請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48114完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Jo-Han Huang | en |
| dc.contributor.author | 黃若涵 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:46:33Z | - |
| dc.date.available | 2013-08-10 | |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-17 | |
| dc.identifier.citation | 參考文獻
[1]Flint A., Human physiology. Kessinger Publishing Company; 2007 [2]Campbell, Biology, v.8,Pearson; 2008 [3]Molly M. Stevens, et al, Exploring and Engineering the Cell Surface Interface. Science 310(2005); 1135-1138 [4]Liza J. Raggatt, Nicola C. Partridge, Cellular and Molecular Mechanisms of Bone Remodeling. Journal of biological chemistry 285 (2010) 25103-25108 [5]吳至行, 王自勉. 人體組成學. 易利圖書有限公司. 第一版(2008) 471-473 中廣新聞網 [6]The Burden of Musculoskeletal Diseases in the United State. Bone and Joint Decade 2002-2011. http://boneandjointburden.org/ [7]Ahmed El-Ghannam, Bone Reconstrution:frombioceramics to tissue engineering. Future Drugs Ltd. (2005) 87-101 [8]Cato Laurencin, Yusuf Khan, Saadiq F El-Amin, Bone graft substitutes. Future Drugs Ltd. (2006) 49-57 [9] Langer, R &Vacanti JP, Tissue engineering. Science 260, 920-6; 1993. [10]Bone-graft substitutes in orthopaedic surgery. AAOS Now, January 2008 Issue. http://www.aaos.org/news/aaosnow/jan08/reimbursement2.asp [11]張至宏, 林峰輝, 源源不絕的骨骼銀行—談硬骨組織工程, 科學發展2002年8月, 356期 [12]Pamela GehronRobey, Neal S. Fedarko, Anne-Marie Heegaard. Structure and molecular regulation of bone matrix proteins. Journal of Bone and Mineral Research 8(1993) 483-487. [13] C. Csaki • U. Matis • A. Mobasheri • M. Shakibaei. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. 131(2009) 251-266. [14]Tseng SS, Lee MA, Reddi AH.Nonunions and the potential of stem cells in fracture-healing. J. Bone Joint Surg. Am. 90(2008) 92-98 [15]Marcacci M, Kon E, Moukhachev V. Stem cells associated with macroporousbioceramics for long bone repair:6- to 7-year outcome of a pilot clinical study. Tissue Engineering 344(2007) 947-955 [16]Horwitz EM, Prochop DJ, Fitzpatrich LA, Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesisimperfect. Nat Med. 5(1999) 309-313 [17]Qingpu Hou, P. A. D. B., Kevin M. Shakesheff. Injectable scaffolds for tissue regeneration. J. Mater. chem14 (2004) 1915-1923 [18] Hernandez, R. M., G. Orive, et al.Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62(2010) 711-730 [19] Zhang, J. T., R. Bhat, et al. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5(2009) 488-497 [20] Burdick, J. A. and K. S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering.' Biomaterials 23(2002)315-4323. [21] Stile, R. A. and K. E. Healy, Thermo-responsive peptide-modified hydrogels for tissue regeneration. Biomacromolecules 2 (2001) 185-194. [22] Behravesh, E., K. Zygourakis, et al.Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.' J Biomed Mater Res A 65 (2003) 260-270. [23] Wu, T. J., H. H. Huang, et al. Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 25(2004) 651-658. [24] Hae-won Kim, B.-h. Y., Hyoun-ee Kim, Journal of materials science : material in medicine 16(2005)1105-1109. [25] Shi, X., Y. Wang, et al. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications.' Pharm Res 26(2009) 422-430. [26]B. M. Chesnutt, A.M. Viano, Y.Y., et al. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Journal of Biomedical Materials Research A (2008) 491-502 [27] Huang, Z., P. G. Ren, et al.Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability.Cytokine 51 (2010)305-310. [28] Thawani, J. P., A. C. Wang, et al.Bone Morphogenetic Proteins and Cancer.' Neurosurgery 66 (2010) 233-246. [29] De la Riva, B., E. Sanchez, et al.Local controlled release of VEGF and PDGF from a combined brushite-chitosan system enhances bone regeneration. J Control Release 143(2010)45-52. [30]楊志明, 徐善慧, 組織工程, 九州圖書文物有限公司 (2005) 400-416 [31]Mundargi, R., V. Babu, et al.Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives.' Journal of Controlled Release 125(2008)193-209. [32]Kazushi Ohta, Masanori Kikuchi, Junzo Tanaka, Hiroshi Eda, Synthesis of c axes oriented hydroxyapatite aggregate. Chemistry Letters(2002) 894-895 [33] Shi, Z., X. Huang, et al. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5(2009)338-345. [34] Betsy M. Chesnutt, Y. Y., et al.Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo.Tissue Eng 15 (2009) 2571-2579. [35] Kim, T., J. Yoon, et al. Gas foamed open porous biodegradable polymeric microspheres.' Biomaterials 27(2006)152-159. [36] Carl A. Gregory, W.G.G., Alexandra Peister, Darwin J. Prockop, An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction.analytical biochemistry, 329(2004) 77-84. [37] Declercq, H., et al., Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials, 25(2004) 757-768. [38] Wouter Beertsen, T.v.d.B., Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat. J. Clin. Invest.,89(1992)1974-1980. [39]宋信文, 梁晃千, 建立人類的身體工房—組織工程, 科學發展, 2003年2月, 第362期 [40]M.H. Kang, Y.W. Cho, K. Park,PLGA-PEG block copolymers for drug formulations. Drug Delivery Technology 3(2003) [41]Malaval L, Liu F, Roche P, Aubin JE, Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J. cell biochem. 74(1999) 616-627 [42]Chika Takai, Tadashi Hotta, Shuji Shiozaki, Yaowalak Boonsongrit, Hiroya Abe, Unique porous microspheres with dense core and a porous layer prepared by a novel S/O/W emulsion technique. Chem.Commun., (2009) 5533-5535 [43]Nianxi Yan, Jacob H. Masliyah, Creaming behavior of solids-stabilized oil-in-water emulsions. Ind. Eng. Chem. Res. (1997) 1122-1129 [44]Wenhai Huang, Mohamed N. Rahaman, Delbert E. Day, Brad A. Miller, Strength of hollow hydroxyapatite microspheres prepared by a glass conversion process. J. Mater Sci: Mater Med (2009) 123-129 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48114 | - |
| dc.description.abstract | 骨相關疾病雖不及惡性腫瘤、心血管疾病等列為十大死亡原因之疾病,但卻是在人數與年齡都分布較廣的疾病,其中包括髖關節置換術、脊柱融合術、癌症造成骨損傷、骨折;其治療的方法輕則以鋼板或石膏固定損傷處,嚴重則需開刀進行骨移植手術或以人工代用骨填補損傷處,然而,過去的醫治方法大多無可避免開刀一途,所使用的人工代用骨只能達暫時骨引導和支持的功能,隨著組織工程的發展,許多研究也不斷提出更多改良的材料,欲達到更好的骨修復效果;發展至此,目前遇到的瓶頸包括仿生性高的材料製備使組織工程骨能具備更好促進骨增生及分化的能力、將支架改良成不需以開刀的方式進行骨損傷修補等。
本研究的目的在於使用FDA認可的聚乳酸甘醇酸(PLGA)與人體骨主要的無機成分奈米級氫氧基磷灰石(nano-Hydroxyapatite),以不同比例混合,製備出可注射型微球體支架,作為骨細胞載體,並研究比較PLGA/nano-HA比例對於人類骨母細胞貼附、生長及分化之影響。為達此目的,必須先作出大小適合以注射方式植入的微球體,我們利用兩種多重乳化法(Solid-in-oil-in-water, S/O/W, Water-in-oil-in-water, W/O/W)的方式製備聚乳酸甘醇酸-奈米級氫氧基磷灰石(PLGA-nHA)微球體,其球體直徑分布在50-200微米,由於成骨母細胞大小大約在5-10微米,若直徑小於50微米,細胞貼附情形不好,球體過大會不利注射,故此微球體支架大小適合作為成骨母細胞的載體。另外,我們製備PLGA與n-HA不同比例混合的微球體,觀察其結構的差異以及與細胞培養後,人類成骨母細胞貼附、增生及骨誘導分化的情形。 研究顯示,以S/O/W方法製備的微球體,n-HA會平均分散在整顆實心球體,能使微球體支架性質更加穩定,其中又以1:1重量百分比混合的微球體結構較為完整;固定PLGA濃度與不同比例n-HA混合,發現當添加的n-HA達70%,已超過PLGA能攜帶的比例。為確認不同比例的PLGA/n-HA微球體對成骨細胞貼附、增生及分化的影響,我們將其支架與成骨母細胞混合培養,利用MTS測量細胞活性推算貼附於微球體的細胞數並觀察增生結果;另外,以成骨母細胞分泌的鹼性磷酸酶評估細胞分化的能力。結果證實,n-HA含量愈高,初期貼附細胞數較多,但n-HA在70%時,細胞貼附的穩定性較差,但就成骨母細胞在微球體上增生的情形而言,n-HA的添加有助於增生;而誘導分化時,發現貼附於PLGA-nHA以1:1重量百分比混合的微球體上的細胞,具有鹼性磷酸酶較高的活性表現。 因此藉由本實驗證明以S/O/W製備以聚乳酸甘醇酸/奈米級氫氧基磷灰石微球體適合用於注射的骨修補仿生支架,且n-HA添加的比例以1:1混合對於人類骨母細胞貼附、增生、分化有最佳的影響。 | zh_TW |
| dc.description.abstract | Decades, although bone related diseases are not as serious as malignant tumors and cardiovascular disease, which are listed in the top ten causes of death, they are problems for most people, either children or adults. These bone related diseases include hip replacement, spinal fusion, bone demage caused by cancer, fracture, and so on. The traditional treatment for fracture is cast immobilization, and for severe cases, patients must accept bone transplantation or implantation ofartificialbonesubstitute. However, surgery is inevitable, and the artificial bone substitute can only provide the function of osteo-conduction and temporary support. With the development of tissue engineering, recent studies have proposed many improved materials, and hope to achieve better results. How to make more biocompatible and injectable scaffolds and enhancing osteoblast proliferation and differentiation are the goals of bone tissue engineering.
The aim of this study was to fabricate injectable, different ratio composite microsphere scaffold by FDA-approved PLGA and nano-hydroxyapatite, applied the PLGA/n-HA microspheres to enhancing human osteoblasts’ adhesion, proliferation and differentiation, and figured out which ratio was better for mimicking the microenvironment in human body. To achieve the goals, solid different PLGA/n-HA ratio microspheres were fabricated in solid-in oil-in-water single emulsion method, with a mean size of approximately 50-200μm. This size range was suit for needle injection and human osteoblast adhesion. On the other hand, we also compared the effect of different preparation of microspheres with their morphology, structure and mechanical stress. This study suggested that by single emulsion method, nano-hydroxyapatite would be well-despersed in microspheres, but double emulsion doesn’t, and help stabilize dynamic equilibrium during the formation of microspheres. The PLGA/n-HA-5/5 micorspheres had relatively complete and firm structure. Moreover, when adding nano-hydroxyapatite up to 70%, PLGA failed to completely package all nano-hydroxyapatite. After the fabrication of three types of PLGA/n-HA microspheres, PLGA, 5/5, 3/7, we cocultured microspheres with human osteoblasts, and observed the effect of adding different weight ratio of nano-hydroxyapatite on adhesion, proliferation, and differentiation of human osteoblasts by MTS and alkaline phosphatase assay. Either adhesion or proliferation, PLGA/n-HA-5/5 had the best result comparing PLGA and PLGA/n-HA-3/7, and so did the expression of alkaline phosphatase which an indicator of early osteoblast differentiation. Hence in comparison of two of methods, the PLGA/n-HA biomimicking, injectable microsphere scaffold made in single emulsion is more suitable for bone tissue engineering, and the 50 weight percent of nano-hydroxyapatite is better for adhesion, proliferation ,and differentiation than other ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:46:33Z (GMT). No. of bitstreams: 1 ntu-100-R98548003-1.pdf: 8227201 bytes, checksum: 2e0bccf2f980de4492e4b7f0952ff6d9 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
致謝 ……………………………………………………………………………I 摘要 ………………………………………………………………………………...II Abstract ……………………………………………………………………………….IV 圖目錄 ………………………………………………………………………………..X 第一章 序論 1 1.1 骨組織、骨重塑與骨缺損 1 1.1.1 骨組織 1 1.1.2 骨重塑 3 1.1.3 骨缺損 5 1.2 組織工程 7 1.2.1 硬骨組織工程 9 1.3 細胞 10 1.3.1 成骨細胞在骨組織工程的應用 10 1.3.2 間葉系幹細胞(Mesenchymal stem cell)在骨組織工程的應用 10 1.3.3 成骨細胞分化能力檢測 11 1.4 注射式支架 13 1.5 生長因子 15 1.6 聚乳酸-甘醇酸(PLGA) 16 1.7 氫氧基磷灰石(hydroxyapatite, HA) 19 1.8 聚乳酸甘醇酸/奈米級氫氧基磷灰石(PLGA/n-HA)微球體支架之製備與材料性質分析研究 19 1.8.1 聚乳酸甘醇酸/奈米級氫氧基磷灰石微球體 (PLGA/n-HA microsphere) 19 1.8.2 以化學方析電子儀進行PLGA/n-HA微球體表面元素分析(Electron spectroscopy for chemical analysis, ESCA) 20 第二章 研究概述 21 2.1 研究動機與目的 21 2.2 研究方法簡述 21 第三章 實驗材料與方法 24 3.1 實驗藥品 24 3.2 實驗儀器 25 3.3 成骨母細胞初代培養及誘導分化 26 3.4 大鼠間葉系幹細胞初代培養 29 3.5 製備明膠微球體 30 3.6 以Single emulsion方式製備實心聚乳酸-甘醇酸/奈米級氫氧基磷灰石微球體 31 3.7 以Double emulsion方式製備實心聚乳酸-甘醇酸/奈米級氫氧基磷灰石微球體 32 3.8 製備實心聚乳酸-甘醇酸微球體 33 3.9 電子能量分析儀分析PLGA/n-HA微球體表面(ESCA) 34 3.10 掃描式電子顯微鏡觀測(SEM) 34 3.11 檢測成骨母細胞與間葉系幹細胞之功能性表現 34 3.11.1鹼性磷酸酶定量分析(Alkaline Phosphatase Assay Kit) 34 3.11.2鈣沉積定量分析(Alizarin Red S染鈣法) 34 3.12 成骨細胞培養於聚乳酸-甘醇酸微球體 35 3.13 成骨細胞與間葉系幹細胞共培養於聚乳酸-甘醇酸/奈米氫氧基磷灰石微球體 36 3.14 以MTS檢測細胞在聚乳酸-甘醇酸/奈米氫氧基磷灰石微球體的貼附率 37 3.15 Hoechst 33342染色觀察細胞核 37 3.16 掃描式電子顯微鏡觀察細胞貼附於PLGA/nano-HA微球體表面之形態 37 第四章 結果與討論 39 4.1 成骨母細胞及與間葉系幹細胞共培養於培養盤上及分化結果的觀察 39 4.2 成骨母細胞培養於明膠微球體之情形 43 4.2.1 成骨母細胞在明膠微球體上的貼附情形 43 4.2.2 成骨母細胞在明膠微球體上分化能力測試結果 43 4.3 以多重乳化法製備聚乳酸-甘醇酸/奈米級氫氧基磷灰石微球體(PLGA/n-HA microsphere) 46 4.4 聚乳酸-甘醇酸/n-HA微球體粒徑分布比較 53 4.5 聚乳酸-甘醇酸/n-HA微球體的n-HA包覆率定量分析 54 4.6 利用ESCA分析PLGA/n-HA微球體表面n-HA裸露率 57 4.7 微球體最大承受應力測試 62 4.8 人類成骨母細胞培養於聚乳酸-甘醇酸/n-HA-5/5微球體之情形 63 4.8.1 人類成骨母細胞在聚乳酸-甘醇酸/n-HA微球體貼附之情形 63 4.8.2 人類成骨母細胞在聚乳酸-甘醇酸/n-HA微球體上增生之情形 67 4.8.3 檢測鹼性磷酸酶合成量以評估成骨細胞培養於聚乳酸-甘醇酸/n-HA微球體的分化能力 71 第五章 結論 .........................................................................................................75 參考文獻 .................................................................................................................76 圖目錄 圖1-1 長骨解剖圖及緻密骨組織微觀結構圖 2 圖1-2 骨組織不同層級結構圖 2 圖1-3 骨重塑(bone remodeling)作用 4 圖1-4 組織工程建構技術 8 圖1-5 PGA、PLA及PLGA的化學結構式 17 圖1-6 PGA、PLA和PLGA的性質及應用 17 圖1-7 市面上聚乳酸甘醇酸微球體相關產品 18 圖1-8 三種聚乳酸甘醇酸微球體製備法比較 18 圖1-9 PLGA/n-HA微球體製備示意圖 20 圖2-1 實驗架構流程圖 23 圖4-1 成骨細胞培養於平面培養盤之情形 41 圖4-2 大鼠間葉幹細胞培養於平面培養盤之情形 41 圖4-3 成骨細胞與間葉系幹細胞共培養之分化情形比較 42 圖4-4 成骨細胞培養於明膠微球體之情形 44 圖4-5 成骨細胞培養於明膠微球體誘導培養分化之情形 45 圖4-6 油滴包覆與吸附固體粒子及固-水懸浮介面示意圖 48 圖4-7 不同比例微球體在光學顯微鏡下的觀察 49 圖4-8 不同比例PLGA/n-HA微球體掃描式電子顯微鏡圖 51 圖4-9 PLGA及PLGA/n-HA ratio 3/7微球體掃描式電子顯微鏡對照圖 52 圖4-10 PLGA/n-HA微球體粒徑分布圖 54 圖4-11 聚乳酸-甘醇酸微球體n-HA包覆比例 56 圖4-12 ESCA表面元素能量分析圖 60 圖4-13 微球體表面n-HA裸露比率 61 圖4-14 PLGA/n-HA不同比例之微球體最大承受應力比較圖 62 圖4-15 成骨細胞貼附於聚乳酸-甘醇酸/n-HA微球體之情形 65 圖4-16 成骨母細胞在PLGA/n-HA微球體貼覆率分析 66 圖4-17 成骨母細胞在不同比例微球體上生長曲線圖 69 圖4-18 成骨母細胞在未分化及分化培養液中生長曲線圖 70 圖4-19 成骨細胞貼附於聚乳酸-甘醇酸/n-HA微球體之分化情形 73 圖4-20 成骨細胞於不同比例n-HA含量培養期間的第5、7天之鹼性磷酸酶合成量 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鹼性磷酸酶 | zh_TW |
| dc.subject | 骨組織工程 | zh_TW |
| dc.subject | 多重乳化法 | zh_TW |
| dc.subject | 聚乳酸甘醇酸 | zh_TW |
| dc.subject | 奈米級氫氧基磷灰石 | zh_TW |
| dc.subject | 成骨母細胞 | zh_TW |
| dc.subject | MTS | en |
| dc.subject | alkaline phosphatase | en |
| dc.subject | PLGA/n-HA microsphere | en |
| dc.subject | Single emulsion | en |
| dc.subject | Bone tissue engineering | en |
| dc.subject | osteoblast | en |
| dc.title | 聚乳酸甘醇酸/奈米級氫氧基磷灰石製備之微球體對人類骨母細胞貼附、增生及分化之影響 | zh_TW |
| dc.title | Study of PLGA/nano-hydroxyapatite composite microspheres on human osteoblast selected function | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文,劉得任,黃意真,許馨云 | |
| dc.subject.keyword | 骨組織工程,多重乳化法,聚乳酸甘醇酸,奈米級氫氧基磷灰石,成骨母細胞,鹼性磷酸酶, | zh_TW |
| dc.subject.keyword | Bone tissue engineering,Single emulsion,PLGA/n-HA microsphere,osteoblast,MTS,alkaline phosphatase, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 8.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
