. N. (2009) Identification of mRNA splicing factors as the endothelial receptor for carbohydrate-dependent lung colonization of cancer cells, Proc Natl Acad Sci U S A 106, 3095-3100.
50. Becker, D. J., and Lowe, J. B. (2003) Fucose: biosynthesis and biological function in mammals, Glycobiology 13, 41R-53R.
51. Miyoshi, E., Moriwaki, K., and Nakagawa, T. (2008) Biological function of fucosylation in cancer biology, J Biochem 143, 725-729.
52. Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., and Parks, W. P. (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors, J Natl Cancer Inst 51, 1417-1423.
53. Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., and Todaro, G. (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells, Int J Cancer 17, 62-70.
54. Tokarski, C., Fillet, M., and Rolando, C. (2011) Improved gel electrophoresis matrix for hydrophobic protein separation and identification, Anal Biochem 410, 98-109.
55. Han, C. L., Chien, C. W., Chen, W. C., Chen, Y. R., Wu, C. P., Li, H., and Chen, Y. J. (2008) A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease, Mol Cell Proteomics 7, 1983-1997.
56. Wilkins, M. (2009) Proteomics data mining, Expert Rev Proteomics 6, 599-603.
57. James, P. (1997) Protein identification in the post-genome era: the rapid rise of proteomics, Q Rev Biophys 30, 279-331.
58. Anderson, N. L., and Anderson, N. G. (1998) Proteome and proteomics: new technologies, new concepts, and new words, Electrophoresis 19, 1853-1861.
59. Blackstock, W. P., and Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins, Trends Biotechnol 17, 121-127.
60. O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins, J Biol Chem 250, 4007-4021.
61. Ueda, K., Fukase, Y., Katagiri, T., Ishikawa, N., Irie, S., Sato, T. A., Ito, H., Nakayama, H., Miyagi, Y., Tsuchiya, E., Kohno, N., Shiwa, M., Nakamura, Y., and Daigo, Y. (2009) Targeted serum glycoproteomics for the discovery of lung cancer-associated glycosylation disorders using lectin-coupled ProteinChip arrays, Proteomics 9, 2182-2192.
62. Wimmerova, M., Mitchell, E., Sanchez, J. F., Gautier, C., and Imberty, A. (2003) Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin, J Biol Chem 278, 27059-27067.
63. Mondal, G., Chatterjee, U., Chawla, Y. K., and Chatterjee, B. P. (2011) Alterations of glycan branching and differential expression of sialic acid on alpha fetoprotein among hepatitis patients, Glycoconj J 28, 1-9.
64. Miyoshi, E., and Nakano, M. (2008) Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures, Proteomics 8, 3257-3262.
65. Kossowska, B., Ferens-Sieczkowska, M., Gancarz, R., Passowicz-Muszynska, E., and Jankowska, R. (2005) Fucosylation of serum glycoproteins in lung cancer patients, Clin Chem Lab Med 43, 361-369.
66. Lucas, H., Bercegeay, S., Le Pendu, J., Jean, M., Mirallie, S., and Barriere, P. (1994) A fucose-containing epitope potentially involved in gamete interaction on the human zona pellucida, Hum Reprod 9, 1532-1538.
67. Luche, S., Santoni, V., and Rabilloud, T. (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis, Proteomics 3, 249-253.
68. Rabilloud, T., Chevallet, M., Luche, S., and Lelong, C. (2008) Fully denaturing two-dimensional electrophoresis of membrane proteins: a critical update, Proteomics 8, 3965-3973.
69. Tastet, C., Charmont, S., Chevallet, M., Luche, S., and Rabilloud, T. (2003) Structure-efficiency relationships of zwitterionic detergents as protein solubilizers in two-dimensional electrophoresis, Proteomics 3, 111-121.
70. Deshusses, J. M., Burgess, J. A., Scherl, A., Wenger, Y., Walter, N., Converset, V., Paesano, S., Corthals, G. L., Hochstrasser, D. F., and Sanchez, J. C. (2003) Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins, Proteomics 3, 1418-1424.
71. Yuan, K., Kucik, D., Singh, R. K., Listinsky, C. M., Listinsky, J. J., and Siegal, G. P. (2008) Alterations in human breast cancer adhesion-motility in response to changes in cell surface glycoproteins displaying alpha-L-fucose moieties, Int J Oncol 32, 797-807.
72. Zhao, Y., Itoh, S., Wang, X., Isaji, T., Miyoshi, E., Kariya, Y., Miyazaki, K., Kawasaki, N., Taniguchi, N., and Gu, J. (2006) Deletion of core fucosylation on alpha3beta1 integrin down-regulates its functions, J Biol Chem 281, 38343-38350.
73. Wang, Q. Y., Zhang, Y., Shen, Z. H., and Chen, H. L. (2008) alpha1,3 fucosyltransferase-VII up-regulates the mRNA of alpha5 integrin and its biological function, J Cell Biochem 104, 2078-2090.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48120-
dc.description.abstract醣修飾的改變在癌症生物學上扮演一個重要的角色,其往往會牽涉到後續的癌細胞進程作用,包括:侵犯、轉移等。在本篇論文研究當中,我們利用超量表現第四型岩藻糖轉酶的肺癌細胞株(A549FucT4)及其對照組細胞株(A549Mock)作為實驗的模式細胞,探討該糖轉酶對於細胞膜蛋白糖修飾的影響。在先前的實驗分析結果中:無論是轉移盤移行分析(transwell migration assay)、細胞貼附試驗(adhesion assay)、明膠酶譜法(zymography)或是觀察細胞株在免疫缺陷型小鼠(SCID mice)體中增殖及轉移的情形皆發現岩藻糖轉酶的表現能賦予細胞更惡性的表現。本研究首先利用基質輔助雷射脫附游離飛行式質譜(MALDI-TOF mass spectrometry)法分析膜蛋白岩藻醣基化修飾的情形:不同於A549Mock細胞株的結果,在A549FucT4的醣譜中明顯地發現有些許特異性的寡醣分子被鑑定出,即證明第四型岩藻糖轉酶的表現會促使細胞表面的醣化修飾發生改變。此外我們利用醣蛋白質體學之方式比較並試圖鑑定出具有差異且高度岩藻糖基化修飾的膜蛋白。從嗜醣蛋白墨點(lectin blot)法、西方墨點(western blot)法以及二維電泳的分析結果皆顯示:A549FucT4細胞株有較多膜蛋白種類發生α-1,3岩藻糖基化修飾的現象。進而利用嗜醣蛋白親和性層析(lectin affinity chromatography)分離並富集化帶有岩藻糖之膜蛋白胜肽,經由液相層析串連電灑游離飛行式質譜儀(LC/ESI-TOF-MS)以及非標記質譜定量分析方法鑑定差異性醣修飾之蛋白質。相關被鑑定出具岩藻糖基化差異之膜蛋白多和細胞貼附有關,例如:一型接觸蛋白(contactin-1)、插入素蛋白(integrin)、細胞黏附分子(cell adhesion molecule)及橋粒芯蛋白(desmoglein)等,些許蛋白也同時具調控細胞訊息傳之功能。藉此結果,我們希望能瞭解到第四型岩藻糖轉酶在各種膜醣蛋白進行修飾時,該群蛋白對於肺癌細胞的影響,zh_TW
dc.description.abstractAberrant glycosylation play a pivotal role in cancer biology. In this study, we employed A549Mock and A549FucT4 cell lines as the models to comprehend the fucosyltransferase IV affecting glycosylation and cancer progression with a focus on cell membrane proteins by comparative glycoproteomic approaches. All previous data, not only in vitro assay but also in vivo animal experiments, demonstrated that A549FucT4 cell line is more malignant than A549Mock and possesses higher capacity of metastasis. The A549FucT4 over-expresses fucosyltransferase IV, which contribute to Lewis glycoepitopes so that carbohydrates attaching to proteins are likely to be highly fucosylated. The entire set of N-glycan was analyzed by MALDI-TOF mass spectrometry. The MS profile of A549FucT4 N-glycan revealed that additional molecular ion was detected, unique carbohydrate structures from mock transfectant. Lectin-based strategy coupling with LC/ESI-MS/MS was adopted for our purpose of identification of the membrane protsins which were decorated with more fucosyl glycoepitopes. The searching results against MASCOT software by MS/MS data revealed assignment of 19 specific proteins in the result of A549FucT4. All identified peptides containing N-X-S/T sequon were quantitatively analyzed by the automated software, IDEAL-Q. Most of the identified proteins are involved in cell adhesion, such as contactin-1, CD166, and integrin-α 3. In addition, some of them are thought to modulate signaling pathway. We anticipate that our finding can facilitate us to understand the role of the fucosylated membrane proteins in lung cancer.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:46:42Z (GMT). No. of bitstreams: 1
ntu-100-R97b46019-1.pdf: 1904336 bytes, checksum: 2885500daf9e15c171b209fd25cb222f (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
致謝……………………………………………………………i
中文摘要……………………………………………………………………………..…ii
Abstract…………………………………………………………….…...………………iv
List of abbreviation…………………………………………………………………….I
CHAPTER 1. INTRODUCTION 1
1.1. Principles 1
1.2. N-linked glycosylation 3
1.3. O-linked glycosylation 6
1.4. Glycoconjugates on cellular surface act as recognition patterns and signal modulators 9
1.5. Aberrant glycosyl epitopes are involved in cancer malignancy 11
1.6. Fucosyltransferase IV and lung carcinoma 15
1.7. Membrane protein and its challenges in the research 19
1.8. Glycoproteomics 21
1.9. The tools for glycoproteomic study 23
1.9.1. Two-dimensional electrophoresis (2-DE) 24
1.9.2. Lectin-carbohydrate recognition based strategies 26
1.9.3. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) 29
1.9.4. Electrospray ionization-mass spectrometry (ESI-MS) 31
1.10. Quantitative mass spectrometry 32
1.11. Purpose of the study 36
CHAPTER 2. MATERIAL AND METHODS 37
2.1. Cell lines and cell culture 37
2.2. Isolation and purification of cell membrane proteins 37
2.3. Bradford assay and BCA assay 39
2.4. RNA preparation and reverse transcription polymerase chain reaction (RT-PCR) 39
2.5. Polymerase chain reaction (PCR) for validation of expression of Fut3, 4, 5 ,7, and 8 in both A549Mock cells and A549FucT4 cells 41
2.6. Flow cytometry 42
2.7. Aleuria aurantia lectin blot 43
2.8. Two-dimensional electrophoresis 43
2.9. Western blot 45
2.10. Deglycosylation of asparagine-linked (N-linked) oligosaccharides 45
2.11. Sep-Pak ® Purification and permethylation of the released glycans 46
2.12. MALDI-TOF MS analyses for permethylated oligosaccharides. 47
2.13. Gel-assisted digestion 48
2.14. AAL affinity chromatography to enrich the glycopeptides 49
2.15. Liquid-chromatography electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) 50
2.16. Database search 51
2.17. Experimental strategy and flowchart 52
CHAPTER 3. RESULTS 54
3.1. Expression of FucT III, IV, and VIII gene in both mock-transfected and fut4-transfected A549 cell lines can be detected by PCR; fut4-transfectant over-expresses the gene of FucT IV. 54
3.2. Combining SDS-PAGE and western blot analysis to verify the efficiency of extraction of membrane protein. 56
3.3. A549FucT4 presents highly fucosylated carbohydrate deteminants on the cell surface. 58
3.4. MALDI-TOF MS profiles of permethylated N-linked released from A549Mock and A549FucT4 membrane proteins. 60
3.5. 2-DE analyses of plasma membrane proteins 62
3.6. LC-ESI-MS/MS analysis to identify proteins extracted from membrane fraction. 64
3.7. Glycosylation sequon for N-linked carbohydrates on identified peptides was investigated. 65
3.8. Differential membrane glycoproteomic profiles in A549Mock and A549FucT4 cancer cell models. 66
CHAPTER 4. DISCUSSION & CONCLUSION 68
4.1. That fut4-transfected A549 over-expresses FucT IV and presents highly fucosyl carbohydrate determinates is likely to be associated with its malignancy. 68
4.2. N-Dodecylmaltoside is the optimal surfactant for membrane proteins applied to 2-DE analyses. 70
4.3. It’s a challenging task to examine protein fucosylation by 2-DE western blot. Lectin-based strategy and LC/ESI-MS/MS were chosen to identified the membrane proteins with differential fucosylation 70
4.4. Role of the identified proteins in cancer progression 71
4.5. Conclusion 76
Reference 77
dc.language.isoen
dc.title利用醣蛋白質體學方式探討第四型岩藻糖轉酶超量表現對肺癌細胞株膜醣蛋白組的改變zh_TW
dc.titleGlycoproteomics approaches that depict differential membrane glycoproteome profiles of fucosyltransferase IV-overexpressed A549 cellen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余忠仁(Chong-Jen Yu),陳玉如(Yu-Ju Chen)
dc.subject.keyword肺癌,膜蛋白,第四型岩藻糖轉&#37238,醣蛋白質體學,非標記質譜定量,zh_TW
dc.subject.keywordlung cancer,membrane proteins,fucosyltransferase IV,glycoproteomics,label-free quantitative mass spectrometry,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved