Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48092
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯文哲(Wen-Je Ko),楊偉勛(Wei-Shiung Yang)
dc.contributor.authorHsin-Yuan Fangen
dc.contributor.author方信元zh_TW
dc.date.accessioned2021-06-15T06:46:03Z-
dc.date.available2020-06-23
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-06-23
dc.identifier.citationAdams JM and Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol (2007) 19(5): 488-496.
Alberts B, Wilson JH and Hunt T 'Molecular biology of the cell.' (2008). New York, Garland Science.
Aldington S, Harwood M, Cox B, Weatherall M, Beckert L, Hansell A, et al. Cannabis use and risk of lung cancer: a case-control study. Eur Respir J (2008) 31(2): 280-286.
Ali AS, Ali S, El-Rayes BF, Philip PA and Sarkar FH. Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev (2009) 35(1): 1-8.
Anton-Culver H, Culver BD, Kurosaki T, Osann KE and Lee JB. Incidence of lung cancer by histological type from a population-based registry. Cancer Res (1988) 48(22): 6580-6583.
Aon MA, Cortassa S, Akar FG and O'Rourke B. Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta (2006) 1762(2): 232-240.
Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F and Youle RJ. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J (2003) 22(17): 4385-4399.
Balderson SS and D'Amico TA. Thoracoscopic lobectomy for the management of non-small cell lung cancer. Curr Oncol Rep (2008) 10(4): 283-286.
Barletta JA, Yeap BY and Chirieac LR. Prognostic significance of grading in lung adenocarcinoma. Cancer (2010) 116(3): 659-669.
Bartek J, Bartkova J and Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene (2007) 26(56): 7773-7779.
Bergh J, Jonsson PE, Glimelius B and Nygren P. A systematic overview of chemotherapy effects in breast cancer. Acta Oncol (2001) 40(2-3): 253-281.
Beyer A. Sequence analysis of the AAA protein family. Protein Sci (1997) 6(10): 2043-2058.
Black JD. Protein kinase C-mediated regulation of the cell cycle. Front Biosci (2000) 5: D406-423.
Brambilla E, Travis WD, Colby TV, Corrin B and Shimosato Y. The new World Health Organization classification of lung tumours. Eur Respir J (2001) 18(6): 1059-1068.
Bras M, Yuste VJ, Roue G, Barbier S, Sancho P, Virely C, et al. Drp1 mediates caspase-independent type III cell death in normal and leukemic cells. Mol Cell Biol (2007) 27(20): 7073-7088.
Brownson RC, Alavanja MC, Hock ET and Loy TS. Passive smoking and lung cancer in nonsmoking women. Am J Public Health (1992) 82(11): 1525-1530.
Burton TR, Henson ES, Baijal P, Eisenstat DD and Gibson SB. The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survival under hypoxia. Int J Cancer (2006) 118(7): 1660-1669.
Cande C, Cecconi F, Dessen P and Kroemer G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci (2002) 115(Pt 24): 4727-4734.
Chen D, Chu CY, Chen CY, Yang HC, Chiang YY, Lin TY, et al. Expression of short-form oncostatin M receptor as a decoy receptor in lung adenocarcinomas. J Pathol (2008a) 215(3): 290-299.
Chen H and Chan DC. Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol (2006a) 18(4): 453-459.
Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med (2007) 356(1): 11-20.
Chen JT, Huang CY, Chiang YY, Chen WH, Chiou SH, Chen CY, et al. HGF increases cisplatin resistance via down-regulation of AIF in lung cancer cells. Am J Respir Cell Mol Biol (2008b) 38(5): 559-565.
Chen JT, Lin TS, Chow KC, Huang HH, Chiou SH, Chiang SF, et al. Cigarette smoking induces overexpression of hepatocyte growth factor in type II pneumocytes and lung cancer cells. Am J Respir Cell Mol Biol (2006b) 34(3): 264-273.
Chiang YY. Hepatocyte growth factor induces hypoxia-related interleukin-8 expression in lung adenocarcinoma cells. Mol Carcinog (2009) 48(7): 662-670.
Chiang YY, Chen SL, Hsiao YT, Huang CH, Lin TY, Chiang IP, et al. Nuclear expression of dynamin-related protein 1 in lung adenocarcinomas. Mod Pathol (2009) 22(9): 1139-1150.
Chien AJ, Presland RB and Kuechle MK. Processing of native caspase-14 occurs at an atypical cleavage site in normal epidermal differentiation. Biochem Biophys Res Commun (2002) 296(4): 911-917.
Chook YM and Blobel G. Karyopherins and nuclear import. Curr Opin Struct Biol (2001) 11(6): 703-715.
Chow KC and Ross WE. Topoisomerase-specific drug sensitivity in relation to cell cycle progression. Mol Cell Biol (1987) 7(9): 3119-3123.
Cipolat S, Martins de Brito O, Dal Zilio B and Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A (2004) 101(45): 15927-15932.
Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) (1990) 181(3): 195-213.
Confalonieri F and Duguet M. A 200-amino acid ATPase module in search of a basic function. Bioessays (1995) 17(7): 639-650.
Daniels LJ, Balderson SS, Onaitis MW and D'Amico TA. Thoracoscopic lobectomy: a safe and effective strategy for patients with stage I lung cancer. Ann Thorac Surg (2002) 74(3): 860-864.
Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J (2000) 14(5): 729-739.
Davies V and Votruba M. Focus on molecules: the OPA1 protein. Exp Eye Res (2006) 83(5): 1003-1004.
de Brito OM and Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature (2008) 456(7222): 605-610.
Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol (2007) 9(6): 666-674.
Detterbeck FC, Boffa DJ and Tanoue LT. The new lung cancer staging system. Chest (2009) 136(1): 260-271.
Dimmer KS and Scorrano L. (De)constructing mitochondria: what for? Physiology (Bethesda) (2006) 21: 233-241.
Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU, et al. PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell (1991) 64(3): 499-510.
Ernster L and Schatz G. Mitochondria: a historical review. J Cell Biol (1981) 91(3 Pt 2): 227s-255s.
Ferlay J, Autier P, Boniol M, Heanue M, Colombet M and Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol (2007) 18(3): 581-592.
Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell (2001) 1(4): 515-525.
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell (2006) 126(1): 177-189.
Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A (2001) 98(24): 13784-13789.
Geuijen CA, Bijl N, Smit RC, Cox F, Throsby M, Visser TJ, et al. A proteomic approach to tumour target identification using phage display, affinity purification and mass spectrometry. Eur J Cancer (2005) 41(1): 178-187.
Gires O, Munz M, Schaffrik M, Kieu C, Rauch J, Ahlemann M, et al. Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology. Cell Mol Life Sci (2004) 61(10): 1198-1207.
Gomez-Lazaro M, Bonekamp NA, Galindo MF, Jordan J and Schrader M. 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic Biol Med (2008) 44(11): 1960-1969.
Gozuacik D and Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene (2004) 23(16): 2891-2906.
Graham EA and Singer JJ. Landmark article Oct 28, 1933. Successful removal of an entire lung for carcinoma of the bronchus. By Evarts A. Graham and J. J. Singer. JAMA (1984) 251(2): 257-260.
Griparic L, van der Wel NN, Orozco IJ, Peters PJ and van der Bliek AM. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem (2004) 279(18): 18792-18798.
Hanson PI and Whiteheart SW. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol (2005) 6(7): 519-529.
Hengartner MO. The biochemistry of apoptosis. Nature (2000) 407(6805): 770-776.
Hirai M, Gamou S, Kobayashi M and Shimizu N. Lung cancer cells often express high levels of protein kinase C activity. Jpn J Cancer Res (1989) 80(3): 204-208.
Hirai T and Chida K. Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions. J Biochem (2003) 133(1): 1-7.
Honda S, Aihara T, Hontani M, Okubo K and Hirose S. Mutational analysis of action of mitochondrial fusion factor mitofusin-2. J Cell Sci (2005) 118(Pt 14): 3153-3161.
Hoppins S, Lackner L and Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem (2007) 76: 751-780.
Hotchkiss RS, Strasser A, McDunn JE and Swanson PE. Cell death. N Engl J Med (2009) 361(16): 1570-1583.
Hubstenberger A, Labourdette G, Baudier J and Rousseau D. ATAD 3A and ATAD 3B are distal 1p-located genes differentially expressed in human glioma cell lines and present in vitro anti-oncogenic and chemoresistant properties. Exp Cell Res (2008) 314(15): 2870-2883.
Hung JJ, Chow KC, Wang HW and Wang LS. Expression of dihydrodiol dehydrogenase and resistance to chemotherapy and radiotherapy in adenocarcinoma cells of lung. Anticancer Res (2006) 26(4B): 2949-2955.
Jackowski S. Cell cycle regulation of membrane phospholipid metabolism. J Biol Chem (1996) 271(34): 20219-20222.
Jemal A, Siegel R, Ward E, Hao Y, Xu J and Thun MJ. Cancer statistics, 2009. CA Cancer J Clin (2009) 59(4): 225-249.
Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin (2004) 54(1): 8-29.
Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L, et al. Proapoptotic BID is an ATM effector in the DNA-damage response. Cell (2005) 122(4): 593-603.
Kaplan EL and Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc (1958) 53: 457-481.
Kerr JF, Wyllie AH and Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer (1972) 26(4): 239-257.
Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature (2002) 419(6905): 367-374.
Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol (2007) 8(11): 931-937.
Knott AB, Perkins G, Schwarzenbacher R and Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci (2008) 9(7): 505-518.
Ko YC, Lee CH, Chen MJ, Huang CC, Chang WY, Lin HJ, et al. Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol (1997) 26(1): 24-31.
Kobayashi E, Nakano H, Morimoto M and Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun (1989) 159(2): 548-553.
Koenig U, Sommergruber W and Lippens S. Aberrant expression of caspase-14 in epithelial tumors. Biochem Biophys Res Commun (2005) 335(2): 309-313.
Krajewska M, Kim H, Shin E, Kennedy S, Duffy MJ, Wong YF, et al. Tumor-associated alterations in caspase-14 expression in epithelial malignancies. Clin Cancer Res (2005) 11(15): 5462-5471.
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ (2009) 16(1): 3-11.
Kroemer G and Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer (2005) 5(11): 886-897.
Lardinois D, Suter H, Hakki H, Rousson V, Betticher D and Ris HB. Morbidity, survival, and site of recurrence after mediastinal lymph-node dissection versus systematic sampling after complete resection for non-small cell lung cancer. Ann Thorac Surg (2005) 80(1): 268-274; discussion 274-265.
Le CH, Ko YC, Cheng LS, Lin YC, Lin HJ, Huang MS, et al. The heterogeneity in risk factors of lung cancer and the difference of histologic distribution between genders in Taiwan. Cancer Causes Control (2001) 12(4): 289-300.
Liesa M, Palacin M and Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev (2009) 89(3): 799-845.
Lin HH, Murray M, Cohen T, Colijn C and Ezzati M. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. Lancet (2008) 372(9648): 1473-1483.
Lippens S, Kockx M, Knaapen M, Mortier L, Polakowska R, Verheyen A, et al. Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ (2000) 7(12): 1218-1224.
Lodish HF 'Molecular cell biology.' (2008). New York, W.H. Freeman.
Lorenzo HK and Susin SA. Mitochondrial effectors in caspase-independent cell death. FEBS Lett (2004) 557(1-3): 14-20.
Majno G and Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol (1995) 146(1): 3-15.
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep (1966) 50(3): 163-170.
McKenna RJ, Jr., Mahtabifard A, Pickens A, Kusuanco D and Fuller CB. Fast-tracking after video-assisted thoracoscopic surgery lobectomy, segmentectomy, and pneumonectomy. Ann Thorac Surg (2007) 84(5): 1663-1667; discussion 1667-1668.
Merkwirth C and Langer T. Mitofusin 2 builds a bridge between ER and mitochondria. Cell (2008) 135(7): 1165-1167.
Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem (2001) 276(19): 16391-16398.
Molina JR, Yang P, Cassivi SD, Schild SE and Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc (2008) 83(5): 584-594.
Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem (2003) 278(10): 7743-7746.
Onaitis MW, Petersen RP, Balderson SS, Toloza E, Burfeind WR, Harpole DH, Jr., et al. Thoracoscopic lobectomy is a safe and versatile procedure: experience with 500 consecutive patients. Ann Surg (2006) 244(3): 420-425.
Osaki T, Nagashima A, Yoshimatsu T, Tashima Y and Yasumoto K. Survival and characteristics of lymph node involvement in patients with N1 non-small cell lung cancer. Lung Cancer (2004) 43(2): 151-157.
Osarogiagbon RU, Allen JW, Farooq A, Berry A, Spencer D and O'Brien T. Outcome of surgical resection for pathologic N0 and Nx non-small cell lung cancer. J Thorac Oncol (2010) 5(2): 191-196.
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet (2004) 36(1): 40-45.
Parkin DM, Bray F, Ferlay J and Pisani P. Global cancer statistics, 2002. CA Cancer J Clin (2005) 55(2): 74-108.
Parkin DM, Bray FI and Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer (2001) 37 Suppl 8: S4-66.
Pauk N, Kubik A, Zatloukal P and Krepela E. Lung cancer in women. Lung Cancer (2005) 48(1): 1-9.
Paz-Ares LG, Altug S, Vaury AT, Jaime JC, Russo F and Visseren-Grul C. Treatment rationale and study design for a phase III, double-blind, placebo-controlled study of maintenance pemetrexed plus best supportive care versus best supportive care immediately following induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small cell lung cancer. BMC Cancer (2010) 10: 85.
Petersen RH and Hansen HJ. Learning thoracoscopic lobectomy. Eur J Cardiothorac Surg (2009).
Petersen RP, Pham D, Toloza EM, Burfeind WR, Harpole DH, Jr., Hanish SI, et al. Thoracoscopic lobectomy: a safe and effective strategy for patients receiving induction therapy for non-small cell lung cancer. Ann Thorac Surg (2006) 82(1): 214-218; discussion 219.
Petit PX, Zamzami N, Vayssiere JL, Mignotte B, Kroemer G and Castedo M. Implication of mitochondria in apoptosis. Mol Cell Biochem (1997) 174(1-2): 185-188.
Pfanner N and Geissler A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol (2001) 2(5): 339-349.
Ragnhammar P, Hafstrom L, Nygren P and Glimelius B. A systematic overview of chemotherapy effects in colorectal cancer. Acta Oncol (2001) 40(2-3): 282-308.
Raju TN. The Nobel chronicles. 1953: Hans Adolf Krebs (1900-81) and Fritz Albert Lipmann (1899-1986). Lancet (1999) 353(9164): 1628.
Rocco G, Perrone F, Rossi A and Gridelli C. Surgical Management of Non-small Cell Lung Cancer with Mediastinal Lymphadenopathy. Clin Oncol (R Coll Radiol) (2010).
Rosell R, Moran T, Fernanda Salazar M, Mendez P, De Aguirre I, Ramirez JL, et al. The place of targeted therapies in the management of non-small cell bronchial carcinoma. Molecular markers as predictors of tumor response and survival in lung cancer. Rev Mal Respir (2006) 23(5 Pt 3): 16S131-116S136.
Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol (2010) 28(11): 1835-1842.
Schaefer G, Shao L, Totpal K and Akita RW. Erlotinib directly inhibits HER2 kinase activation and downstream signaling events in intact cells lacking epidermal growth factor receptor expression. Cancer Res (2007) 67(3): 1228-1238.
Schaffrik M, Mack B, Matthias C, Rauch J and Gires O. Molecular characterization of the tumor-associated antigen AAA-TOB3. Cell Mol Life Sci (2006) 63(18): 2162-2174.
Scott WJ, Allen MS, Darling G, Meyers B, Decker PA, Putnam JB, et al. Video-assisted thoracic surgery versus open lobectomy for lung cancer: a secondary analysis of data from the American College of Surgeons Oncology Group Z0030 randomized clinical trial. J Thorac Cardiovasc Surg (2010) 139(4): 976-981; discussion 981-973.
Shiao YJ, Lupo G and Vance JE. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem (1995) 270(19): 11190-11198.
Shields PG. Molecular epidemiology of smoking and lung cancer. Oncogene (2002) 21(45): 6870-6876.
Silvestri GA, Alberg AJ and Ravenel J. The changing epidemiology of lung cancer with a focus on screening. BMJ (2009) 339: b3053.
Slatore CG, Littman AJ, Au DH, Satia JA and White E. Long-term use of supplemental multivitamins, vitamin C, vitamin E, and folate does not reduce the risk of lung cancer. Am J Respir Crit Care Med (2008) 177(5): 524-530.
Sorenson S, Glimelius B and Nygren P. A systematic overview of chemotherapy effects in non-small cell lung cancer. Acta Oncol (2001) 40(2-3): 327-339.
Spira A and Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med (2004) 350(4): 379-392.
Spiro SG and Silvestri GA. One hundred years of lung cancer. Am J Respir Crit Care Med (2005) 172(5): 523-529.
Stabile LP and Siegfried JM. Sex and gender differences in lung cancer. J Gend Specif Med (2003) 6(1): 37-48.
Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev (1998) 78(1): 171-188.
Subramanian J and Govindan R. Lung cancer in never smokers: a review. J Clin Oncol (2007) 25(5): 561-570.
Sun FC, Wei S, Li CW, Chang YS, Chao CC and Lai YK. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J (2006) 396(1): 31-39.
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature (1999) 397(6718): 441-446.
Tavaluc RT, Hart LS, Dicker DT and El-Deiry WS. Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines. Cell Cycle (2007) 6(20): 2554-2562.
Taylor RC, Cullen SP and Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol (2008) 9(3): 231-241.
Toh CK. The changing epidemiology of lung cancer. Methods Mol Biol (2009) 472: 397-411.
Twig G, Hyde B and Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta (2008) 1777(9): 1092-1097.
Van de Craen M, Van Loo G, Pype S, Van Criekinge W, Van den brande I, Molemans F, et al. Identification of a new caspase homologue: caspase-14. Cell Death Differ (1998) 5(10): 838-846.
van Gurp M, Festjens N, van Loo G, Saelens X and Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun (2003) 304(3): 487-497.
Vermeulen K, Van Bockstaele DR and Berneman ZN. Apoptosis: mechanisms and relevance in cancer. Ann Hematol (2005) 84(10): 627-639.
Veronesi G, Bellomi M, Mulshine JL, Pelosi G, Scanagatta P, Paganelli G, et al. Lung cancer screening with low-dose computed tomography: a non-invasive diagnostic protocol for baseline lung nodules. Lung Cancer (2008) 61(3): 340-349.
Wallace DC. Mitochondrial diseases in man and mouse. Science (1999) 283(5407): 1482-1488.
Wang Q, Gao F, May WS, Zhang Y, Flagg T and Deng X. Bcl2 negatively regulates DNA double-strand-break repair through a nonhomologous end-joining pathway. Mol Cell (2008) 29(4): 488-498.
Waterham HR and Cregg JM. Peroxisome biogenesis. Bioessays (1997) 19(1): 57-66.
Weir HK, Thun MJ, Hankey BF, Ries LA, Howe HL, Wingo PA, et al. Annual report to the nation on the status of cancer, 1975-2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst (2003) 95(17): 1276-1299.
West H, Harpole D and Travis W. Histologic considerations for individualized systemic therapy approaches for the management of non-small cell lung cancer. Chest (2009) 136(4): 1112-1118.
Whitson BA, Groth SS, Duval SJ, Swanson SJ and Maddaus MA. Surgery for early-stage non-small cell lung cancer: a systematic review of the video-assisted thoracoscopic surgery versus thoracotomy approaches to lobectomy. Ann Thorac Surg (2008) 86(6): 2008-2016; discussion 2016-2008.
Yang SP, Luh KT, Kuo SH and Lin CC. Chronological observation of epidemiological characteristics of lung cancer in Taiwan with etiological consideration--a 30-year consecutive study. Jpn J Clin Oncol (1984) 14(1): 7-19.
Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A (2008) 105(19): 7070-7075.
Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res (2008) 68(22): 9479-9487.
Yoon Y, Krueger EW, Oswald BJ and McNiven MA. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol (2003) 23(15): 5409-5420.
Youle RJ and Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol (2005) 6(8): 657-663.
Zhang Y and Chan DC. New insights into mitochondrial fusion. FEBS Lett (2007) 581(11): 2168-2173.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48092-
dc.description.abstract肺癌(lung cancer)是一個全球與台灣最常見的惡性疾病,台灣的肺癌死亡比率在四十年來增加近12倍。2009年台灣因肺癌而死亡的病患中,男性與女性皆居第一位,肺癌的盛行率在台灣迅速地增加,增長率大概是全世界最高,男性與女性的比率大致保持在2:1左右。肺癌的組織學型態可分為非小細胞肺癌和小細胞肺癌,非小細胞肺癌包括鱗狀上皮癌、腺癌、大細胞癌等。根據衛生署統計,台灣肺腺癌(lung adenocarcinoma)的數目與比例一直持續在增加中,已經超越鱗狀上皮癌,尤其在女性病患當中。台灣肺腺癌(lung adenocarcinoma)也與國外有所不同,根據國衛院研究發現,台灣肺腺癌病患有達55%具有表皮生長因子受體的基因突變,較國外高出許多,同時台灣肺腺癌病患接受化學治療或標靶治療的臨床反應,預期效果也比國外好。這顯示台灣的肺腺癌的致病機轉與疾病行為,可能與國外有明顯不同,進一步了解肺腺癌細胞的存活、增殖、凋亡、局部侵犯及遠端轉移的機轉,在臨床上就顯得相當重要,藉由這方面的研究,以期進而影響與改善肺腺癌病患的存活率。
細胞凋亡(apoptosis)是細胞死亡方法的一種,對於癌細胞的生長、分化、死亡扮演重要關鍵角色,癌細胞為了增加其存活率,適應生存環境,避免被身體免疫細胞殺死,發展出一套對抗細胞凋亡的方法,避免細胞死亡。在真核細胞生物中,粒線體(mitochondria)是細胞內供應能量及調控細胞生死的重要胞器,細胞凋亡發生時,粒線體藉由釋放凋亡誘導因子(apoptosis induced factor; AIF)與細胞色素C (cytochrome C; cyt C)進入細胞質與細胞核,分解細胞核內去氧核糖核酸 (deoxyribonucleic acid; DNA),使細胞走向凋亡一途。因此癌細胞發展出一套穩定粒線體的方法,在環境不良的情況下,預防細胞凋亡的產生,使癌細胞能存活下來。根據我們之前的研究與文獻回顧顯示,凋亡誘導因子蛋白在肺腺癌細胞凋亡中,扮演相當重要的關鍵角色。
腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATPase family, AAA domain containing 3A; ATAD3A)屬於AAA家族,具有腺嘌呤核苷三磷酸酶(adenosine triphosphatase; ATP)活性,分布在內質網(endoplasmic reticulum; ER)與粒線體(mitochondria)膜狀部上,與促使粒線體分裂相關蛋白1 (dynamin-related protein 1; DRP1)、粒線體融合蛋白2 (mitofusin-2)、第一型視神經萎縮蛋白(optic atrophy type 1; OPA1)一起將凋亡誘導因子(AIF)從內質網,形成運輸小泡,再將凋亡誘導因子(AIF)運輸到粒線體中,這些蛋白與粒線體的分裂,融合與運輸有關,腺嘌呤核苷三磷酸酶家族AAA區域包含3A同時可穩定粒線體,避免凋亡因誘導子與細胞色素C釋放到細胞質中,進而避免細胞凋亡。第一型視神經萎縮蛋白為Dynamin家族成員之一,是參與粒線體融合的重要蛋白;也與粒線體依賴的細胞凋亡機制有關。半胱氨酸蛋白酶14(caspase-14; casp-14)屬於半胱氨酸蛋白酶家族成員之ㄧ,分布在細胞質與細胞核中,並不在粒線體內,在蛋白質交互作用分析中顯示,半胱氨酸蛋白酶14會與凋亡誘導因子(AIF)產生交互作用,一但凋亡誘導因子(AIF)從粒線體中被釋放出來,半胱氨酸蛋白酶14會與凋亡誘導因子(AIF)結合,抑制凋亡誘導因子的(AIF)活性,進而避免細胞凋亡,使細胞存活下來。由以上現象,我們推測腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A),第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)都會影響凋亡誘導因子在粒線體與細胞質的活性與表現,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)與第一型視神經萎縮蛋白(OPA1)並在粒線體生理功能調控上也佔有重要的地位,這三種蛋白皆與肺腺癌細胞的凋亡,存在明顯相關。
本研究主要探討項目包括:腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A),第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)如何參與肺腺癌細胞的凋亡、其所在細胞內分布位置、與粒線體及凋亡誘導因子(AIF)的關係,如何磷酸化與作用、改變細胞內包器形態、運輸方式,影響細胞對化學治療藥物以及與肺腺癌病患臨床預後之間的相關。本研究以肺腺癌細胞株與肺腺癌病患手術後肺部組織檢體為材料,我們利用逆轉錄聚合酶連鎖反應方法偵測訊息核糖核酸(messenger RNA; mRNA)在肺腺癌細胞與組織檢體的表現,進一步利用蛋白表現系統,生產重組蛋白來製備抗體,再利用西方墨點法偵測蛋白在肺腺癌細胞株及病患檢體中的表現,以細胞免疫螢光染色與組織免疫染色觀察,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)在細胞分布的主要位置為粒線體與內質網,第一型視神經萎縮蛋白(OPA1)為粒線體,半胱氨酸蛋白酶14(casp-14)在細胞分布的位置為細胞質與細胞核,並用電子顯微鏡觀察粒線體與內質網型態,與腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)表現量有關的變化,同時證明腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)與半胱氨酸蛋白酶14(casp-14)表現量與病患臨床上的預後有明顯相關。再利用短干擾核糖核酸(small interfering RNA; siRNA)將腺嘌呤核苷三磷酸酶家族AAA區域包含3A(ATAD3A)與半胱氨酸蛋白酶14(casp-14)的表現降低,會影響肺腺癌細胞在順鉑(cisplatin)中的耐受度,進而推估與臨床化學治療的抗藥性有關,本實驗更證明腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)有磷酸化的情形,與其蛋白穩定度及功能有關。同時發現,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)會與粒腺體相關蛋白粒線體分裂相關蛋白1(mitofusin-1),粒線體融合蛋白2(mitofusin-2)、第一型視神經萎縮蛋白(OPA1)與產生交互作用。
綜合以上結果顯示,本研究證明腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)為肺腺癌中新的抗凋亡因子,並與臨床預後有高度相關,希望經由此發現,進一步能影響肺腺癌的臨床判斷,改進治療效果,增進肺腺癌病患預後。
zh_TW
dc.description.abstractLung cancer is one of the most frequent malignant disease in Taiwan as well as in the world. The mortality of lung cancer in Taiwan increases nearly 12 times within recent 40 years. In 2009, lung cancer occupied the first position of cancer death in both male and female in Taiwan. The incidence rate of lung cancer in Taiwan is increasing rapidly and probably is the highest in the world. The male and female ratio in lung cancer maintains approximately about 2:1.The histological type of lung cancer can be divided into the small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) which includes squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. According to the annual statistical report of Department of Health in Taiwan, the number of lung adenocarcinoma continuously increases and has already surmounted the number of squamous cell carcinoma, especially in female. The behavior of lung adenocarcinoma in Taiwan is different from that in other countries. According to the studies from National Health Research Institutes in Taiwan, the mutation rate in epidermis growth factor receptor gene in lung adenocarcinoma patients is 55%, much higher than the rate in western countries. The clinical response rates of chemotherapy and target therapy in lung adenocarcinoma are also different. These evidences demonstrate that the clinical behavior of lung adenocarcinoma in Taiwan is obviously different from that in western countries. To investigate the mechanism of survival, proliferation, apoptosis, local invasion, and distant metastases in lung adenocarcinoma cells becomes quite important. By doing the research, we hope we can help lung adenocarcinoma patients and improve their survival rate.
Apoptosis is one of the cell death methods. It plays an important part in cellular growth, differentiation, and the death in cancer cells. In order to increase the survival rate, adapt to the micro-environment, prevent being killed by immunological cells, cancer cells develop many anti-apoptosis methods to prevent apoptosis. Mitochondrion is an important organelle for energy supply and also determines the cells to die or live. When the cell apoptosis is induced by mitochondrial pathway, the apoptosis induced factor (AIF) and cytochrome C are released to cytoplasm and nucleus from the inner membrane of mitochondria. AIF and cytochrome C will dissect the deoxyribonucleic acid in the nuclease with other associated enzymes which cause the cell to die. Therefore the cancer cells develop a method for stabilizing the mitochondria to prevent the apoptosis exposing to worse environment. This makes the cancer cells to survive. According to our previous research and literature review, AIF acts quite an important key role in the apoptosis of lung adenocarcinoma cells.
The ATPase family, AAA domain containing 3A (ATAD3A) protein belongs to AAA family. It contains the enzyme activity of adenosine triphosphatase. ATAD3A in cells distributes over endoplasmic reticulum and membrane portion of mitochondria. It is transported from endoplasmic reticulum to mitochondria through small vesicles which associate with dynamin-related protein 1 (DRP1), mitofusin-2, and optic atrophy type 1(OPA1). These proteins associate with mitochondrial fusion and fission. We consider that ATAD3A prevents cellular apoptosis through stabling mitochondria and stopping the release of AIF and cytochrome C. OPA1 is one of dynamin families protein involved in mitochondrial fusion. It also associates with cellular apoptosis via mitochondria through caspase dependent pathway. Caspase-14 belongs to the cysteine protease family members. It correlates with the epithelial cell differentiation. However, it is still not so clear in apoptosis pathway. In cells, caspase-14 is distributed in cytoplasm and nucleus, not in mitochondria. From the analysis of protein interaction, we know that caspase-14 interacts with AIF in cytoplasm when AIF released from mitochondria. Caspase-14 combines with AIF and blocks its function. It might stop the process of apoptosis through caspase independent pathway. By veiwing above phenomenon, we consider that ATAD3A, OPA1 and caspase-14 affect the activity of AIF and cytochrome C in cytoplasm and mitochondria. Moreover, ATAD3A is the key factor in controlling mitochondrial morphology and stability with other associated proteins. In this research, we focus on several parts as follows: (1) ATAD3A, OPA1 and caspase-14 involving the cellular apoptosis; (2) the distribution and location of ATAD3A, OPA1 and caspase-14 in cells; (3) the function and phosphorylation of these proteins; (4) the change of mitochondria and organelle morphology by ATAD3A, OPA1 and caspase-14; (5) the suppression of these proteins activity in cells affecting the response to chemotherapy; and (6) the association in the expression of these proteins and clinical outcome in lung adenocarcinoma patients.
In this research, we used lung adenocarcinoma cell lines and lung tissues after surgical resection. The messenger RNA expression in lung adenocarcinoma cells and tissue were detected by reverse transcription polymerase chain reaction method. We also prepared the monoclonal antibodies of ATAD3A, OPA1 and caspase-14 from mice. Using Western blotting, the protein expression of ATAD3A, OPA1 and caspase-14 were detected in lung adenocarcinoma cells and tissue. Confocal microscope and immunohistochemistry were used to localizate the position of ATAD3A, OPA1 and caspase-14 inside lung adenocarcinoma cells. We found the expression of ATAD3A in cells were in endoplasmic reticulum and mitochondria. The OPA1 was in the inner membrane of mitochondria. The caspase-14 was in cytoplasm and nucleus. Using electric microscope, we observed the morphologic change in endoplasmic reticulum and mitochondria after knocking down the ATAD3A and OPA1 expression. Clinically, the high expression of ATAD3A, OPA1 and caspase-14 in tumor tissue is related to local invasion and poor outcome. We used the small interfering RNA to decrease the expression of these proteins in cancer cells and examined the growth rate of lung adenocarcinoma cells with cisplatin. Moreover, we found that phosphorylation of ATAD3A, OPA1 and caspase-14 improved stability and function. Finally, we found the interaction among ATAD3A, mitofusion 1, mitofusion 2, AIF, caspase-14 and OPA1.
In conclusion, this research evidences ATAD3A, OPA1 and caspase-14 as new anti-apoptosis factors in lung adenocarcinoma. They have high correlation with the clinical prognosis. By these discoveries, we believed that they can affect and improve the clinical outcome and prognosis in lung adenocarcinoma in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:46:03Z (GMT). No. of bitstreams: 1
ntu-100-D93421104-1.pdf: 6123680 bytes, checksum: bdfb2d05b1abd742ee265fbc161561be (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 2
英文摘要 5
目錄 9
博士論文正文 18
緒論
一、 肺癌 Lung cancer 19
二、 肺腺癌 Lung adenocarcinoma 20
三、 肺腺癌臨床表現 Clinical presentation in lung adenocarcinoma 22
四、 肺癌分期 Clinical staging of the lung cancer 22
五、 肺腺癌的治療 Multidisciplinary management of lung adenocarcinoma 24
六、 肺腺癌分子生物研究 Molecular biology research in lung adenocarcinoma 28
七、 細胞凋亡 Apoptosis 29
八、 粒線體 Mitochondria 32
九、 粒線體的分裂與融合 Mitochondrial fission and fusion 33
十、 內質網Endoplasmic retinaculum (ER) 34
十一、 凋亡誘導因子Apoptosis induced factor (AIF) 35
十二、 腺嘌呤核苷三磷酸酶家族 ATPase family 36
十三、 腺嘌呤核苷三磷酸酶家族 AAA區域包含3A ATPase family, AAA domain containing 3A (ATAD3A) 37
十四、 第一型視神經萎縮蛋白Optic atrophy type 1 (OPA1) 39
十五、 半胱氨酸蛋白酶家族Caspase family 40
十六、 半胱氨酸蛋白酶14 Caspase-14 (Casp-14) 41
十七、 研究目的 44
研究方法與材料
一、 肺癌病患檢體 Patient samples 46
二、 肺腺癌細胞株 Lung adenocarcinoma cell lines 46
三、 萃取核醣核酸 RNA extraction 47
四、 反轉錄聚合酶連鎖反應 Reverse-transcription polymerase chain reaction (RT-PCR) 47
五、 洋菜凝膠電泳 Agarose gel electrophoresis 48
六、 聚丙烯醯胺凝膠電泳Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 49
七、 西方墨點法 Western blotting analysis 50
八、 免疫細胞化學染色 Immunocytochemistry 50
九、 免疫組織化學染色 Immunohistochemistry 51
十、 免疫沉澱法 Immunoprecipitation 51
十一、 免疫螢光染色 Immunofluorescence staining 52
十二、 血清飢餓 Serum starvation 52
十三、 雙胸腺嘧啶阻斷法 Double thymidine block 53
十四、 蛋白質激酶抑制劑處理 Protein kinase inhibitors treatment 53
十五、 細胞毒性測試 Cytotoxicity assay 53
十六、 短干擾核糖核酸進行基因減弱 Small interfering RNA(siRNA) gene knockdown 54
十七、 電子顯微鏡影像 Electronic microscopy 54
十八、 統計分析 Statistics analysis 55
結果:
一、 肺腺癌病患臨床資料Clinical data of lung adenocarcinoma patients 56
二、 肺腺癌細胞株中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)反轉錄聚合酶連鎖反應分析Expression of ATAD3A, OPA1 and casp-14 in lung adenocarcinoma cell using RT-PCR 56
三、 肺腺癌病患檢體中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)反轉錄聚合酶連鎖反應分析Expression of ATAD3A and casp-14 in lung adenocarcinoma tissue using RT-PCR 57
四、 免疫墨點法分析凋亡誘導因子(AIF)、腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、粒線體分裂相關蛋白1(DRP1)與第一型視神經萎縮蛋白(OPA1)在細胞內分布位置 Distribution of AIF, ATAD3A, DRP1 and OPA1 in subcellular structure by Western blotting 57
五、 半胱氨酸蛋白酶14(casp-14)單株抗體的特性描述Character of casp-14 monoclone antibody 58
六、 肺腺癌細胞株免疫細胞染色影像分析Immunostaing in lung adenocarcinoma cell 59
七、 肺腺癌細胞株共軛焦雷射掃描顯微鏡影像分析Confocal microscopy in lung adenocarcinoma cell 59
八、 肺腺癌病患檢體中ATAD3A、第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)的表現The expression of ATAD3A, OPA1 and casp-14 in lung adenocarcinoma tissue using Western blotting 60
九、 肺腺癌病患檢體中ATAD3D、第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)的免疫組織化學染色The expression of ATAD3A, OPA1 and casp-14 in lung adenocarcinoma tissue using immunochemical staining 60
十、 肺腺癌病患腫瘤組織中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的表現與否與臨床相關Correlation of ATAD3A expression with clinicopathological parameters in patients with lung adenocarcinoma 61
十一、 肺腺癌病患腫瘤組織中第一型視神經萎縮蛋白(OPA1)蛋白的表現與否與臨床相關Correlation of OPA1 expression with clinicopathological parameters in patients with lung adenocarcinoma 63
十二、 肺腺癌病患腫瘤組織中半胱氨酸蛋白酶14(casp-14)的表現與否與臨床相關Correlation of casp-14 expression with clinicopathological parameters in patients with lung adenocarcinoma 64
十三、 Kaplan-Meier存活分析Kaplan-Meier survival analysis 65
十四、 肺腺癌細胞株中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)轉譯後修飾與磷酸化Expression of ATAD3A, post-translational modification and phosphorylation in lung adenocarcinoma cell 66
十五、 肺腺癌細胞株中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)在細胞週期中的表現ATAD3A expression in different phases of cell cycle progression in lung adenocarcinoma cell 67
十六、 血清濃度對肺腺癌細胞株中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)表現的影響Serum effect on ATAD3A expression in lung adenocarcinoma cell 68
十七、 肺腺癌細胞株中第一型視神經萎縮蛋白(OPA1)的表現與磷酸化 Expression and phosphorylation of OPA1 in lung adenocarcinoma cell 69
十八、 肺腺癌細胞株中半胱氨酸蛋白酶14(casp-14)蛋白的表現與磷酸化 Expression and phosphorylation of caspase-14 in lung adenocarcinoma cell 69
十九、 肺腺癌細胞株對血清與順鉑(cisplatin)耐受性的影響Serum starvation and cisplatin cytotoxicity in lung adenocarcinoma cell 70
二十、 降低腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)表現的肺腺癌細胞株共軛焦雷射掃描顯微鏡影像分析Confocal microscopy in silence ATAD3A lung adenocarcinoma cell 71
二十一、 降低第一型視神經萎縮蛋白第一型視神經萎縮蛋白(OPA1)表現的肺腺癌細胞株共軛焦雷射掃描顯微鏡影像分析Confocal microscopy in silence OPA1 lung adenocarcinoma cell 72
二十二、 降低腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、粒線體分裂相關蛋白1 (DRP1) 與第一型視神經萎縮蛋白(OPA1)表現的肺腺癌細胞株的電子顯微鏡影像分析Function of ATAD3Akd , DRP1kd and OPA1kd in organelle morphology by an electron microscopy 73
二十三、 免疫沉澱法分析腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、半胱氨酸蛋白酶14(casp-14)、粒線體融合蛋白-2(Mfn-2)、第一型視神經萎縮蛋白(OPA1)、和凋亡誘導因子(AIF) 的交互作用Interaction betwen ATAD3A, casp-14, Mfn-2, OPA1 and AIF by immunoprecipitation 73
二十四、 麩胺基硫S-轉移脢(GST)沉澱法Glutathione S-transferase pull down assay 74
討論:
一、 腫瘤組織表現腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)與肺腺癌病患的臨床關係 76
二、 肺腺癌細胞株中表現的腺嘌呤核苷三磷酸酶家族AAA區域蛋白(ATAD3)種類 77
三、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)在肺腺癌細胞內表現的位置 78
四、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)在肺腺癌細胞內的磷酸化與調控 80
五、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)對細胞週期與血清饑餓測試的影響 81
六、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)影響粒線體的型態 82
七、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、粒線體融合蛋白2(Mfn2)、粒線體分裂相關蛋白1 (DRP1)與影響內質網與粒線體的運輸 83
八、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)對肺腺癌細胞抗藥性的影響 84
九、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)與其他蛋白的交互作用 84
十、 腫瘤組織表現第一型視神經萎縮蛋白(OPA1)與肺腺癌病患的臨床關係 85
十一、 第一型視神經萎縮蛋白(OPA1)在肺腺癌細胞內表現的位置 86
十二、 第一型視神經萎縮蛋白(OPA1)在肺腺癌細胞內的磷酸化與調控 87
十三、 第一型視神經萎縮蛋白(OPA1)影響粒線體的型態與細胞週期調控 88
十四、 第一型視神經萎縮蛋白(OPA1)對肺腺癌細胞抗藥性的影響 89
十五、 第一型視神經萎縮蛋白(OPA1)經細胞色素C(cyt C)影響半胱氨酸蛋白酶凋亡途徑(caspase-dependent apoptosis pathway) 90
十六、 腫瘤組織表現半胱氨酸蛋白酶14(casp-14),與肺腺癌病患的臨床關係 91
十七、 半胱氨酸蛋白酶14(casp-14)在肺腺癌細胞內表現的位置 92
十八、 半胱氨酸蛋白酶14(casp-14)在肺腺癌細胞內的磷酸化與調控 93
十九、 半胱氨酸蛋白酶14(casp-14)和凋亡誘導因子(AIF)之間有交互作用 93
二十、 半胱氨酸蛋白酶14(casp-14)經凋亡誘導因子(AIF)影響無半胱氨酸蛋白酶凋亡途徑(caspase-independent apoptosis pathway)與細胞的抗藥性 94
展望:
一、 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)、第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14(casp-14)為新發現的肺腺癌的抗凋亡因子 96
二、 臨床上如何準確的預測肺腺癌的預後 97
三、 預測肺腺癌的化學與標靶藥物治療反應 98
四、 早期肺腺癌術後追蹤方式的改變 99
五、 新的肺癌篩檢工具 100
六、 分子生物學如何預測肺腺癌的預後 101
七、 分子生物學預測肺腺癌的預後的準確性 101
八、 肺腺癌癌細胞如何對抗細胞凋亡 102
九、 更了解肺腺癌細胞生存方式 103
十、 個人化醫療提升肺腺癌病患的存活率 103
十一、 肺腺癌治療成效大躍進 104
論文英文簡述(summary):
Introduction 106
一、 Expression of ATAD3A, OPA1 and casp-14 in lung adenocarcinoma cells determined by RT-PCR 112
二、 Expression and subcellular distribution of ATAD3A, OPA1 and casp-14 in lung adenocarcinoma cells 114
三、 Pathological expression of ATAD3A, OPA1 and casp-14 in lung adenocarcinomas 116
四、 ATAD3A in lung adenocarcinoma cells is phosphorylated by protein kinase C (PKC), and phosphorylation is essential for ATAD3A stability 120
五、 Biosynthesis of ATAD3A increases during S phase of cell cycle progression or under serum starvation 122
六、 Silencing of ATAD3A expression increases drug sensitivity, mitochondrial fragmentation, and reduces communication between endoplasmic reticulum and mitochondria 123
七、 OPA1 in lung adenocarcinoma cells is phosphorylated by PKC, and phosphorylation is essential for maintaining OPA1 stability 125
八、 Increased casp-14 expression reduces cisplatin sensitivity, possibly via interaction with AIF 126
Discussions 127
Conclusions 136
參考文獻: 138
圖表:
表一 細胞內蛋白與 凋亡誘導因子(AIF)的交互作用 153
表二 肺腺癌病患中,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)表現與否與臨床因子的相關 154
表三 肺腺癌病患中,第一型視神經萎縮蛋白(OPA1)表現與否與臨床因子的相關 155
表四 肺腺癌病患中,半胱氨酸蛋白酶14(casp-14)表現與否與臨床因子的相關 157
表五 微陣列基因分析血清飢餓測試中,H23細胞關於轉移、複製、細胞激素、生長因子、轉譯因子的表現 158
圖一 肺腺癌細胞株中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A) mRNA的表現 160
圖二 肺腺癌細胞株中第一型視神經萎縮蛋白(OPA1) mRNA的表現 161
圖三 肺腺癌細胞株中半胱氨酸蛋白酶14(casp-14) mRNA的表現 162
圖四 肺腺癌病患組織中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A) mRNA的表現 163
圖五 凋亡誘導因子(AIF)、腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)與粒線體分裂相關蛋白1 (DRP1)在細胞內分布位置 164
圖六 第一型視神經萎縮蛋白(OPA1)在細胞內分布位置 165
圖七 半胱氨酸蛋白酶14(casp-14)單株抗體的特性描述 166
圖八 半胱氨酸蛋白酶14(casp-14)在細胞質與細胞核分布比例 167
圖九 肺腺癌細胞中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的免疫細胞染色 168
圖十 肺腺癌細胞中第一型視神經萎縮蛋白(OPA1)的免疫細胞染色 169
圖十一 肺腺癌細胞中半胱氨酸蛋白酶14(casp-14)的免疫細胞染色 170
圖十二 肺腺癌細胞中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的共軛焦雷射掃描顯微鏡影像 171
圖十三 肺腺癌細胞中第一型視神經萎縮蛋白(OPA1)的共軛焦雷射掃描顯微鏡影像 172
圖十四 肺腺癌細胞中半胱氨酸蛋白酶14(casp-14)的共軛焦雷射掃描顯微鏡影像 173
圖十五 半胱氨酸蛋白酶14(casp-14)在肺腺癌細胞內分布的位置 174
圖十六 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)蛋白在肺腺癌病患檢體中的表現 175
圖十七 第一型視神經萎縮蛋白(OPA1)在肺腺癌病患檢體中的表現 176
圖十八 半胱氨酸蛋白酶14(casp-14)肺腺癌病患檢體中的表現 177
圖十九 肺腺癌病患組織的腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)免疫組織染色 178
圖二十 肺腺癌病患組織的第一型視神經萎縮蛋白(OPA1)免疫組織染色 179
圖二十一 肺腺癌病患組織的半胱氨酸蛋白酶14(casp-14)免疫組織染色 180
圖二十二 肺腺癌病患腫瘤組織表現腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的存活分析 181
圖二十三 肺腺癌患腫瘤組織表現第一型視神經萎縮蛋白(OPA1)的存活分析 182
圖二十四 第一期肺腺癌患腫瘤組織表現第一型視神經萎縮蛋白(OPA1)的存活分析 183
圖二十五 肺腺癌病患腫瘤組織表現半胱氨酸蛋白酶14(casp-14)的存活分析 184
圖二十六 肺腺癌病患腫瘤細胞中,細胞核與細胞質是否表現半胱氨酸蛋白酶14(casp-14)的存活分析 185
圖二十七 在肺腺癌細胞株中,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)有轉譯後修飾發生 186
圖二十八 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)在細胞株與病患檢體表現差異 187
圖二十九 在肺腺癌細胞株中,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的磷酸化 188
圖三十 蛋白激酶C可抑制腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的磷酸化 189
圖三十一 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的穩定需磷酸化 190
圖三十二 Calphostin C濃度與腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的磷酸化與穩定 191
圖三十三 蛋白激活酶C與腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)表現 192
圖三十四 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)在細胞週期中的表現 193
圖三十五 在血清飢餓測試中對腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)表現的影響 194
圖三十六 在肺腺癌細胞株中,第一型視神經萎縮蛋白(OPA1)的表現 195
圖三十七 肺腺癌細胞株中第一型視神經萎縮蛋白(OPA1)表現與轉譯後修飾發生 196
圖三十八 蛋白激酶C可抑制第一型視神經萎縮蛋白(OPA1)的磷酸化 197
圖三十九 尼古丁(nicotine)誘發第一型視神經萎縮蛋白(OPA1)的磷酸化 198
圖四十 半胱氨酸蛋白酶14(casp-14)在細胞株中的表現 199
圖四十一 牛小腸鹼性磷酸酶與半胱氨酸蛋白酶14(casp-14)表現 200
圖四十二 血清飢餓測試中,肺腺癌細胞對cisplatin的耐受性增加 201
圖四十三 肺腺癌中腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的表現,與cisplatin耐受性相關 202
圖四十四 增加肺腺癌中第一型視神經萎縮蛋白(OPA1)的表現,增加對cisplatin的耐受性 203
圖四十五 肺腺癌中減少第一型視神經萎縮蛋白(OPA1)的表現,減少cisplatin的耐受性 204
圖四十六 肺腺癌細胞中增加半胱氨酸蛋白酶14(casp-14)的表現,cisplatin的耐受性增加 205
圖四十七 肺腺癌中半胱氨酸蛋白酶14(casp-14)的表現,與cisplatin耐受性相關 206
圖四十八 肺腺癌細胞中,降低腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)的表現,對粒線體影響 207
圖四十九 肺腺癌細胞中,降低腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)與粒線體分裂相關蛋白1(DRP1)的表現,改變內質網與粒線體型態與分布情形 208
圖五十 降低第一型視神經萎縮蛋白(OPA1)的表現,會增加細胞質中的細胞色素C(cyt C) 209
圖五十一 降低第一型視神經萎縮蛋白(OPA1)的表現後,細胞質中凋亡誘導因子增加 210
圖五十二 第一型視神經萎縮蛋白(OPA1)增加半胱氨酸蛋白酶-3(casp-3)活化與分解poly (ADP-ribose) polymerase (PARP) 211
圖五十三 電子顯微鏡影像顯示,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)和粒線體分裂相關蛋白1(DRP1)在細胞胞器形態的變化 212
圖五十四 電子顯微鏡影像顯示降低粒線體融合蛋白2 (Mfn-2)細胞形態的變化 213
圖五十五 電子顯微鏡影像顯示,降低第一型視神經萎縮蛋白(OPA1)的表現,粒線體胞器形態的變化 214
圖五十六 免疫沉澱法顯示,腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)與粒線體融合蛋白2 (Mfn-2)的交互作用 215
圖五十七 腺嘌呤核苷三磷酸酶家族AAA區域包含3A蛋白(ATAD3A)和粒線體融合蛋白2 (Mfn-2)、第一型視神經萎縮蛋白(OPA1)、凋亡誘導因子(AIF)的交互作用 216
圖五十八 免疫沉澱法顯示,半胱氨酸蛋白酶14(casp-14)和凋亡誘導因子(AIF)之間的交互作用 217
圖五十九 麩胺基硫S-轉移脢沉澱法,觀察半胱氨酸蛋白酶14(casp-14)和凋亡誘導因子(AIF)之間的交互作用 218
圖六十 第一型視神經萎縮蛋白(OPA1)與半胱氨酸蛋白酶14 (casp-14),在肺腺癌細胞中抗凋亡作用機轉的示意圖 219
附錄:
修業期間發表之相關論文 220
dc.language.isozh-TW
dc.subject肺腺癌zh_TW
dc.subject肺癌zh_TW
dc.subject半胱氨酸蛋白&#37238zh_TW
dc.subject第一型視神經萎縮蛋白zh_TW
dc.subject家族AAA區域包含3A蛋白zh_TW
dc.subject三磷酸&#37238zh_TW
dc.subject腺嘌呤核&#33527zh_TW
dc.subject粒腺體zh_TW
dc.subject細胞凋亡zh_TW
dc.subjectLung canceren
dc.subjectCaspase-14en
dc.subjectOPA1en
dc.subjectATAD3Aen
dc.subjectMitochondriaen
dc.subjectApoptosisen
dc.subjectLung adenocarcinomaen
dc.title肺腺癌中新抗凋亡因子的表現與臨床預後zh_TW
dc.titleExpression of Novel Anti-Apoptotic Factors Associated with Clinical Outcome in Lung Adenocarcinomaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.advisor-orcid,楊偉勛(wsyang@ntu.edu.tw)
dc.contributor.coadvisor林清淵(Ching-Yuang Lin)
dc.contributor.oralexamcommittee余忠仁(Chong-Jen Yu),周寬基(Kuan-Chih Chow)
dc.subject.keyword肺癌,肺腺癌,細胞凋亡,粒腺體,腺嘌呤核&#33527,三磷酸&#37238,家族AAA區域包含3A蛋白,第一型視神經萎縮蛋白,半胱氨酸蛋白&#37238,14,zh_TW
dc.subject.keywordLung cancer,Lung adenocarcinoma,Apoptosis,Mitochondria,ATAD3A,OPA1,Caspase-14,en
dc.relation.page222
dc.rights.note有償授權
dc.date.accepted2011-06-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved