Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48058
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊宏(Jiun-Hong Chen)
dc.contributor.authorHuei-Ping Shenen
dc.contributor.author沈慧萍zh_TW
dc.date.accessioned2021-06-15T06:45:19Z-
dc.date.available2011-07-26
dc.date.copyright2011-07-25
dc.date.issued2011
dc.date.submitted2011-06-26
dc.identifier.citationReferences
Ajmone-Marsan, P., Valentini, A., Cassandro, M., 1997. AFLPTM markers for DNA fingerprinting in cattle. Anim. Genet. 28, 418–426.
Albertson, R.C., Markert, J.A., Danley, P.D., Kocher, T.D., 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc. Natl. Acad. Sci. U.S.A. 96, 5107–5110.
Andre, J., King, R.A., Stürzenbaum, S.R., Kille, P., Hodson, M.E., Morgan, A.J., 2010. Molecular genetic differentiation in earthworms inhabiting a heterogeneous Pb-polluted landscape. Environ. Pollut. 158, 883–890.
Baldo, L., Ferraguti, M., 2005. Mixed reproductive strategy in Tubifex tubifex (Oligochaeta, Tubificidae)? J. Exp. Zool. 303A, 168–177.
Baus, E., Darrock, D.J., Bruford, M.W., 2005. Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Mol. Ecol. 14, 3373–3382.
Bell, G., 1982. The Masterpiece of Nature. The Evolution and Genetics of Sexuality. Croom Helm, London.
Bensch, S., Åkesson, M., 2005. Ten years of AFLP in ecology and evolution: why so few animals? Mol. Ecol. 14, 2899–2914.
Campbell, D., Duchesne, P., Bernatchez, L., 2003. AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol. Ecol. 12, 1979–1991.
Casellato, S., Rodighiero, R., 1972. Karyology of Lumbricidae. III. Contribution. Caryologia 25, 513–524.
Chang, C.H., Chen, J.H., 2005. Taxonomic status and intraspecific phylogeography of two sibling species of Metaphire (Oligochaeta: Megascolecidae) in Taiwan. Pedobiologia 49, 591–600.
Chang, C.H., Lin, Y.H., Chen, I.H., Chuang, S.C., Chen, J.H., 2007. Taxonomic re-evaluation of the Taiwanese montane earthworm Amynthas wulinensis Tsai, Shen & Tsai, 2001 (Oligochaeta: Megascolecidae): Polytypic species or species complex? Org. Divers. Evol. 7, 231–240.
Chang, C.H., Lin, S.M., Chen, J.H., 2008. Molecular systematics and phylogeography of the gigantic earthworms of the Metaphire formosae species group (Clitellata, Megascolecidae). Mol. Phylogenet. Evol. 49, 958–968.
Chapman, D.D., Shivji, M.S., Louis, E., Sommer, J., Fletcher, H., Prodöhl, P.A., 2007. Virgin birth in a hammerhead shark. Biol. Letters 3, 425–427.
Chen, Y., 1938. Oligochaeta from Hainan, Kwangtung. Contrib. Biol. Lab. Sci. Soc. China (Zool.) 12, 375–427.
Chen, Y., 1946. On the terrestrial Oligochaeta from Szechwan III. J. West China Border Res. Soc. 16, 83–141.
Christensen, B., 1960. A comparative cytological investigation of the reproductive cycle of an amphimictic diploid and a parthenogenetic triploid form of Lumbricillus lineatus (O. F. M.)(Oligochaeta, Enchytraeidae). Chromosoma 11, 365–379.
Christensen, B., 1961. Studies on cyto-taxonomy and reproduction in the Enchytraeidae. Hereditas 47, 387–450.
Christensen, B., 1980a. Annelida. In: John, B. (Ed.), Animal Cytogenetics, vol. 2. Gebrüder Borntraeger, Berlin-Stuttgart.
Christensen, B., 1980b. Constant differential distribution of genetic variants in polyploid parthenogenetic forms of Lumbricillus lineatus (Enchytraeidae, Oligochaeta). Hereditas 92, 193–198.
Christensen, B., 1984. Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia 115, 91–95.
Christensen, B., 1994. Annelida–Clitellata. In: Adiyodi, K.G., Adiyodi, R.G. (Eds.), Reproductive Biology of Invertebrates, vol. VI, Part B. John Wiley & Sons, Chichester, England, pp. 1–23.
Christensen, B., Jelnes, J., Berg, U., 1978. Long-term isozyme variation in parthenogenetic polyploid forms of Lumbricillus lineatus (Enchytraeidae, Oligochaeta) in recently established environments. Hereditas 88, 65–73.
Christensen, B., Hvilsom, M., Pedersen, B.V., 1992. Genetic variation in the coexisting sexual diploid and parthenogenetic triploid forms of Fridericia galba (Enchytraeidae, Oligochaeta) in a heterogeneous environment. Hereditas 117, 153–162.
Christensen, B., Pedersen, B.V., Hvilsom, M.M., 2002. Persisting clone pool differences in sexual/asexual Buchholzia appendiculata (Enchytraeidae, Oligochaeta) as revealed by genetic markers. Pedobiologia 46, 90–99.
Cluzeau, D., Fayolle, L., Hubert, M., 1992. The adaptation value of reproductive strategy and mode in three epigeous earthworm species. Soil Biol. Biochem. 24, 1309–1315.
Corley, L.S., Moore, A.J., 1999. Fitness of alternative modes of reproduction: developmental constraints and the evolutionary maintenance of sex. Proc. Roy. Soc. B – Biol. Sci. 266, 471–476.
Crummett, L.T., Wayne, M.L., 2009. Comparing fecundity in parthenogenetic versus sexual populations of the freshwater snail Campeloma limum: is there a two-fold cost of sex? Invertebr. Biol. 128, 1–8.
Cuellar, O., 1971. Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J. Morph. 133, 139–166.
Domes, K., Scheu, S., Maraun, M., 2007. Resources and sex: Soil re-colonization by sexual and parthenogenetic oribatid mites. Pedobiologia 51, 1–11.
Dózsa-Farkas, K., 1995. Self-fertilization: An adaptive strategy in widespread enchytraeids. Eur. J. Soil Biol. 31, 207–215.
Dubach, J., Sajewicz, A., Pawley, R., 1997. Parthenogenesis in the Arafuran filesnake (Acrochordus arafurae). Herpetol. Nat. Hist. 5, 11–18.
Dyer, A.R., Fowler, J.C.S., Baker, G.H., 1998. Detecting genetic variation in exotic earthworms, Aporrectodea spp. (Lumbricidae), in Australian soils using RAPD markers. Soil Biol. Biochem. 30, 159–165.
Easton, E.G., 1981. Japanese earthworms: a synopsis of the Megadrile species (Oligochaeta). Bull. Br. Mus. Nat. Hist. (Zool.) 40, 33–65.
Edwards, C.A., Bohlen, P.J., 1996. Biology and Ecology of Earthworms, third ed. Chapman and Hall, London.
Evans, A.C., Guild, W.J.McL., 1947. Some notes on reproduction in British earthworms. Ann. Mag. Nat. Hist. Ser. 11, 14, 654–659.
Fernández, R., Novo, M., Gutiérrez, M., Almodóvar, A., Díaz Cosín, D.J., 2010. Life cycle and reproductive traits of the earthworm Aporrectodea trapezoides (Dugès, 1828) in laboratory cultures. Pedobiologia 53, 295–299.
Ferraguti, M., 2000. Euclitellata. In: Jamieson, B.G.M. (Ed.), Adiyodi, K.G., Adiyodi, R.G. (series eds.), Reproductive Biology of Invertebrates, vol. IX, Part B. John Wiley & Sons, Chichester, England, pp. 125–182.
Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnolog. 3, 294–299.
Garbar, A.V., Vlasenko, R.P., 2007. Karyotypes of three species of the genus Aporrectodea Örley (Oligochaeta: Lumbricidae) from the Ukraine. Comp. Cyt. 1, 59–62.
Garvín, M.H., Trigo, D., Díaz Cosín, D.J., 1999. Some data on the reproductive biology of Hormogaster elisae Álvarez, 1977 (Oligochaeta, Hormogastridae). Pedobiologia 43, 830–834.
Gates, G.E., 1926. Notes on the Rangoon earthworms. The peregrine species. Ann. Mag. Nat. Hist. Ser. 9, 17, 439–473.
Gates, G.E., 1954. On the evolution of an oriental earthworm species, Pheretima anomala Michaelsen 1907. Breviora Mus. Comp. Zool. No. 37, 1–8.
Gates, G.E., 1956. Reproductive organ polymorphism in earthworms of the oriental megascolecine genus Pheretima Kinberg 1867. Evolution 10, 213–227.
Gates, G.E., 1960. On Burmese earthworms of the family Megascolecidae. Bull. Mus. Comp. Zool. 123, 203–282.
Gates, G.E., 1961. On some species of the oriental earthworm genus Pheretima Kinberg, 1867. Zool. Meded. 37, 293–312.
Gates, G.E., 1966. Contributions to a revision of the earthworm family Ocnerodrilidae. VII–VIII. Ann. Mag. Nat. Hist. Ser. 13, 9, 45–53.
Gates, G.E., 1971. On reversions to former ancestral conditions in megadrile oligochaetes. Evolution 25, 245–248.
Gates, G.E., 1972. Burmese earthworms: an introduction to the systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Trans. Am. Philos. Soc. 62, 1–326.
Gates, G.E., 1974a. On oligochaete gonads. Megadrilogica 1, 1–4.
Gates, G.E., 1974b. Contributions to a revision of the Lumbricidae. X., Dendrobaena octaedra (Savigny) 1826, with special reference to the importance of its parthenogenetic polymorphism for the classification of earthworms. Bull. Tall Timbers Res. Stn. 15, 15–57.
Gates, G.E., 1977. Contribution to a revision of the earthworm family Lumbricidae. XX. The genus Eiseniella in North America. Megadrilogica 3, 71–79.
Gavrilov, K., 1939. Sur la reproduction de Eiseniella tetraedra (Sav.) forma typica. Acta Zool. Stockholm 20, 439–464.
Gavrilov, K., Paz, N.G., 1949. Limnodrilus inversus n. sp. y su reproduccion uniparental. Acta Zool. Lilloana 8, 537–565.
Gerber, S., Mariette, S., Streiff, R., Bodénès, C., Kremer, A., 2000. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol. Ecol. 9, 1037–1048.
Glesener, R.R., Tilman, D., 1978. Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am. Nat. 112, 659–673.
Gregory, T.R., Hebert, P.D.N., 2002. Genome size estimates for some oligochaete annelids. Can. J. Zool. 80, 1485–1489.
Groot, T.V.M., Bruins, E., Breeuwer, J.A.J., 2003. Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity 90, 130–135.
Hartenstein, R., Neuhauser, E.F., Easton, E.G., 1980. Growth and fecundity of F2 Eisenia foetida derived from F1s, both reared in isolation from birth. Megadrilogica 3, 185–187.
Hatai, S., 1930. Note on Pheretima agrestis (Goto and Hatai), together with the description of four new species of the genus Pheretima. Sci. Rep. Tohoku Imp.Univ. 5, 651–667.
Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R., 2003. Biological identifications through DNA barcodes. Proc. Roy. Soc. B – Biol. Sci. 270, 313–321.
Hongell, K., Terhivuo, J., 1989. Chromosomal status of the parthenogenetic earthworm Dendrobaena octaedra (Sav.) (Oligochaeta: Lumbricidae) in southern Finland. Hereditas 110, 179–182.
Jaenike, J., Selander, R.K., 1979. Evolution and ecology of parthenogenesis in earthworms. Am. Zool. 19, 729–737.
Jaenike, J., Parker, E.D.Jr., Selander, R.K., 1980. Clonal niche structure in the parthenogenetic earthworm Octolasion tyrtaeum. Am. Nat. 116, 196–205.
Jaenike, J., Ausubel, S., Grimaldi, D.A., 1982. On the evolution of clonal diversity in parthenogenetic earthworms. Pedobiologia 23, 304–310.
Jaenike, J., Selander, R.K., 1985. On the coexistence of ecologically similar clones of parthenogenetic earthworms. Oikos 44, 512–514.
James, S.W., Porco, D., Decaëns, T., Richard, B., Rougerie, R., Erséus, C., 2010. DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): Resurrection of L. herculeus (Savigny, 1826). PLoS ONE 5(12): e15629. doi:10.1371/journal.pone.0015629
Johnson, S.G., 2005. Mode of origin differentially influences the fitness of parthenogenetic freshwater snails. Proc. Roy. Soc. B – Biol. Sci. 272, 2149–2153.
Jokela, J., Lively, C.M., Dybdahl, M.F., Fox, J.A., 1997. Evidence for a cost of sex in the freshwater snail Potamopyrgus antipodarum. Ecology 78, 452–460.
Karmegam, N., Daniel, T., 2009. Growth, reproductive biology and life cycle of the vermicomposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae). Bioresource Technol. 100, 4790–4796.
Kaushal, B.R., Bora, S., Kandpal, B., 1999. Growth and cocoon production by the earthworm Metaphire houlleti (Oligochaeta) in different food sources. Biol. Fert. Soils 29, 394–400.
Kautenburger, R., 2006. Genetic structure among earthworms (Lumbricus terrestris L.) from different sampling sites in western Germany based on random amplified polymorphic DNA. Pedobiologia 50, 257–266.
Kearney, M., Shine, R., 2005. Lower fecundity in parthenogenetic geckos than sexual relatives in the Australian arid zone. J. Evol. Biol. 18, 609–618.
Kearney, M., Blacket, M.J., Strasburg, J.L., Moritz, C., 2006. Waves of parthenogenesis in the desert: evidence for the parallel loss of sex in a grasshopper and a gecko from Australia. Mol. Ecol. 15, 1743–1748.
Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.
King, R.A., Tibble, A.L., Symondson, W.O.C., 2008. Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Mol. Ecol. 17, 4684–4698.
Kobayashi, S., 1937. On the breeding habit of the earthworms without male pores. I. Isolating experiment in Pheretima hilgendorfi (Michaelsen). Sci. Rep. Tohoku Imp. Univ. Fourth Ser., Biol. 11, 473–485.
Lavelle, P., Barois, I., Cruz, I., Fragoso, C., Hernandez, A., Pineda, A., Rangel, P., 1987. Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol. Fertil. Soils 5, 188–194.
Lee, K.E., 1985. Earthworms: Their Ecology and Relationships with Soils and Land Use. Academic Press, Australia.
Ljungström, P.O., 1969. On the genus Udeina (Acanthodrilidae: Oligochaeta) in South Africa. Zool. Anz. 182, 370–379.
Ljungström, P.O., 1970. Introduction to the study of earthworm taxonomy. Pedobiologia 10, 265–285.
Lokki, J., Saura, A., 1980. Polyploidy in insect evolution. In: Lewis, W.H. (Ed.), Polyploidy: Biological Relevance. Plenum Press, New York, pp. 277–312.
Lowe, C.N., Butt, K.R., 2008. Life cycle traits of the parthenogenetic earthworm Octolasion cyaneum (Savigny, 1826). Eur. J. Soil Biol. 44, 541–544.
Lynch, M., 1984. Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Quart. Rev. Biol. 59, 257–290.
Maniatsi, S., Baxevanis, A.D., Kappas, I., Deligiannidis, P., Triantafyllidis, A., Papakostas, S., Bougiouklis, D., Abatzopoulos, T.J., 2011. Is polyploidy a persevering accident or an adaptive evolutionary pattern? The case of the brine shrimp Artemia. Mol. Phylogenet. Evol. 58, 353–364.
Michaelsen, W., 1892. Terricolen der Berliner Zoologischen Sammlung. II. Aŕch. F. Naturgesch. 58, 209–255.
Michalis, K., Panidis, S., 1993. Seasonal variation in the reproductive activity of Octodrilus complanatus (Oligochaeta, Lumbricidae). Eur. J. Soil Biol. 29, 161–166.
Mizutani, K., Shimoi, T., Ogawa, H., Kitamura, Y., Oka, K., 2004. Modulation of motor patterns by sensory feedback during earthworm locomotion. Neurosci. Res. 48, 457–462.
Morgan-Richards, M., Trewick, S.A., Stringer, I.A.N., 2010. Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Mol. Ecol. 19, 1227–1238.
Mueller, U.G., Wolfenbarger, L.L., 1999. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14, 389–394.
Muldal, S., 1952. The chromosomes of the earthworms. I. The evolution of polyploidy. Heredity 6, 55–76.
Murchie, W.R., 1967. Chromosome numbers of some diplocardian earthworms (Megascolecidae-Oligochaeta). Am. Midl. Nat. 78, 534–537.
Ó Foighil, D., Smith, M.J., 1995. Evolution of asexuality in the cosmopolitan marine clam Lasaea. Evolution 49, 140–150.
Ohfuchi, S., 1939. Further studies of the variability in the position and number of male and spermathecal pores in the case of Pheretima irregularis based upon local analyses. Sci. Rep. Tohoku Imp. Univ. Fourth Ser., Biol. 14, 81–117.
Omodeo, P., 1951. Problemi zoogeografici ed ecologici relativi a lombrichi peregrini, con particolare riguardo al tipo di riproduzione ed alla struttura cariologica. Boll. Zool. 18, 117–122.
Omodeo, P., 1952. Cariologia dei Lumbricidae. Caryologia 4, 173–275.
Omodeo, P., 1955. Cariologia dei Lumbricidae. II. Contributo. Caryologia 8, 135–178.
Otto, S.P., Whitton, J., 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437.
Panidis, S., Michalis, K., 1995. The reproduction system and biology of Octodrilus complanatus (Dugés, 1928) (Annelida: Oligochaeta: Lumbricidae). Eur. J. Soil Biol. 31, 39–48.
Parker, E.D.Jr., 2002. 3. Geographic parthenogenesis in terrestrial invertebrates: generalist or specialist clones? In: Hughes, R.N. (Ed.), Adiyodi, K.G., Adiyodi, R.G. (series eds.), Reproductive Biology of Invertebrates, vol. XI, Progress in Asexual Reproduction. John Wiley & Sons, Chichester, England, pp. 93–114.
Pechenik, J.A., 1991. Biology of the invertebrates, second ed. Wm.C.Brown Publishers, Dubuque, IA, USA.
Peck, J.R., Yearsley, J.M., Waxman, D., 1998. Explaining the geographic distributions of sexual and asexual populations. Nature 391, 889–892.
Poddubnaya, T.L., 1984. Parthenogenesis in Tubificidae. Hydrobiologia 115, 97–99.
Reinecke, A.J., Hallatt, L., 1989. Growth and cocoon production of Perionyx excavatus (Oligochaeta). Biol. Fert. Soils 8, 303–306.
Reinecke, S.A., Pieters, R., 1997. The morphology of the male reproductive structures of Perionyx excavatus (Oligochaeta). S. Afr. J. Zool. 32, 64–71.
Reynolds, J.W., 1974. Are oligochaetes really hermaphroditic amphimictic organisms? Biologist 56, 90–99.
Rouse, G., Pleijel, F., 2006. Reproductive Biology and Phylogeny of Annelida. Jamieson, B.G.M. (series ed.), Reproductive Biology and Phylogeny, vol. 4. Science Publishers, New Hampshire, USA.
Saura, A., Lokki, J., Suomalainen, E., 1993. Origin of polyploidy in parthenogenetic weevils. J. Theor. Biol. 163, 449–456.
Schuett, G.W., Fernandez, P.J., Gergits, W.F., Casna, N.J., Chiszar, D., Smith, H.M., Mitton, J.B., Mackessy, S.P., Odum, R.A., Demlong, M.J., 1997. Production of offspring in the absence of males: evidence for facultative parthenogenesis in bisexual snakes. Herpetol. Nat. Hist. 5, 1–10.
Schwander, T., Vuilleumier, S., Dubman, J., Crespi, B.J., 2010. Positive feedback in the transition from sexual reproduction to parthenogenesis. Proc. Roy. Soc. B – Biol. Sci. 277, 1435–1442.
Semblat, J.P., Wajnberg, E., Dalmasso, A., Abad, P., Castagnone-Sereno, P., 1998. High-resolution DNA fingerprinting of parthenogenetic root-knot nematodes using AFLP analysis. Mol. Ecol. 7, 119–125.
Sims, R.W., Easton, E.G., 1972. A numerical revision of the earthworm genus Pheretima auct. (Megascolecidae: Oligochaeta) with the recognition of new genera and an appendix on the earthworms collected by the Royal Society North Borneo Expedition. Biol. J. Linn. Soc. 4, 169–268.
Stebbins, G.L., 1980. Polyploidy in plants: unsolved problems and prospects. In: Lewis W.H. (Ed.), Polyploidy: Biological Relevance. Plenum Press, New York, pp. 495–520.
Suomalainen, E., 1969. Evolution in parthenogenetic Curculionidae. Evolutionary Biol. 3, 261–296.
Suomalainen, E., Saura, A., Lokki, J., 1987. Cytology and Evolution in Parthenogenesis. CRC Press, Boca Raton, Florida.
Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.
Terhivuo, J., Saura, A., Hongell, K., 1994. Genetic and morphological variation in the parthenogenetic earthworm Eiseniella tetraedra (Sav.) (Oligochaeta: Lumbricidae) from South Finland and North Norway. Pedobiologia 38, 81–96.
Terhivuo, J., Saura, A., 2003. Low clonal diversity and morphometrics in the parthenogenetic earthworm Octolasion cyaneum (Sav.). Pedobiologia 47, 434–439.
Terhivuo, J., Saura, A., 2006. Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol. Invasions 8, 1205–1218.
Terhivuo, J., Saura, A., 2008. Clone distribution of the earthworm Eiseniella tetraedra (Sav.) (Oligochaeta: Lumbricidae) across an altitudinal gradient on subarctic mountains of NW Europe. Pedobiologia 51, 375–384.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.
Tiersch, T.R., Chandler, R.W., Wachtel, S.S., Elias, S., 1989. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10, 706–710.
Tsai, C.F., 1964. On some earthworms belonging to the genus Pheretima Kinberg collected from Taipei area in North Taiwan. Quart. J. Taiwan Mus. 17, 1–35.
Tsai, C.F., Shen, H.P., Tsai, S.C., 2001. Some new earthworms of the genus Amynthas (Oligochaeta: Megascolecidae) from Mt. Hohuan of Taiwan. Zool. Stud. 40, 276–288.
Tsai, C.F., Shen, H.P., Tsai, S.C., 2002. A new athecate earthworm of the genus Amynthas Kinberg (Megascolecidae: Oligochaeta) from Taiwan with discussion on phylogeny and biogeography of the A. illotus species-group. J. Nat. Hist. 36, 757–765.
Tsai, C.F., Shen, H.P., Tsai, S.C., Lee, H.H., 2007. Four new species of terrestrial earthworms belonging to the genus Amynthas (Megascolecidae: Oligochaeta) from Taiwan with discussion on speculative synonyms and species delimitation in oligochaete taxonomy. J. Nat. Hist. 41, 357–379.
Vail, V.A., 1972. Contributions to North American earthworms (Annelida). No. 1. Natural history and reproduction in Diplocardia mississippiensis (Oligochaeta). Bull. Tall Timbers Res. Stn. 11, 1–39.
Vandel, A., 1928. La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. Bull. Biol. France Belgique 62, 164–281.
Van Praagh, B.D., 1995. Reproductive biology of Megascolides australis McCoy (Oligochaeta: Megascolecidae). Aust. J. Zool. 43, 489–507.
Viktorov, A.G., 1997. Diversity of polyploid races in the family Lumbricidae. Soil Biol. Biochem. 29, 217–221.
Vitturi, R., Colombera, D., Catalano, E., Amico, F.P., 1991. Karyotype analysis, nucleolus organizer regions and C-banding pattern of Eisenia foetida (Oligochaeta, Lumbricidae). Genetica 83, 159–165.
Vitturi, R., Colomba, M.S., Pirrone, A., Libertini, A., 2000. Physical mapping of rDNA genes, (TTAGGG)n telomeric sequence and other karyological features in two earthworms of the family Lumbricidae (Annelida: Oligochaeta). Heredity 85, 203–207.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.
Vrijenhoek, R.C., 1979. Factors affecting clonal diversity and coexistence. Am. Zool. 19, 787–797.
Vrijenhoek, R.C., Pfeiler, E., 1997. Differential survival of sexual and asexual Poeciliopsis during environmental stress. Evolution 51, 1593–1600.
Watts, P.C., Buley, K.R., Sanderson, S., Boardman, W., Ciofi, C., Gibson, R., 2006. Parthenogenesis in Komodo dragons. Nature 444, 1021–1022.
Weinzierl, R.P., Berthold, K., Beukeboom, L.W., Michiels, N.K., 1998. Reduced male allocation in the parthenogenetic hermaphrodite Dugesia polychroa. Evolution 52, 109–115.
Weinzierl, R.P., Schmidt, P., Michiels, N.K., 1999. High fecundity and low fertility in parthenogenetic planarians. Invertebr. Biol. 118, 87–94.
Will, K.W., Rubinoff, D., 2004. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47–55.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48058-
dc.description.abstract本研究以產於台灣中部合歡山區之鍊狀遠盲蚓Amynthas catenus及合歡山遠盲蚓Amynthas hohuanmontis為對象。其不同個體之雌性及雄性生殖器官呈現程度不一之退化現象,可能以孤雌生殖為其生殖模式,故藉由核型研究、DNA含量分析等來確認其族群中是否有具多倍數染色體之個體存在,比較這些個體其生殖器官在數目或形態上之差異,並以組織切片了解其受精囊內是否有儲存精子。另外,每季製作並觀察卵巢、睪丸及儲精囊之抹片,以瞭解其生殖週期,比較不同退化程度之個體其產精產卵數及生殖週期是否有所差異。最後,藉由增殖片段長度多型性 (AFLP) 分析這兩種蚯蚓之遺傳資料,確認其是否會行孤雌生殖。
在44隻已解剖的A. catenus標本中,其第六至第八體節具有0至3對受精囊,完全沒有受精囊之個體占47.7%,具3對受精囊者占36.4%,中間型 (具1至5個受精囊) 占15.9%。流式細胞儀之分析顯示其族群中具有二倍體、三倍體及四倍體,DNA含量分別為2.54 pg/cell、3.7 pg/cell及4.34 pg/cell;不具受精囊之個體為二倍體、三倍體或四倍體,具3對受精囊者為二倍體,中間型者為二倍體或三倍體。染色體數目二倍體為112,三倍體為168。在生殖週期方面,A. catenus個體終年都會進行生精作用,除了3隻個體其儲精囊之抹片並未觀察到精子,其餘個體皆有精子之產生。而不論是沒有受精囊之個體,或是具3對受精囊者,其生精作用之高峰期均在夏季。不具受精囊之個體,其卵巢內成熟卵子之數目在夏季達到高峰,具3對受精囊者其卵巢內成熟卵子之數目則是在春季達到高峰,兩者之平均成熟卵子數目並無差異,但具3對受精囊之個體,其生精作用明顯較不具受精囊者來得旺盛。在受精囊切片方面,皆未發現精子。
A. hohuanmontis之受精囊亦位於第六至第八體節,數目亦為0至3對,在所解剖的26隻個體中,57.7%之個體完全沒有受精囊,具3對受精囊者則佔11.5%,中間型占30.8%。流式細胞儀之分析顯示其族群中所有個體皆為二倍體,DNA含量為2.92 pg/cell,染色體數目為126。在生殖週期方面,A. hohuanmontis個體終年都會進行生精作用,而所有個體不論其是否具有受精囊,其睪丸及儲精囊之抹片於顯微鏡下檢視均發現有精子之存在。不具受精囊之個體,其生精作用之高峰期為夏季,而在夏至冬季時卵巢內有較多之成熟卵子;具受精囊者其生精作用之高峰期則為春季,在秋冬季時卵巢內有較多之成熟卵子。兩者之平均成熟卵子數目及生精作用之高低並無差異。在受精囊切片方面,皆未發現精子。
在增殖片段長度多型性分析方面,共使用62對引子組合,於A. catenus共產生4593個片段,其中1137個為多型性;於A. hohuanmontis則共產生4812個片段,其中1119個為多型性。兩種蚯蚓皆發現基因型幾乎相同之親子對,子代所顯示之片段於親代身上皆可找到,證實兩者皆會行孤雌生殖。
zh_TW
dc.description.abstractParthenogenesis has been known in a variety of animal taxa and is commonly found in oligochaetes. Amynthas catenus Tsai et al., 2001 and Amynthas hohuanmontis Tsai et al., 2002 are terrestrial earthworms belonging to the Pheretima complex of the family Megascolecidae. Both are endemic to Mt. Hohuan at an elevation of about 3000 m in central Taiwan and have reproductive organs at different degrees of degeneration in size, number and structure.
For A. catenus, spermathecae vary from absence (athecal) to three pairs in VI–VIII (sexthecal), and prostate glands from a large, symmetrical pair to absence. For 44 specimens examined from May 2008 to May 2010, there were 47.7% athecals, 36.4% sexthecals and 15.9% intermediates. Results of the flow cytometric analysis showed that there were three DNA ploidy levels - diploid, triploid and tetraploid (2n, 3n, and 4n) - for the athecals but only diploid for the sexthecals. The intermediates consisted of diploids and triploids. The diploids had 2n = 112 and the triploids 3n = 168. Spermatogenesis occurred throughout the year with the highest activity in summer for athecals as well as sexthecals, but the number of mature ova peaked in summer for the athecals and in spring for the sexthecals. There was no significant difference in mean number of mature ova produced between the athecals and the sexthecals, but the latter had significantly higher spermatogenetic activity than the former. For all specimens examined, sperm were present in testes and seminal vesicles but not in spermathecae, an indication of parthenogenesis in the species.
For A. hohuanmontis, DNA contents, karyotypes and reproductive seasonality of a field population were also investigated. Like A. catenus, its spermathecae varied from absence (athecal) to three pairs in VI-VIII (sexthecal), and the prostate glands from large, asymmetrical, small, to totally absent. For 26 specimens collected between May 2008 and May 2010, there were 57.7% athecals, 11.5% sexthecals and 30.8% intermediates. Results of the flow cytometric analysis showed that there was only diploid (2n) for both athecals and thecals. Chromosome number of the diploids was 2n = 126. Number of mature ova produced by athecal individuals was higher from summer to winter, whereas that of thecal individuals from autumn to winter. Spermatogenesis occurred all the year round, with highest activity in summer and spring for athecal and thecal individuals, respectively. There was no significant difference in mean numbers of premeiotic and meiotic cysts and mature ova produced between the athecals and the thecals. Sperm were present in testes and seminal vesicles but no sperm was found in the histological sections of the spermathecae for all specimens examined, suggesting parthenogenetic mode of reproduction for this species.
Many pheretimoid earthworms in Megascolecidae have been known to be or suspected to be parthenogenetic, but no genetic investigation has been made. Here the genetic evidence revealed by amplified fragment length polymorphism (AFLP) markers was presented to confirm the parthenogenetic mode of reproduction in A. catenus and A. hohuanmontis. Sixty-two selective primer combinations were used to generate a total of 4593 and 4812 bands for A. catenus and A. hohuanmontis, respectively, with numbers (proportions) of polymorphic bands 1137 (24.8%) for the former and 1119 (23.3%) for the latter. Close genetic identity between clitellate-aclitellate pair was found for both A. catenus and A. hohuanmontis. No marker suggests the involvement of another parent. The two earthworms are automictic (meiotic) parthenogens with offsprings showing slightly reduced number of AFLP markers compared with their parents.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:45:19Z (GMT). No. of bitstreams: 1
ntu-100-D93b41001-1.pdf: 1000305 bytes, checksum: 1dc646270f2fac7997ed0ebbf76a5f0a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
Figure Index…………..………………………………………...………………..…..xii
Table Index…………..……………………………...………..………………………xv
Chapter 1. Introduction...…...………………………………………….…………......1
1.1 Reproduction of earthworms.....…………………….………………………....1
1.2 Taxonomy and evolution of earthworms………….………………..……....…3
1.3 Parthenogenesis…...………………….……………………………..…………4
1.3.1 Cytological basis of parthenogenesis…….…...………..……...……..….…4
1.3.2 Parthenogenesis in earthworms………………………..….…....………..…6
1.3.3 Parthenogenesis and polyploidy………. ……………………....……….…8
1.3.4 Geographical parthenogenesis………………………..……...………….…9
1.4 Earthworms Amynthas catenus Tsai et al., 2001 and Amynthas hohuanmontis Tsai et al., 2002 (Oligochaeta, Megascolecidae)…………………. ………..12
1.5 Specific aims……...………………….……………………………..……..…13
Chapter 2. Materials and methods…………………………………..…………...…18
2.1 Study site...…………………………………………………………………...18
2.2 Earthworm collection………………………………………………………...19
2.3 Flow cytometry………………..………. ………..………..……...……….…19
2.4 Karyotype analysis…………..…..………………………..……...………..…21
2.5 Phylogenetic analyses………………………………………………………..22
2.5.1 Mitochondrial DNA sequences in earthworm taxonomy…………………22
2.5.2 DNA extraction, polymerase chain reaction (PCR), and DNA sequencing……………………………………………………………….23
2.5.3 Sequence alignment and phylogenetic analyses..……..……...………..…24
2.6 Histological studies………. …………………………..…….....………….…25
2.7 Statistical analyses…………..………………………..……...…..………..…26
2.8 Amplified fragment length polymorphism (AFLP) analysis………….…..…26
Chapter 3. Results….………...………………………………………..……………..32
3.1 Phylogenetic relationships.…………………………………………………..32
3.2 Degeneration in spermathecae and male reproductive organs.….………...…32
3.2.1 Amynthas catenus………...………………....……....................…….…...32
3.2.2 Amynthas hohuanmontis..………………………………………….…..…33
3.3 DNA contents…………..…………………………….…..……...………...…34
3.3.1 Amynthas catenus………...………………....……....................…….…...34
3.3.2 Amynthas hohuanmontis..………………………………………….…..…35
3.4 Karyotypes…………………………………….………………………….….35
3.4.1 Amynthas catenus………...………………....……....................…….…...35
3.4.2 Amynthas hohuanmontis..………………………………………….…..…36
3.5 Oogenesis…………………………………….....……..……........…….….…36
3.5.1 Amynthas catenus………...………………....……....................…….…...36
3.5.2 Amynthas hohuanmontis..………………………………………….…..…37
3.6 Spermatogenesis…………. …………………………..…….…...………..…38
3.6.1 Amynthas catenus………...………………....……....................…….…...38
3.6.2 Amynthas hohuanmontis..………………………………………….…..…40
3.7 Absence of sperm in spermathecae.…………………..…….…...………...…41
3.7.1 Amynthas catenus………...………………....……....................…….…...41
3.7.2 Amynthas hohuanmontis..………………………………………….…..…41
3.8 AFLP analysis.………………..………………………………....………...…42
3.8.1 Amynthas catenus………...………………....……....................…….…...42
3.8.2 Amynthas hohuanmontis..………………………………………….…..…43
Chapter 4. Discussion….……………………………………..…..………………….59
4.1 Polyploidy in relation to parthenogenesis and reproductive organ degeneration in A. catenus…...…………………………………...………..……..……..…59
4.2 Comparison of parthenogenesis between A. hohuanmontis and A. catenus....61
4.3 AFLP analysis.………………..…………………………………………...…63
4.4 Parthenogenesis in evolution..…………..………………………………...…65
Chapter 5. Conclusions..……………………………………..…..………….……….72
References..…………………………………………………………..….….……...…73
Appendix. Number of AFLP markers generated by each of the 62 primer combinations..………………..…….…………………..…....….……...…92
dc.language.isoen
dc.title台灣蚯蚓孤雌生殖現象之探討zh_TW
dc.titleParthenogenesis of earthworms (Megascolecidae: Oligochaeta) in Taiwanen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee于宏燦(Hon-Tsen Yu),丘臺生(Tai-Sheng Chiu),張慧羽(Hwei-Yu Chang),張俊哲(Chun-Che Chang)
dc.subject.keyword蚯蚓,孤雌生殖,多倍數染色體,生殖週期,增殖片段長度多型性,鍊狀遠盲蚓,合歡山遠盲蚓,zh_TW
dc.subject.keywordEarthworm,parthenogenesis,polyploidy,reproductive seasonality,AFLP,Amynthas catenus,Amynthas hohuanmontis,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2011-06-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
976.86 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved