Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48040
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林紹雄
dc.contributor.authorYi-Hung kuoen
dc.contributor.author郭一鴻zh_TW
dc.date.accessioned2021-06-15T06:44:57Z-
dc.date.available2011-07-07
dc.date.copyright2011-07-07
dc.date.issued2011
dc.date.submitted2011-06-28
dc.identifier.citation[1] D. Barkley, Linear stability analysis of rotating spiral waves in excitable media, Phys. Rev. Lett. 68, 2090-2093(1992).
[2] D. Barkley, Euclidean symmetry and the dynamics of rotating spiral waves, Phys. Rev. Lett. 72, 164-167(1994).
[3] D. Henry, Geometric theory of semilinear parabolic equations, Springer, 1975.
[4] A. N. Zaikin, A. M. Zhabotinsky, Nature(London) 225, 535(1970).
[5] J. M. Davidenk, A.V. Pertsov, R. Salomonsz, W. Baxter, J. Jalife, Nature(London) 355, 349(1992).
[6] F. Siegert, C. Weijer, J. Cell. Sci. 93, 325(1989).
[7] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, G. Etrl, Phys. Rev. Lett. 65, 3013(1990).
[8] J. Lechleiter, S. Girard, E. Peralta, D. Clapham, Science 252 23(1991).
[9] N. A. Gorelova, J. Bures, J, Neurobiol. 14 353(1983)
[10] E. Yanagida, Existence of periodic travelling wave solutions of reaction-diffusion systems with fast-slow dynamics, J. Diff. Eq. 76, 115-134(1988)
[11] J. Evans, The stability of nerve impulses, I linear approximations, Indiana Univ. Math. J. 21, 877-885(1972)
[12] J. Evans, The stability of nerve impulses, II stability at rest, Indiana Univ. Math. J. 22, 75-90(1972)
[13] J. Evans, The stability of nerve impulses, III stablity of the nerve impulse, Indiana Univ. Math. J. 22, 577-593(1972)
[14] C. K. R. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Transactions of the American mathematical society, 286, 431-469(1984)
[15] C. K. R. T. Jones, N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Diff. Eq. 108, 64-88(1994).
[16] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21, 193-226(1971)
[17] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Indiana Univ. Math. J. 31, 53-98(1979)
[18] D. S. Cohen, J. C. Neu and R. R. Rosales, Rotating spiral wave solutions of reactiondiffusion equations, SIAM J. Appl. Math. 35, 536-547(1978)
[19] B. Fiedler, B. Sandstede, A. Scheel, and C. Wulff, Bifurcation from relative equilibria to non-compact group actions: skew products, meanders, and drifts. Doc. Math. J. DMV, 1, 479-505(1996)
[20] C. Wulff, Transitions from relative equilibria to relative periodic orbits, Documenta Math. 5, 227-274(2000)
[21] R. Kapral, K. Showalter (Eds.), ”Chemical waves and patterns”, Kluwer Academic Publishers, 1995.
[22] L. N. Trefethen, Spectral methods in Matlab, SIAM, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48040-
dc.description.abstract本篇論文中,以geometric singular perturbation法證明,Barkley系統有一維的脈衝解,再以數值法檢驗此脈衝解在有外力微擾下的行為。同時也會以數值法觀察二維的迴旋波解。zh_TW
dc.description.abstractIn this thesis, the existence of travelling pulse solution of Barkley system in one spatial dimension is proved via the method of geometric singular perturbation. The stability of such travelling pulses are tested numerically. Spiral waves in two spatial dimension are also studied numerically.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:44:57Z (GMT). No. of bitstreams: 1
ntu-100-R98221007-1.pdf: 2216365 bytes, checksum: bda6ed0566f4e4aef1cd8604ef4d48ca (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
2 Excitability 4
3 Travelling pulses 9
3.1 Fast and slow systems 9
3.2 Homoclinic singular orbits 11
3.3 The method of geometric singular perturbation 13
3.4 Stable and unstable manifolds 15
3.5 Main results and proofs 18
3.6 Numerical simulations 20
4 Spiral waves 24
4.1 Governing equations 24
4.2 Numerical simulations 25
5 Conclusions 28
A Numerical scheme 29
dc.language.isoen
dc.titleBarkley系統的旅行波和迴旋波解zh_TW
dc.titleBarkley systemen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林太家,羅主斌
dc.subject.keyword微擾法,旅行波,脈衝波,迴旋波,反應擴散,擬譜方法,zh_TW
dc.subject.keywordgeometric singular perturbation,travelling wave,spiral wave,travelling pulse,reaction-diffusion equation,pseudospectral method,en
dc.relation.page32
dc.rights.note有償授權
dc.date.accepted2011-06-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved