Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorChing-Sung Chenen
dc.contributor.author陳菁菘zh_TW
dc.date.accessioned2021-06-15T06:45:43Z-
dc.date.available2013-07-01
dc.date.copyright2011-07-06
dc.date.issued2011
dc.date.submitted2011-06-24
dc.identifier.citation[1] http://cordis.europa.eu/fp7/home_en.html.
[2] http://www.strategyr.com/.
[3] http://sites.nationalacademies.org/nrc/index.htm.
[4] D. Grieshaber, R. MacKenzie, J. Voros et al., “Electrochemical biosensors - Sensor principles and architectures,” Sensors, vol. 8, no. 3, pp. 1400-1458, Mar, 2008.
[5] L. He, M. D. Musick, S. R. Nicewarner et al., “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” Journal of the American Chemical Society, vol. 122, no. 38, pp. 9071-9077, Sep, 2000.
[6] B. P. Nelson, T. E. Grimsrud, M. R. Liles et al., “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Analytical Chemistry, vol. 73, no. 1, pp. 1-7, Jan, 2001.
[7] O. Lazcka, F. J. Del Campo, and F. X. Munoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosensors & Bioelectronics, vol. 22, no. 7, pp. 1205-1217, Feb, 2007.
[8] A. Subramanian, J. Irudayaraj, and T. Ryan, “A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E-coli O157 : H7,” Biosensors & Bioelectronics, vol. 21, no. 7, pp. 998-1006, Jan, 2006.
[9] M. H. F. Meyer, M. Hartmann, and M. Keusgen, “SPR-based immunosensor for the CRP detection - A new method to detect a well known protein,” Biosensors & Bioelectronics, vol. 21, no. 10, pp. 1987-1990, Apr, 2006.
[10] J. F. Masson, L. Obando, S. Beaudoin et al., “Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I,” Talanta, vol. 62, no. 5, pp. 865-870, Apr, 2004.
[11] A. E. G. Cass, G. Davis, G. D. Francis et al., “Ferrocene-mediated enzyme electrode for amperometric determination of glucose,” Analytical Chemistry, vol. 56, no. 4, pp. 667-671, 1984.
[12] K. Besteman, J. O. Lee, F. G. M. Wiertz et al., “Enzyme-coated carbon nanotubes as single-molecule biosensors,” Nano Letters, vol. 3, no. 6, pp. 727-730, Jun, 2003.
[13] S. Tombelli, A. Minunni, E. Luzi et al., “Aptamer-based biosensors for the detection of HIV-1 Tat protein,” Bioelectrochemistry, vol. 67, no. 2, pp. 135-141, Oct, 2005.
[14] Y. Li, H. J. Lee, and R. M. Corn, “Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging,” Nucleic Acids Research, vol. 34, no. 22, pp. 6416-6424, Dec, 2006.
[15] M. Jie, C. Y. Ming, D. Jing et al., “An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody,” Electrochemistry Communications, vol. 1, no. 9, pp. 425-428, Sep, 1999.
[16] L. J. Yang, Y. B. Li, and G. F. Erf, “Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157 : H7,” Analytical Chemistry, vol. 76, no. 4, pp. 1107-1113, Feb, 2004.
[17] V. M. Mirsky, M. Riepl, and O. S. Wolfbeis, “Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes,” Biosensors & Bioelectronics, vol. 12, no. 9-10, pp. 977-989, 1997.
[18] C. Berggren, and G. Johansson, “Capacitance measurements of antibody-antigen interactions in a flow system,” Analytical Chemistry, vol. 69, no. 18, pp. 3651-3657, Sep, 1997.
[19] C. Berggren, B. Bjarnason, and G. Johansson, “An immunological interleukin-6 capacitive biosensor using perturbation with a potentiostatic step,” Biosensors & Bioelectronics, vol. 13, no. 10, pp. 1061-1068, Nov, 1998.
[20] G. Farace, G. Lillie, T. Hianik et al., “Reagentless biosensing using electrochemical impedance spectroscopy,” Bioelectrochemistry, vol. 55, no. 1-2, pp. 1-3, Jan, 2002.
[21] G. Lillie, P. Payne, and P. Vadgama, “Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing,” Sensors and Actuators B-Chemical, vol. 78, no. 1-3, pp. 249-256, Aug, 2001.
[22] I. Lundstrom, “Real-time biospecific interaction analysis,” Biosensors & Bioelectronics, vol. 9, no. 9-10, pp. 725-736, 1994.
[23] J. Melendez, R. Carr, D. Bartholomew et al., “Development of a surface plasmon resonance sensor for commercial applications,” Sensors and Actuators B-Chemical, vol. 39, no. 1-3, pp. 375-379, Mar-Apr, 1997.
[24] X. Q. Cui, R. J. Pei, X. Z. Wang et al., “Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing,” Biosensors & Bioelectronics, vol. 18, no. 1, pp. 59-67, Jan, 2003.
[25] D. J. Oshannessy, M. Brighamburke, and K. Peck, “Immobilization chemistries suitable for use in the biacore surface-plasmon resonance detector,” Analytical Biochemistry, vol. 205, no. 1, pp. 132-136, Aug, 1992.
[26] M. Ben Khalifa, L. Choulier, H. Lortat-Jacob et al., “BIACORE data processing: An evaluation of the global fitting procedure,” Analytical Biochemistry, vol. 293, no. 2, pp. 194-203, Jun, 2001.
[27] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, no. 3, pp. 528-539, Oct, 2003.
[28] X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosensors & Bioelectronics, vol. 23, no. 2, pp. 151-160, Sep, 2007.
[29] S. M. Lin, C. K. Lee, Y. M. Wang et al., “Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor,” Biosensors & Bioelectronics, vol. 22, no. 2, pp. 323-327, Aug, 2006.
[30] G. H. Cross, A. A. Reeves, S. Brand et al., “A new quantitative optical biosensor for protein characterisation,” Biosensors & Bioelectronics, vol. 19, no. 4, pp. 383-390, Dec, 2003.
[31] M. J. Swann, L. L. Peel, S. Carrington et al., “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Analytical Biochemistry, vol. 329, no. 2, pp. 190-198, Jun, 2004.
[32] N. J. Freeman, L. L. Peel, M. J. Swann et al., “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” Journal of Physics-Condensed Matter, vol. 16, no. 26, pp. S2493-S2496, 2004.
[33] S. M. Lin, C. K. Lee, Y. H. Lin et al., “Homopolyvalent antibody-antigen interaction kinetic studies with use of a dual-polarization interferometric biosensor,” Biosensors & Bioelectronics, vol. 22, no. 5, pp. 715-721, 2006.
[34] F. Hook, B. Kasemo, T. Nylander et al., “Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Analytical Chemistry, vol. 73, no. 24, pp. 5796-5804, Dec, 2001.
[35] A. J. C. Eun, L. Q. Huang, F. T. Chew et al., “Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors,” Journal of Virological Methods, vol. 99, no. 1-2, pp. 71-79, Jan, 2002.
[36] J. Malmstrom, H. Agheli, P. Kingshott et al., “Viscoelastic Modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: Quantification of protein layer properties using QCM-D and SPR,” Langmuir, vol. 23, no. 19, pp. 9760-9768, Sep, 2007.
[37] F. Huber, M. Hegner, C. Gerber et al., “Label free analysis of transcription factors using microcantilever arrays,” Biosensors & Bioelectronics, vol. 21, no. 8, pp. 1599-1605, Feb, 2006.
[38] F. Tian, K. M. Hansen, T. L. Ferrell et al., “Dynamic microcantilever sensors for discerning biomolecular interactions,” Analytical Chemistry, vol. 77, no. 6, pp. 1601-1606, Mar, 2005.
[39] L. Tymecki, and R. Koncki, “Thick-film potentiometric biosensor for bloodless monitoring of hemodialysis,” Sensors and Actuators B-Chemical, vol. 113, no. 2, pp. 782-786, Feb, 2006.
[40] F. Kuralay, H. Ozyoruk, and A. Yildiz, “Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film,” Sensors and Actuators B-Chemical, vol. 109, no. 2, pp. 194-199, Sep, 2005.
[41] F. Kuralay, H. Ozyoruk, and A. Yildiz, “Amperometric enzyme electrode for urea determination using immobilized urease in poly (vinylferrocenium) film,” Sensors and Actuators B-Chemical, vol. 114, no. 1, pp. 500-506, Mar, 2006.
[42] Y. Y. Xu, B. A. Chao, S. F. Chen et al., “A microelectronic technology based amperometric immunosensor for alpha-fetoprotein using mixed self-assembled monolayers and gold nanoparticles,” Analytica Chimica Acta, vol. 561, no. 1-2, pp. 48-54, Mar, 2006.
[43] J. G. Guan, Y. Q. Miao, and Q. J. Zhang, “Impedimetric biosensors,” Journal of Bioscience and Bioengineering, vol. 97, no. 4, pp. 219-226, Apr, 2004.
[44] J. S. Daniels, and N. Pourmand, “Label-free impedance biosensors: Opportunities and challenges,” Electroanalysis, vol. 19, no. 12, pp. 1239-1257, Jun, 2007.
[45] F. Darain, D. S. Park, J. S. Park et al., “Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy,” Biosensors & Bioelectronics, vol. 19, no. 10, pp. 1245-1252, May, 2004.
[46] V. Escamilla-Gomez, S. Campuzano, M. Pedrero et al., “Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation,” Biosensors & Bioelectronics, vol. 24, no. 11, pp. 3365-3371, Jul, 2009.
[47] E. Katz, and I. Willner, “Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors,” Electroanalysis, vol. 15, no. 11, pp. 913-947, Jul, 2003.
[48] E. Komarova, K. Reber, M. Aldissi et al., “New multispecific array as a tool for electrochemical impedance spectroscopy-based biosensing,” Biosensors & Bioelectronics, vol. 25, no. 6, pp. 1389-1394, Feb, 2010.
[49] A. E. Radi, X. Munoz-Berbel, V. Lates et al., “Label-free impedimetric immunosensor for sensitive detection of ochratoxin A,” Biosensors & Bioelectronics, vol. 24, no. 7, pp. 1888-1892, Mar, 2009.
[50] C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive biosensors,” Electroanalysis, vol. 13, no. 3, pp. 173-180, Mar, 2001.
[51] I. O. K'Owino, and O. A. Sadik, “Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring,” Electroanalysis, vol. 17, no. 23, pp. 2101-2113, Dec, 2005.
[52] D. D. Macdonald, “Reflections on the history of electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 51, no. 8-9, pp. 1376-1388, Jan, 2006.
[53] O. Paenke, T. Balkenhohl, J. Kafka et al., 'Impedance spectroscopy and biosensing,' Biosensing for the 21st Century, Advances in Biochemical Engineering / Biotechnology, pp. 195-237, Berlin: Springer-Verlag Berlin, 2008.
[54] D. R. Thevenot, K. Toth, R. A. Durst et al., “Electrochemical biosensors: recommended definitions and classification,” Biosensors & Bioelectronics, vol. 16, no. 1-2, pp. 121-131, Jan, 2001.
[55] A. L. Newman, K. W. Hunter, and W. D. Stanbro, 'The capacitive affinity sensor: a new biosensor.'
[56] R. F. Taylor, I. G. Marenchic, and E. J. Cook, “An acetylcholine receptor-based biosensor for the detection of cholinergic agents,” Analytica Chimica Acta, vol. 213, no. 1-2, pp. 131-138, Oct, 1988.
[57] R. F. Taylor, I. G. Marenchic, and R. H. Spencer, “Antibody-based and receptor-based biosensors for detection and process-control,” Analytica Chimica Acta, vol. 249, no. 1, pp. 67-70, Aug, 1991.
[58] L. J. Yang, C. M. Ruan, and Y. B. Li, “Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance,” Biosensors & Bioelectronics, vol. 19, no. 5, pp. 495-502, Dec, 2003.
[59] L. J. Yang, Y. B. Li, C. L. Griffis et al., “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium,” Biosensors & Bioelectronics, vol. 19, no. 10, pp. 1139-1147, May, 2004.
[60] S. A. Radke, and E. C. Alocilja, “A high density microelectrode array biosensor for detection of E-coli O157 : H7,” Biosensors & Bioelectronics, vol. 20, no. 8, pp. 1662-1667, Feb, 2005.
[61] C. D. Bain, E. B. Troughton, Y. T. Tao et al., “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” Journal of the American Chemical Society, vol. 111, no. 1, pp. 321-335, Jan, 1989.
[62] G. E. Poirier, M. J. Tarlov, and H. E. Rushmeier, “2-dimensional liquid-phase and the px-root-3-phase of alkanethiol self-assembled monolayers on Au(111),” Langmuir, vol. 10, no. 10, pp. 3383-3386, Oct, 1994.
[63] M. D. Porter, T. B. Bright, D. L. Allara et al., “Spontaneously organized molecular assemblies .4. structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry,” Journal of the American Chemical Society, vol. 109, no. 12, pp. 3559-3568, Jun, 1987.
[64] M. Riepl, V. M. Mirsky, I. Novotny et al., “Optimization of capacitive affinity sensors: drift suppression and signal amplification,” Analytica Chimica Acta, vol. 392, no. 1, pp. 77-84, Jun, 1999.
[65] E. Boubour, and R. B. Lennox, “Insulating properties of self-assembled monolayers monitored by impedance spectroscopy,” Langmuir, vol. 16, no. 9, pp. 4222-4228, May, 2000.
[66] S. Campuzano, M. Pedrero, C. Montemayor et al., “Characterization of alkanethiol-self-assembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy,” Journal of Electroanalytical Chemistry, vol. 586, no. 1, pp. 112-121, Jan, 2006.
[67] R. Y. Lai, D. S. Seferos, A. J. Heeger et al., “Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6-or 11-carbon self-assembled monolayers,” Langmuir, vol. 22, no. 25, pp. 10796-10800, Dec, 2006.
[68] E. Boubour, and R. B. Lennox, “Stability of omega-functionalized self-assembled monolayers as a function of applied potential,” Langmuir, vol. 16, no. 19, pp. 7464-7470, Sep, 2000.
[69] H. Hagenstrom, M. A. Schneeweiss, and D. M. Kolb, “Modification of a Au(111) electrode with ethanethiol. 1. Adlayer structure and electrochemistry,” Langmuir, vol. 15, no. 7, pp. 2435-2443, Mar, 1999.
[70] E. Boubour, and R. B. Lennox, “Potential-induced defects in n-alkanethiol self-assembled monolayers monitored by impedance spectroscopy,” Journal of Physical Chemistry B, vol. 104, no. 38, pp. 9004-9010, Sep, 2000.
[71] C. Miller, P. Cuendet, and M. Gratzel, “Adsorbed omega-hydroxy thiol monolayers on gold electrodes - evidence for electron-tunneling to redox species in solution,” Journal of Physical Chemistry, vol. 95, no. 2, pp. 877-886, Jan, 1991.
[72] R. Maalouf, C. Fournier-Wirth, J. Coste et al., “Label-free detection of bacteria by electrochemical impedance spectroscopy: Comparison to surface plasmon resonance,” Analytical Chemistry, vol. 79, no. 13, pp. 4879-4886, Jul, 2007.
[73] V. Nandakumar, J. T. La Belle, J. Reed et al., “A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy,” Biosensors & Bioelectronics, vol. 24, no. 4, pp. 1039-1042, Dec, 2008.
[74] C. M. Ruan, L. J. Yang, and Y. B. Li, “Immunobiosensor chips for detection of Escherichia coli O157 : H7 using electrochemical impedance spectroscopy,” Analytical Chemistry, vol. 74, no. 18, pp. 4814-4820, Sep, 2002.
[75] A. Bardea, F. Patolsky, A. Dagan et al., “Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay-Sachs sensor,” Chemical Communications, no. 1, pp. 21-22, Jan, 1999.
[76] Y. T. Long, C. Z. Li, H. B. Kraatz et al., “AC impedance spectroscopy of native DNA and M-DNA,” Biophysical Journal, vol. 84, no. 5, pp. 3218-3225, May, 2003.
[77] M. Y. Vagin, A. A. Karyakin, and T. Hianik, “Surfactant bilayers for the direct electrochemical detection of affinity interactions,” Bioelectrochemistry, vol. 56, no. 1-2, pp. 91-93, May, 2002.
[78] S. J. Ding, B. W. Chang, C. C. Wu et al., “Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes,” Electrochimica Acta, vol. 50, no. 18, pp. 3660-3666, Jun, 2005.
[79] T. Hianik, and J. Wang, “Electrochemical Aptasensors - Recent Achievements and Perspectives,” Electroanalysis, vol. 21, no. 11, pp. 1223-1235, Jun, 2009.
[80] R. A. Potyrailo, R. C. Conrad, A. D. Ellington et al., “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Analytical Chemistry, vol. 70, no. 16, pp. 3419-3425, Aug, 1998.
[81] D. K. Xu, D. W. Xu, X. B. Yu et al., “Label-free electrochemical detection for aptamer-based array electrodes,” Analytical Chemistry, vol. 77, no. 16, pp. 5107-5113, Aug, 2005.
[82] J. J. Gooding, “Electrochemical DNA hyhridization biosensors,” Electroanalysis, vol. 14, no. 17, pp. 1149-1156, Sep, 2002.
[83] J. Y. Liu, S. J. Tian, P. E. Nielsen et al., “In situ hybridization of PNA/DNA studied label-free by electrochemical impedance spectroscopy,” Chemical Communications, no. 23, pp. 2969-2971, 2005.
[84] M. J. Wang, L. Y. Wang, G. Wang et al., “Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reactions,” Biosensors & Bioelectronics, vol. 19, no. 6, pp. 575-582, Jan, 2004.
[85] N. K. Chaki, and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosensors & Bioelectronics, vol. 17, no. 1-2, pp. 1-12, Jan, 2002.
[86] M. Aslam, K. Bandyopadhyay, K. Vijayamohanan et al., “Comparative behavior of aromatic disulfide and diselenide monolayers on polycrystalline gold films using cyclic voltammetry, STM, and quartz crystal microbalance,” Journal of Colloid and Interface Science, vol. 234, no. 2, pp. 410-417, Feb, 2001.
[87] A. O. Solak, L. R. Eichorst, W. J. Clark et al., “Modified carbon surfaces as 'organic electrodes' that exhibit conductance switching,” Analytical Chemistry, vol. 75, no. 2, pp. 296-305, Jan, 2003.
[88] http://www.doh.gov.tw/CHT2006/index_populace.aspx.
[89] A. J. Bard, and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., New York: John Wiley & Sons, Inc., 2001.
[90] 胡啟章, 電化學原理與方法, 初版 ed., 台北: 五南圖書, 2002.
[91] A. Abdelghani, C. Abdelghani-Jacquin, H. Hillebrandt et al., “Cell-based biosensors for inflammatory agents detection,” Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 22, no. 1, pp. 67-72, Oct, 2002.
[92] S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science, vol. 283, no. 5408, pp. 1676-1683, Mar, 1999.
[93] X. H. Gao, Y. Y. Cui, R. M. Levenson et al., “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, vol. 22, no. 8, pp. 969-976, Aug, 2004.
[94] R. I. Amann, L. Krumholz, and D. A. Stahl, “Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental-studies in microbiology,” Journal of Bacteriology, vol. 172, no. 2, pp. 762-770, Feb, 1990.
[95] R. Bhat, and C. Watzl, “Serial Killing of Tumor Cells by Human Natural Killer Cells - Enhancement by Therapeutic Antibodies,” PLoS One, vol. 2, no. 3, pp. Article No.: e326, Mar 28, 2007.
[96] K. E. Sapsford, and F. S. Ligler, “Real-time analysis of protein adsorption to a variety of thin films,” Biosensors & Bioelectronics, vol. 19, no. 9, pp. 1045-1055, Apr, 2004.
[97] L. Tedeschi, C. Domenici, A. Ahluwalia et al., “Antibody immobilisation on fibre optic TIRF sensors,” Biosensors & Bioelectronics, vol. 19, no. 2, pp. 85-93, Nov, 2003.
[98] abcam, Protocols book, 1st ed.: abcam.
[99] J. T. Paweska, A. D. Potts, H. J. Harris et al., “Validation of an indirect enzyme-linked immunosorbent assay for the detection of antibody against Brucella abortus in cattle sera using an automated ELISA workstation,” Onderstepoort Journal of Veterinary Research, vol. 69, no. 1, pp. 61-77, Mar, 2002.
[100] J. Gasteiner, M. Awad-Masalmeh, and W. Baumgartner, “Mycobacterium avium subsp paratuberculosis infection in cattle in Austria, diagnosis with culture, PCR and ELISA,” Veterinary Microbiology, vol. 77, no. 3-4, pp. 339-349, Dec, 2000.
[101] M. A. Appawu, K. M. Bosompem, S. Dadzie et al., “Detection of malaria sporozoites by standard ELISA and VecTest (TM) dipstick assay in field-collected anopheline mosquitoes from a malaria endemic site in Ghana,” Tropical Medicine & International Health, vol. 8, no. 11, pp. 1012-1017, Nov, 2003.
[102] M. Kotzsch, T. Luther, N. Harbeck et al., “New ELISA for quantitation of human urokinase receptor (CD87) in cancer,” International Journal of Oncology, vol. 17, no. 4, pp. 827-834, Oct, 2000.
[103] A. Firagoso, H. Laboria, D. Latta et al., “Electron permeable self-assembled monolayers of dithiolated aromatic scaffolds on gold for biosensor applications,” Analytical Chemistry, vol. 80, no. 7, pp. 2556-2563, Apr, 2008.
[104] T. Komura, T. Yamaguchi, H. Shimatani et al., “Interfacial charge-transfer resistance at ionizable thiol monolayer-modified gold electrodes as studied by impedance spectroscopy,” Electrochimica Acta, vol. 49, no. 4, pp. 597-606, Feb, 2004.
[105] http://www.olympus.no/medical/31_DP30BW.htm.
[106] http://www.thermo.com/pierce.
[107] F. Cecchet, M. Marcaccio, M. Margotti et al., “Redox mediation at 11-mercaptoundecanoic acid self-assembled monolayers on gold,” Journal of Physical Chemistry B, vol. 110, no. 5, pp. 2241-2248, Feb, 2006.
[108] M. French, and S. E. Creager, “Enhanced barrier properties of alkanethiol-coated gold electrodes by 1-octanol in solution,” Langmuir, vol. 14, no. 8, pp. 2129-2133, Apr, 1998.
[109] K. Takehara, H. Takemura, and Y. Ide, “Electrochemical studies of the terminally substituted alkanethiol monolayers formed on a gold electrode - effects of the terminal group on the redox responses of fe(cn)6-n-3-, ru(nh3)h-6-3+ and ferrocenedimethanol,” Electrochimica Acta, vol. 39, no. 6, pp. 817-822, Apr, 1994.
[110] J. F. Smalley, S. W. Feldberg, C. E. D. Chidsey et al., “The kinetics of electron-transfer through ferrocene-terminated alkanethiol monolayers on gold,” Journal of Physical Chemistry, vol. 99, no. 35, pp. 13141-13149, Aug, 1995.
[111] D. J. Wold, and C. D. Frisbie, “Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy,” Journal of the American Chemical Society, vol. 123, no. 23, pp. 5549-5556, Jun, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48077-
dc.description.abstract由於生活品質的提升,人們對於健康照護的需求也愈來愈重視,因此,標榜能夠快速檢測出生理狀態之生物感測器也愈來愈蓬勃發展。生物感測器依傳感器的不同可分為光、電、力、磁、熱、流、聲等多種檢測方法,其中,光學式生物感測器(如表面電將共振儀)雖然具有高靈敏度的優點,但是因為價格高昂以及光路校正不易等缺點,以致於到目前為止還無法實際應用在臨床的疾病檢測上。而目前最成功且已經被大量地應用在日常生活中的生物感測器就屬電化學式的血糖儀。雖然電化學生物感測器具有低成本、小體積等優點,但是因為蛋白質或是遺傳因子(DNA)本身等不具備氧化還原的特性,因此目前大多只能應用在以酵素為基礎的生物感測器上。
為了能夠擁有電化學感測器的優點又同時可以量測蛋白質的交互作用,本論文提出以導電連結分子為基礎之電化學阻抗式生物感測器,並利用該創新感測器來量測蛋白質間的交互作用。在本論文中,我們利用電化學循環伏安法以及阻抗分析法來量測數種導電連結分子以及傳統長鏈硫醇連結分子的導電特性。從實驗結果可以發現,當碳鏈愈短時,導電的效果愈好;此外,連結分子的官能基也會對阻抗造成很大的影響,然而,當生物分子與連結分子產生鍵結後,由於官能基已經被生物分子所取代,因此,其導電特性只與碳鏈的長度有關。我們也進而比較導電連結分子跟傳統長鏈硫醇分子鍵結生物分子後的阻抗值,實驗結果顯示,導電連結分子的阻抗值比傳統長鏈硫醇分子低2個等級。由於阻抗的降低(電流增加),致使得訊雜比也相對提升2個等級,因此有機會改善偵測極限。為了確認該創新導電連結分子跟傳統的長鏈硫醇分子具有相同的生物分子鍵結能力,我們利用螢光顯微術來量測生物分子鍵結的量。此外,我們也利用酵素連結免疫分析的方法來驗證抗體-抗原間的專一性。最後,我們利用此創新阻抗式生物感測器來量測antiS100與S100間的交互作用,實驗結果顯示本感測器的線性量測區間為10 ng/ml到10 μg/ml,偵測極限約10 ng/ml。本實驗結果也顯示了本生物感測器極具有發展成定點照護或是手持式生物感測器的潛力。
zh_TW
dc.description.abstractWith the rapid improvement of life quality, the demand of health care increases day by day. Thus, the development of biosensors which have the advantages of fast detection is growing year by year. Among all different biosensors, optical detection based system such as SPR is thought to have the best sensitivity. However, the high cost and complex alignment procedures make it hard to be a point-of-care device. Since electrochemical biosensors possess the advantages of low cost, small size and easy calibration, a glucosemeter which based on electrochemical measurement becomes one of the most successful biosensor nowadays. However, the fact that proteins and DNA themselves does not have reduction/oxidation properties prevents us from using electrochemical biosensor to detect proteins and DNA, etc.
To have the advantages of electrochemical biosensor and also possess the ability of detecting protein interactions, we here proposed a label-free impedance immunosensor based on an innovative conductive linker. As the often used conventional long chain alkanethiol is a poor conductor, it is not a suitable material for use in a faradaic biosensor. In this thesis, we adopted a thiophene-based conductive bio-linker to form a self-assembled monolayer (SAM) and to immobilize the bio-molecules. We used cyclic voltammetry and impedance spectroscopy to measure the conductive characteristics of four kinds of conductive linkers and one conventional alkanethiol. From the experimental results, it is found that as the number of methylene chain decreased, the conductivity increased. Besides, the functional group has a great impact on the impedance. However, when bio-molecules immobilized on the SAM, the functional group was replaced by the bio-molecules. Thus, the conductivity is the function of methylene chain number only. We also compared the impedance baseline after bio-molecules immobilization of a conductive linker and a conventional alkanethiol. Results showed that the electron transfer resistance of this new conductive linker was 2 orders of a magnitude lower than the case using a conventional long chain alkanethiol linker. With the decreased impedance (i.e. increased faradaic current), we can obtain a higher signal/noise ratio such that the detection limit is improved. Using fluorescence microscopy, we verified that our new conductive linker has a protein immobilization capability similar to a conventional alkanethiol linker. Also, using S100 proteins, we verified the protein interaction detection capability of our system. Our obtained results showed a linear dynamic range from 10 ng/ml to 10 μg/ml and a detection limit of 10 ng/ml. With our new conductive linker, an electrochemical impedance biosensor shows great potential to be used for point-of-care applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:45:43Z (GMT). No. of bitstreams: 1
ntu-100-D94543007-1.pdf: 7753243 bytes, checksum: f3554820a590e04a69a768be2c1d37fb (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Research background 1
1.2 Literature review 2
1.2.1 Non-faradaic biosensors 5
1.2.2 Faradaic biosensors 12
1.3 Motivation 17
1.4 Thesis organization 19
Chapter 2 Theory 21
2.1 Electrochemistry basis 21
2.1.1 Introduction 21
2.1.2 Faradaic and nonfaradaic processes 23
2.1.3 Factors affecting electrode reaction rate and current 26
2.1.4 Electrochemical cells and cell resistance 28
2.1.5 Half reactions and electrode potentials 29
2.1.6 Reference electrodes 33
2.1.7 Potential step method 35
2.1.8 Linear sweep voltammetry (LSV) 37
2.1.9 Cyclic voltammetry (CV) 38
2.2 Electrochemical Impedance spectroscopy (EIS) 40
2.2.1 Impedance basis 41
2.2.2 Equivalent circuits 42
2.2.3 Variations of equivalent circuits 51
2.2.4 The factors cause impedance change 52
2.3 Fluorescence microscopy 55
2.4 Enzyme-linked immunosorbent assay 57
Chapter 3 Experimental details 61
3.1 Chemicals, bio-molecules, and solutions 61
3.1.1 Linkers 61
3.1.2 Bio-molecules 62
3.1.3 Other reagents and solutions 62
3.1.4 Equipments for preparing solutions 63
3.2 Fluorescence measurements 69
3.2.1 Chip preparation 69
3.3.2 Measurement procedures 70
3.3 Electrochemical measurements 73
3.3.1 Modification of a gold electrode for electrochemical measurements 73
3.3.2 Effect of pH on SAM modified electrode 74
3.3.3 Antibody immobilization 74
3.3.4 Antibody-antigen interaction for S2TA modified electrode 75
3.3.5 Electrochemical measurements 76
3.4 ELISA measurements 80
3.4.1 Condition optimization test 81
3.4.2 AntiS100 specificity test 82
Chapter 4 Results and discussions 84
4.1 Binding capability to bio-molecules of S2TA via fluorescence microscopy 84
4.2 Electrochemical measurements 89
4.2.1 Electrochemical characterization of SAM modified electrodes 89
4.2.2 Effect of pH on SAM modified electrodes 93
4.2.3 The electrochemical characterization after antibody immobilization 97
4.2.4 Impedance measurement of antiS100-S100 interactions 103
4.3 ELISA 113
4.3.1 Condition optimization test 113
4.1.2 AntiS100 specificity test 116
Chapter 5 Conclusions and future works 120
5.1 Conclusions 120
5.2 Future works 121
dc.language.isoen
dc.title以導電連結分子為基礎之創新電化學阻抗式生物感測器研發zh_TW
dc.titleDevelopment of a Label-Free Impedance Biosensor for Detection of Antibody-Antigen Interactions Based on a Novel Conductive Linkeren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor林世明
dc.contributor.oralexamcommittee李世元,林致廷,吳文中,李舒昇,何國川
dc.subject.keyword阻抗式生物感測器,免標的,導電連結分子,S100,定點照護,zh_TW
dc.subject.keywordImpedance biosensor,Label-free,Conductive linker,S100,Point-of-care,en
dc.relation.page132
dc.rights.note有償授權
dc.date.accepted2011-06-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
7.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved