請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48029完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川(Kuo-Chuan Ho) | |
| dc.contributor.author | Chih-Wei Hu | en |
| dc.contributor.author | 胡致維 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:44:44Z | - |
| dc.date.available | 2021-12-31 | |
| dc.date.copyright | 2011-08-15 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-29 | |
| dc.identifier.citation | [1] P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism:Fundamentals and Applications, VCH Weinheim Germany, (1995).
[2] S. K. Deb, A novel electrophotographic system, Appl. Opt., (1969) 8 192-195. [3] G. Di Marco, M. Lanza, A. Pennisi, F. Simone, Solid state electrochromic device: behaviour of different salts on its performance, Solid State Ionics, (2000) 127 23-29. [4] P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, (2007). [5] J. V. Gabrusenoks, P. D. Cikmach, A. R. Lusis, J. J. Kleperis, G. M. Ramans, Electrochromic color-centers in amorphous tungsten trioxide thin-films, Solid State Ionics, (1984) 14 25-30. [6] L. C. Chen, Y. H. Huang, K. C. Ho, A complementary electrochromic system based on Prussian blue and indium hexacyanoferrate, Journal of Solid State Electrochemistry, (2002) 7 6-10. [7] N. R. de Tacconi, K. Rajeshwar, R. O. Lezna, Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications, Chemistry of Materials, (2003) 15 3046-3062. [8] L. M. Siperko, T. Kuwana, Electrochemical and spectroscopic studies of metal hexacyanometalate films .1. Cupric hexacyanoferrate, Journal of the Electrochemical Society, (1983) 130 396-402. [9] D. C. Bookbinder, M. S. Wrighton, Electrochromic polymers covalently anchored to electrode surfaces - optical and electrochemical properties of a viologen-based polymer, Journal of the Electrochemical Society, (1983) 130 1080-1087. [10] P. M. S. Monk, The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices, Journal of Electroanalytical Chemistry, (1997) 432 175-179. [11] R. Cinnsealach, G. Boschloo, S. N. Rao, D. Fitzmaurice, Electrochromic windows based on viologen-modified nanostructured TiO2 films, Solar Energy Materials and Solar Cells, (1998) 55 215-223. [12] R. J. Mortimer, Organic electrochromic materials, Electrochimica Acta, (1999) 44 2971-2981. [13] D. M. DeLongchamp, M. Kastantin, P. T. Hammond, High-contrast electrochromism from layer-by-layer polymer films, Chemistry of Materials, (2003) 15 1575-1586. [14] L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, J. R. Reynolds, Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives, Advanced Materials, (2003) 15 855-879. [15] R. M. Walczak, J. R. Reynolds, Poly (3,4-alkylenedioxypyrroles): The PXDOPS as versatile yet underutilized electroactive and conducting polymers, Advanced Materials, (2006) 18 1121-1131. [16] S. Panero, B. Scrosati, M. Baret, B. Cecchini, E. Masetti, Electrochromic windows based on polyaniline, tungsten oxide and gel electrolytes, Solar Energy Materials and Solar Cells, (1995) 39 239-246. [17] G. A. Niklasson, C. G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, Journal of Materials Chemistry, (2007) 17 127-156. [18] R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications, Displays, (2006) 27 2-18. [19] U.S. Pat.,Electro-optic rearview mirror for automotive vehicles 4902108, 1996. [20] A. A. Argun, J. R. Reynolds, Line patterning for flexible and laterally configured electrochromic devices, Journal of Materials Chemistry, (2005) 15 1793-1800. [21] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials., Elsevier, Amsterdam, The Netherlands, (1995). [22] C. G. Granqvist, Electrochromic tungsten oxide films: Review of progress 1993-1998, Solar Energy Materials and Solar Cells, (2000) 60 201-262. [23] P. M. S. Monk, The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine, John Wiley & Sons, Chichester, UK, (1998). [24] L. Michaelis, E. S. Hill, The viologen indicators, Journal of General Physiology, (1933) 16 859-873. [25] C. J. Schoot, J. J. Ponjee, H. T. Vandam, R. A. Vandoorn, P. T. Bolwijn, New electrochrmic memory display, Applied Physics Letters, (1973) 23 64-65. [26] C. L. Bird, A. T. Kuhn, Electrochemistry of the viologens, Chemical Society Reviews, (1981) 10 49-82. [27] A. I. Krasna, Acridines, deazaflavins, andtris(2,2'-bipyridine)ruthenium as catalysts for photoproduction of hydrogen from organic compounds, Photochemistry and Photobiology, (1980) 31 75-82. [28] B. Reichman, F.-R. F. Fan, A. J. Bard, Semiconductor electrodes, Journal of The Electrochemical Society, (1980) 127 333-338. [29] H. T. van Dam, J. J. Ponjee, Electrochemically generated colored films of insoluble viologen radical compounds, Journal of The Electrochemical Society, (1974) 121 1555-1558. [30] A. Yasuda, H. Mori, Y. Takehana, A. Ohkoshi, N. Kamiya, Electrochromic properties of the normal-heptyl viologen ferrocyanide system, Journal of Applied Electrochemistry, (1984) 14 323-327. [31] G. Levey, T. W. Ebbesen, Methyl viologen radical reactions with several oxidizing-agents, Journal of Physical Chemistry, (1983) 87 829-832. [32] K. Belinko, Electrochemical studies of viologen system for display applications, Applied Physics Letters, (1976) 29 363-365. [33] A. Harriman, A. Mills, Optimization of the rate of hydrogen-production from the tris(2,2'-bipyridyl) ruthenium (II) photosensitized reduction of methyl viologen, Journal of the Chemical Society-Faraday Transactions Ii, (1981) 77 2111-2124. [34] R. J. Jasinski, The electrochemistry of some n-heptylviologen salt solutions, Journal of The Electrochemical Society, (1977) 124 637-641. [35] R. G. Compton, A. M. Waller, P. M. S. Monk, D. R. Rosseinsky, Electron paramagnetic resonance spectroscopy of electrodeposited species from solutions of 1,1[prime or minute]-bis-(p-cyanophenyl)-4,4[prime or minute]-bipyridilium (cyanophenyl paraquat, CPQ), Journal of the Chemical Society, Faraday Transactions, (1990) 86 2583-2586. [36] N. J. Goddard, A. C. Jackson, M. G. Thomas, Spectrelectrochemical studies of some viologens used in electrochromic display applications, Journal of Electroanalytical Chemistry, (1983) 159 325-335. [37] U. S. Patent 4,902,108 Pat., Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof. [38] US Patent 5,294,376 Pat.,Bipyridinium salt solutions, 1994. [39] US patent 5,457,564 Pat.,Complementary surface confined polymer electrochromic materials, systems, and methods of fabrication therefor, 1995. [40] J. Stepp, J. B. Schlenoff, Electrochromism and electrocatalysis in viologen polyelectrolyte multilayers, Journal of The Electrochemical Society, (1997) 144 L155-L158. [41] F. Campus, P. Bonhote, M. Gratzel, S. Heinen, L. Walder, Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes, Solar Energy Materials and Solar Cells, (1999) 56 281-297. [42] N. Leventis, M. Chen, A. I. Liapis, J. W. Johnson, A. Jain, Characterization of 3 x 3 matrix arrays of solution-phase electrochromic cells, Journal of The Electrochemical Society, (1998) 145 L55-L58. [43] K. C. Ho, Y. W. Fang, Y. C. Hsu, L. C. Chen, The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD, Solid State Ionics, (2003) 165 279-287. [44] D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao, D. Fitzmaurice, Ultrafast Electrochromic Windows Based on Redox-Chromophore Modified Nanostructured Semiconducting and Conducting Films, The Journal of Physical Chemistry B, (2000) 104 11449-11459. [45] J. H. Ryu, D. O. Shin, K. D. Suh, Preparation of a reflective-type electrochromic device based on monodisperse, micrometer-size-range polymeric microspheres and viologen pendants, Journal of Polymer Science Part a-Polymer Chemistry, (2005) 43 6562-6572. [46] J. Y. Lim, H. C. Ko, H. Lee, Single- and dual-type electrochromic devices based on polycarbazole derivative bearing pendent viologen, Synthetic Metals, (2006) 156 695-698. [47] N. Vlachopoulos, J. Nissfolk, M. Moller, A. Briancon, D. Corr, C. Grave, N. Leyland, R. Mesmer, F. Pichot, M. Ryan, G. Boschloo, A. Hagfeldt, Electrochemical aspects of display technology based on nanostructured titanium dioxide with attached viologen chromophores, Electrochimica Acta, (2008) 53 4065-4071. [48] X. W. Sun, J. X. Wang, Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode, Nano Letters, (2008) 8 1884-1889. [49] Y. Takahashi, N. Hayashi, K. Oyaizu, K. Honda, H. Nishide, Totally Organic Polymer-Based Electrochromic Cell Using TEMPO-Substituted Polynorbornene as a Counter Electrode-Active Material, Polymer Journal, (2008) 40 763-767. [50] T. H. Kuo, C. Y. Hsu, K. M. Lee, K. C. Ho, All-solid-state electrochromic device based on poly(butyl viologen), Prussian blue, and succinonitrile, Solar Energy Materials and Solar Cells, (2009) 93 1755-1760. [51] H. J. Kim, J. K. Seo, Y. J. Kim, H. K. Jeong, G. Il Lim, Y. S. Choi, W. I. Lee, Formation of ultrafast-switching viologen-anchored TiO2 electrochromic device by introducing Sb-doped SnO2 nanoparticles, Solar Energy Materials and Solar Cells, (2009) 93 2108-2112. [52] C. Pozo-Gonzalo, M. Salsamendi, A. Vinuales, J. A. Pomposo, H. J. Grande, Highly transparent electrochromic plastic device that changes to purple and to blue by increasing the potential, Solar Energy Materials and Solar Cells, (2009) 93 2093-2097. [53] S. Bhandari, M. Deepa, S. Pahal, A. G. Joshi, A. K. Srivastava, R. Kant, A dual electrochrome of poly-(3,4-Ethylenedioxythiophene) doped by N,N '-bis(3-sulfonatopropyl)-4-4 '-bipyridinium-redox chemistry and electrochromism in flexible devices, Chemsuschem, (2010) 3 97-105. [54] C. W. Hu, K. M. Lee, R. Vittal, D. J. Yang, K. C. Ho, A high contrast hybrid electrochromic device containing PEDOT, heptyl viologen, and radical provider TEMPO, Journal of The Electrochemical Society, (2010) 157 P75-P78. [55] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. Macdiarmid, Electrical-conductivity in doped polyacetylene, Physical Review Letters, (1977) 39 1098-1101. [56] F. Jonas, L. Schrader, Conductive modifications of polymers with polypyrroles and polythiophenes, Synthetic Metals, (1991) 41 831-836. [57] D. M. Welsh, A. Kumar, E. W. Meijer, J. R. Reynolds, Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives, Advanced Materials, (1999) 11 1379-1382. [58] I. Schwendeman, J. Hwang, D. M. Welsh, D. B. Tanner, J. R. Reynolds, Combined visible and infrared electrochromism using dual polymer devices, Advanced Materials, (2001) 13 634-637. [59] D. M. Welsh, L. J. Kloeppner, L. Madrigal, M. R. Pinto, B. C. Thompson, K. S. Schanze, K. A. Abboud, D. Powell, J. R. Reynolds, Regiosymmetric dibutyl-Substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers, Macromolecules, (2002) 35 6517-6525. [60] H. Letheby, XXIX. On the production of a blue substance by the electrolysis of sulphate of aniline, Journal of the Chemical Society, (1862) 15 161-163. [61] G. Tourillon, F. Garnier, New electrochemically generated organic conducting polymers, Journal of Electroanalytical Chemistry, (1982) 135 173-178. [62] G. Tourillon, F. Garnier, Structural effect on the electrochemical properties of polythiophene and derivatives, Journal of Electroanalytical Chemistry, (1984) 161 51-58. [63] W. S. Huang, B. D. Humphrey, A. G. Macdiarmid, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, (1986) 82 2385-2400. [64] K. K. Kanazawa, A. F. Diaz, W. D. Gill, P. M. Grant, G. B. Street, G. P. Gardini, J. F. Kwak, Polypyrrole: an electrochemically synthesized conducting organic polymer, Synthetic Metals, (1979) 1 329-336. [65] S. Asavapiriyanont, G. K. Chandler, G. A. Gunawardena, D. Pletcher, The electrodeposition of polypyrrole films from aqueous solutions, Journal of Electroanalytical Chemistry, (1984) 177 229-244. [66] E. M. Genies, G. Bidan, A. F. Diaz, Spectroelectrochemical study of polypyrrole films, Journal of Electroanalytical Chemistry, (1983) 149 101-113. [67] R. J. Waltman, J. Bargon, Reactivity/structure correlations for the electropolymerization of pyrrole: An INDO/CNDO study of the reactive sites of oligomeric radical cations, Tetrahedron, (1984) 40 3963-3970. [68] K. Kaneto, K. Yoshino, Y. Inuishi, Characteristics of polythiophene battery, Japanese Journal of Applied Physics Part 2-Letters, (1983) 22 L567-L568. [69] N. Toshima, S. Hara, Direct synthesis of conducting polymers from simple monomers, Progress in Polymer Science, (1995) 20 155-183. [70] K. Yoshino, S. Hayashi, R. Sugimoto, Preparation and properties of conducting heterocyclic polymer-films by chemical method, Japanese Journal of Applied Physics Part 2-Letters, (1984) 23 L899-L900. [71] R. I. Sugimoto, S. Takeda, H. B. Gu, K. Yoshino, Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property, Chemistry Express, (1986) 1 635-638. [72] M. Pomerantz, J. J. Tseng, H. Zhu, S. J. Sproull, J. R. Reynolds, R. Uitz, H. J. Arnott, M. I. Haider, Processable polymers and copolymers of 3-alkylthiophenes and their blends, Synthetic Metals, (1991) 41 825-830. [73] Y. H. Ha, N. Nikolov, S. Pollack, J. Mastrangelo, B. Martin, R. Shashidhar, Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene), Advanced Functional Materials, (2004) 14 615-622. [74] T. Y. Kim, J. E. Kim, K. S. Suh, Effects of alcoholic solvents on the conductivity of tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-OTs), Polymer International, (2006) 55 80-86. [75] D. M. de Leeuw, P. A. Kraakman, P. F. G. Bongaerts, C. M. J. Mutsaers, D. B. M. Klaassen, Electroplating of conductive polymers for the metallization of insulators, Synthetic Metals, (1994) 66 263-273. [76] G. Heywang, F. Jonas, Poly(alkylenedioxythiophene)s—new, very stable conducting polymers, Advanced Materials, (1992) 4 116-118. [77] M. Dietrich, J. Heinze, G. Heywang, F. Jonas, Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes, Journal of Electroanalytical Chemistry, (1994) 369 87-92. [78] Q. B. Pei, G. Zuccarello, M. Ahlskog, O. Inganas, Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue, Polymer, (1994) 35 1347-1351. [79] X. Chen, O. Inganas, Three-Step Redox in Polythiophenes: Evidence from Electrochemistry at an Ultramicroelectrode, The Journal of Physical Chemistry, (1996) 100 15202-15206. [80] H. Randriamahazaka, V. Noel, C. Chevrot, Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions, Journal of Electroanalytical Chemistry, (1999) 472 103-111. [81] L. Niu, C. Kvarnstrom, A. Ivaska, Mixed ion transfer in redox processes of poly(3,4-ethylenedioxythiophene), Journal of Electroanalytical Chemistry, (2004) 569 151-160. [82] A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, J. R. Reynolds, Conducting pPoly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios, Chemistry of Materials, (1998) 10 896-902. [83] S. Timpanaro, M. Kemerink, F. J. Touwslager, M. M. De Kok, S. Schrader, Morphology and conductivity of PEDOT/PSS films studied by scanning-tunneling microscopy, Chemical Physics Letters, (2004) 394 339-343. [84] F. L. Zhang, A. Gadisa, O. Inganas, M. Svensson, M. R. Andersson, Influence of buffer layers on the performance of polymer solar cells, Applied Physics Letters, (2004) 84 3906-3908. [85] C. J. Ko, Y. K. Lin, F. C. Chen, C. W. Chu, Modified buffer layers for polymer photovoltaic devices, Applied Physics Letters, (2007) 90. [86] J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synthetic Metals, (2002) 126 311-316. [87] J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer, (2004) 45 8443-8450. [88] S. Ghosh, O. Inganas, Nano-structured conducting polymer network based on PEDOT-PSS, Synthetic Metals, (2001) 121 1321-1322. [89] L. A. A. Pettersson, S. Ghosh, O. Inganas, Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate), Organic Electronics, (2002) 3 143-148. [90] S. Ashizawa, R. Horikawa, H. Okuzaki, Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), Synthetic Metals, (2005) 153 5-8. [91] H. J. Snaith, H. Kenrick, M. Chiesa, R. H. Friend, Morphological and electronic consequences of modifications to the polymer anode PEDOT:PSS, Polymer, (2005) 46 2573-2578. [92] S. A. Sapp, G. A. Sotzing, J. R. Reynolds, High contrast ratio and fast-switching dual polymer electrochromic devices, Chemistry of Materials, (1998) 10 2101-2108. [93] H. C. Ko, S. A. Park, H. S. Lee, Characteristics of dual-type electrochromic device based on poly(3-tetradecylthiophene) and poly (3,4-ethylenedioxythiophene), Synthetic Metals, (2004) 143 31-35. [94] D. Mecerreyes, R. Marcilla, E. Ochoteco, H. Grande, J. A. Pomposo, R. Vergaz, J. M. S. Pena, A simplified all-polymer flexible electrochromic device, Electrochimica Acta, (2004) 49 3555-3559. [95] U. Bulut, A. Cirpan, Dual-type electrochromic devices based on conducting copolymers of thiophene-functionalized monomers, Synthetic Metals, (2005) 148 65-69. [96] T. S. Tung, K. C. Ho, Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4ethylenedioxythiophene) and Prussian blue, Solar Energy Materials and Solar Cells, (2006) 90 521-537. [97] J. C. Gustafsson, B. Liedberg, O. Inganas, In-situ spectroscopic investigations of electrochromism and ion-transport in a poly(3,4-ethylenedioxythiophene) electrode in a solid-state electrochemical-cell, Solid State Ionics, (1994) 69 145-152. [98] S. A. Sapp, G. A. Sotzing, J. L. Reddinger, J. R. Reynolds, Rapid switching solid state electrochromic devices based on complementary conducting polymer films, Advanced Materials, (1996) 8 808-813. [99] M. A. De Paoli, G. Casalbore-Miceli, E. M. Girotto, W. A. Gazotti, All polymeric solid state electrochromic devices, Electrochimica Acta, (1999) 44 2983-2991. [100] M. A. De Paoli, A. F. Nogueira, D. A. Machado, C. Longo, All-polymeric electrochromic and photoelectrochemical devices: new advances, Electrochimica Acta, (2001) 46 4243-4249. [101] D. DeLongchamp, P. T. Hammond, Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices, Advanced Materials, (2001) 13 1455-+. [102] T. H. Lin, K. C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells, (2006) 90 506-520. [103] S. W. Huang, K. C. Ho, An all-thiophene electrochromic device fabricated with poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells, (2006) 90 491-505. [104] B. Bingol, P. Camurlu, L. Toppare, Synthesis and characterization of poly(thiophen-3-yl acetic acid 4-pyrrol-1-yl phenyl ester-co-N-methylpyrrole) and its application in an electrochromic device, Journal of Applied Polymer Science, (2006) 100 1988-1994. [105] C. H. Yang, S. J. Liu, C. C. Chang, L. Y. Lin, Electrochromic devices based on copolymers of 3-Trimethoxysilanylpropyl-N-aniline-2,5-Dimethoxyaniline, Journal of Electroanalytical Chemistry, (2006) 590 161-172. [106] O. Mert, E. Sahin, E. Ertas, T. Ozturk, E. A. Aydin, L. Toppare, Electrochromic properties of poly(diphenyldithieno[3,2-b;2',3'-d]thiophene), Journal of Electroanalytical Chemistry, (2006) 591 53-58. [107] S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, L. Toppare, A soluble conducting polymer: 1-phenyl-2,5-di(2-thienyl)-1H-pyrrole and its electrochromic application, Electrochimica Acta, (2006) 51 5412-5419. [108] M. Ak, M. S. Ak, L. Toppare, Electrochemical properties of a new star-shaped pyrrole monomer and its electrochromic applications, Macromolecular Chemistry and Physics, (2006) 207 1351-1358. [109] A. Erden, E. Sahin, M. Gullu, L. Toppare, Synthesis, characterization and electrochromic properties of copolymer of 3-{[4-(thien-3-yl-methoxy)phenoxy]methyl} thiophene with thiophene, European Polymer Journal, (2006) 42 1866-1874. [110] M. Ak, P. Camurlu, F. Yilmaz, L. Cianga, Y. Yagci, L. Toppare, Electrochromic properties and electrochromic device application of copolymer of N-(4-(3-thienyl methylene)-oxycarbonylphenyl)maleimide with thiophene, Journal of Applied Polymer Science, (2006) 102 4500-4505. [111] S. Varis, M. Ak, C. Tanyeli, I. M. Akhmedov, L. Toppare, A soluble and multichromic conducting polythiophene derivative, European Polymer Journal, (2006) 42 2352-2360. [112] C. H. Yang, T. C. Yang, C. H. Chen, M. S. Tsai, Electrochromic devices based on copolymers of 2,5-dimethoxyaniline-diphenylamine, Journal of the Electrochemical Society, (2006) 153 E85-E93. [113] A. S. Ribeiro, D. A. Machado, P. F. D. Filho, M. A. De Paoli, Solid-state electrochromic device based on two poly(thiophene) derivatives, Journal of Electroanalytical Chemistry, (2004) 567 243-248. [114] U. H. Yildiz, E. Sahin, I. M. Akhmedov, C. Tanyeli, L. Toppare, A new soluble conducting polymer and its electrochromic devices, Journal of Polymer Science Part a-Polymer Chemistry, (2006) 44 2215-2225. [115] C. H. Yang, Y. K. Chih, W. C. Wu, C. H. Chen, Molecular assembly engineering of self-doped polyaniline film for application in electrochromic devices, Electrochemical and Solid State Letters, (2006) 9 C5-C8. [116] S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, L. Toppare, Electrochromic properties of a soluble conducting polymer of 1-benzyl-2,5-di(thiophene-2-yl)-1H-pyrrole, Sensors and Actuators B: Chemical, (2007) 121 622-628. [117] A. Cihaner, A. M. Onal, Electrochemical synthesis of poly(3-bromo-4-methoxythiophene) and its device application, Journal of Electroanalytical Chemistry, (2007) 601 68-76. [118] Y. Coskun, A. Cirpan, L. Toppare, Construction of electrochromic devices using thiophene based conducting polymers, Journal of Materials Science, (2007) 42 368-372. [119] B. Yigitsoy, S. Varis, C. Tanyeli, I. M. Akhmedov, L. Toppare, Electrochromic properties of a novel low band gap conductive copolymer, Electrochimica Acta, (2007) 52 6561-6568. [120] A. Arslan, O. Turkarslan, C. Tanyeli, I. M. Akhmedov, L. Toppare, Electrochromic properties of a soluble conducting polymer: Poly(1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole), Materials Chemistry and Physics, (2007) 104 410-416. [121] S. Varis, M. Ak, I. M. Akhmedov, C. Tanyeli, L. Toppare, A novel multielectrochromic copolymer based on 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole and EDOT, Journal of Electroanalytical Chemistry, (2007) 603 8-14. [122] M. S. Ak, M. Ak, M. Gullu, L. Toppare, Synthesis and electropolymerization of 5,12-dihydrothieno[3 ',4 ': 2,3][1,4]dioxocino[6,7-b]-quinoxaline and its electrochromic properties, European Polymer Journal, (2007) 43 3452-3460. [123] M. Ak, A. DurtnuS, L. Toppare, Solid state electrochromic device applications of N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide, Solid State Sciences, (2007) 9 843-849. [124] P. Camurlu, S. Tarku, E. Sahmetlioglu, I. M. Akhmedov, C. Tanyeli, L. Toppare, Multichromic conducting copolymer of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole with EDOT, Solar Energy Materials and Solar Cells, (2008) 92 154-159. [125] E. Yildiz, P. Camurlu, C. Tanyeli, I. Akhmedov, L. Toppare, A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT, Journal of Electroanalytical Chemistry, (2008) 612 247-256. [126] M. Ak, C. Tanyeli, D. M. Akhmedo, L. Toppare, Optoelectrochemical properties of the copolymer of 2,5-di(4-methylthiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole monomer with 3,4-ethylenedioxythiophene, Thin Solid Films, (2008) 516 4334-4341. [127] S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, L. Toppare, Electrochromic properties of poly (1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole-co-3,4-ethylenedioxy thiophene) and its application in electrochromic devices, Optical Materials, (2008) 30 1489-1494. [128] C. H. Yang, F. J. Liu, L. R. Huang, T. L. Wang, W. C. Lin, M. Sato, C. H. Chen, C. C. Chang, The application of triphenylamine-based hole-transporting materials in electrochromic devices, Journal of Electroanalytical Chemistry, (2008) 617 101-110. [129] M. Ak, V. Gancheva, L. Terlemezyan, G. Tanyeli, L. Toppare, Synthesis of a dipyrromethane functionalized monomer and optoelectrochromic properties of its polymer, European Polymer Journal, (2008) 44 2567-2573. [130] C. L. Gaupp, D. M. Welsh, J. R. Reynolds, Poly(ProDOT-Et-2): A high-contrast, high-coloration efficiency electrochromic polymer, Macromolecular Rapid Communications, (2002) 23 885-889. [131] S. C. Ng, H. S. O. Chan, W. L. Yu, Synthesis and characterization of electrically conducting copolymers of ethylenedioxythiophene and 1,3-propylenedioxythiophene with omega-functional substituents, Journal of Materials Science Letters, (1997) 16 809-811. [132] P. Schottland, O. Stephan, P. Y. L. Gall, C. Chevrot, J. Chim. Phys. Phys.-Chim. Biol., (1998) 959 1258. [133] M. Besbes, G. Trippe, E. Levillain, M. Mazari, F. Le Derf, I. F. Perepichka, A. Derdour, A. Gorgues, M. Salle, J. Roncali, Rapid and efficient post-polymerization functionalization of poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives on an electrode surface, Advanced Materials, (2001) 13 1249-1252. [134] T. H. Lin, K. C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells, (2006) 90 506-520. [135] B. P. Jelle, G. Hagen, Transmission spectra of an electrochromic window based on polyaniline, prussian blue and tungsten oxide, Journal of The Electrochemical Society, (1993) 140 3560-3564. [136] X.-R. Zeng, T.-M. Ko, Structures and properties of chemically reduced polyanilines, Polymer, (1998) 39 1187-1195. [137] E. M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, Polyaniline: A historical survey, Synthetic Metals, (1990) 36 139-182. [138] M. Akhtar, H. A. Weakliem, R. M. Paiste, K. Gaughan, Polyaniline thin-film electrochromic devices, Synthetic Metals, (1988) 26 203-208. [139] J. C. Lacroix, K. K. Kanazawa, A. Diaz, Polyaniline - a very fast electrochromic material, Journal of The Electrochemical Society, (1989) 136 1308-1313. [140] J. Anand, S. Palaniappan, D. N. Sathyanarayana, Conducting polyaniline blends and composites, Progress in Polymer Science, (1998) 23 993-1018. [141] A. A. Argun, P. H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. MacDiarmid, J. R. Reynolds, Multicolored electrochromism polymers: Structures and devices, Chemistry of Materials, (2004) 16 4401-4412. [142] G. W. Jang, C. Chen, R. W. Gumbs, Y. Wei, J. M. Yeh, Large-area electrochromic coatings, Journal of The Electrochemical Society, (1996) 143 2591-2596. [143] M. Deepa, S. Ahmad, K. N. Sood, J. Alam, S. Ahmad, A. K. Srivastava, Electrochromic properties of polyaniline thin film nanostructures derived from solutions of ionic liquid/polyethylene glycol, Electrochimica Acta, (2007) 52 7453-7463. [144] S. Xiong, Y. Xiao, J. Ma, L. Zhang, X. Lu, Enhancement of electrochromic contrast by tethering conjugated polymer chains onto polyhedral oligomeric silsesquioxane nanocages, Macromolecular Rapid Communications, (2007) 28 281-285. [145] U. Leon-Silva, M. E. Nicho, H. Hu, R. Cruz-Silva, Effect of modified ITO substrate on electrochromic properties of polyaniline films, Solar Energy Materials and Solar Cells, (2007) 91 1444-1448. [146] T. Hwang, M. Quilitz, H. Schmidt, Comparison of the electrochrornic properties of films made of silica/polyaniline composite nanoparticles and films made of pure polyaniline, Journal of New Materials for Electrochemical Systems, (2007) 10 237-242. [147] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Ronnow, M. Stromme Mattsson, M. Veszelei, G. Vaivars, Recent advances in electrochromics for smart windows applications, Solar Energy, (1998) 63 199-216. [148] B. C. H. Steele, S. J. Golden, Variable transmission electrochromic windows utilizing tin-doped indium oxide counterelectrodes, Applied Physics Letters, (1991) 59 2357-2359. [149] T. Kamimori, J. Nagai, M. Mizuhashi, Electrochromic devices for transmissive and reflective light control, Solar Energy Materials, (1987) 16 27-38. [150] S. F. Cogan, E. J. Anderson, T. D. Plante, R. D. Rauh, Materials and devices in electrochromic window development, Proceedings of SPIE - The International Society for Optical Engineering, (1985) 562 23-31. [151] K. C. Ho, T. G. Rukavina, C. B. Greenberg, Tungsten oxide-prussian blue electrochromic system based on a proton-conducting polymer electrolyte, Journal of The Electrochemical Society, (1994) 141 2061-2067. [152] H. Inaba, M. Iwaku, K. Nakase, H. Yasukawa, I. Seo, N. Oyama, Electrochromic display device of tungsten trioxide and prussian blue films using polymer gel electrolyte of methacrylate, Electrochimica Acta, (1995) 40 227-232. [153] M. A. B. Gomes, D. Goncalves, E. C. Pereira de Souza, B. Valla, M. A. Aegerter, L. O. S. Bulhoes, Solid state electrochromic display based on polymer electrode-polymer electrolyte interface, Electrochimica Acta, (1992) 37 1653-1656. [154] U. LavrencicStangar, B. Orel, I. Grabec, B. Ogorevc, K. Kalcher, Optical and electrochemical properties of CeO2 and CeO2-TiO2 coatings, Solar Energy Materials and Solar Cells, (1993) 31 171-185. [155] T. Niwa, O. Takai, All-solid-state reflectance-type electrochromic devices using iridium tin oxide film as counter electrode, Thin Solid Films, (2010) 518 5340-5344. [156] S. F. Hong, L. C. Chen, A red-to-gray poly(3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT:PSS composite counter electrode, Electrochimica Acta, (2010) 55 3966-3973. [157] J. Y. Wang, C. M. Yu, S. C. Hwang, K. C. Ho, L. C. Chen, Influence of coloring voltage on the optical performance and cycling stability of a polyaniline-indium hexacyanoferrate electrochromic system, Solar Energy Materials and Solar Cells, (2008) 92 112-119. [158] M. A. Invernale, V. Seshadri, D. M. D. Mamangun, Y. Ding, J. Filloramo, G. A. Sotzing, Polythieno 3,4-b thiophene as an optically transparent ion-storage layer, Chemistry of Materials, (2009) 21 3332-3336. [159] E. Unur, P. M. Beaujuge, S. Ellinger, J. H. Jung, J. R. Reynolds, Black to transmissive switching in a pseudo three-electrode electrochromic device, Chemistry of Materials, (2009) 21 5145-5153. [160] M. K. Georges, R. A. Kee, R. P. N. Veregin, G. K. Hamer, P. M. Kazmaier, Nitroxide mediated free-radical polymerization process-autopolymerization, Journal of Physical Organic Chemistry, (1995) 8 301-305. [161] T. J. Connolly, M. V. Baldovi, N. Mohtat, J. C. Scaiano, Photochemical synthesis of TEMPO-capped initiators for 'living' free radical polymerization, Tetrahedron Letters, (1996) 37 4919-4922. [162] T. Fukuda, T. Terauchi, A. Goto, K. Ohno, Y. Tsujii, T. Miyamoto, S. Kobatake, B. Yamada, Mechanisms and kinetics of nitroxide-controlled free radical polymerization, Macromolecules, (1996) 29 6393-6398. [163] R. P. N. Veregi | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48029 | - |
| dc.description.abstract | 本論文主要探討有機分子2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)當作穩定自由基提供與得到電子,並應用於電致色變元件之中,討論搭配不同電致色變材料以及操作環境下的影響。首先先對電致色變材料與元件的性質與量測方法作一簡短的介紹,並對有機電致色變分子與高分子的合成方法以及TEMPO的歷史與應用端做一完整的介紹。
TEMPO的電化學特性與適用的環境先作一基礎之研究。我們更換了六種不同的有機溶劑以及不同的操作電位,找出TEMPO分子最適合進行氧化還原反應之環境為propylene carbonate (PC)溶劑,搭配最適化之PProDOT-Et2導電高分子電致色變薄膜所組成的元件中,操作在-0.5 ~ 0.9 V之下有著最佳之元件長期穩定性。此種混合式的元件具有著不需搭配薄膜電量之優點,由TEMPO穩定地提供所需要之電子來使用的高分子薄膜能夠完全地著去色,混合式的元件在590 nm波長之下具有著69%的光學穿透度變化。 TEMPO被使用來當作穩定的對電極,搭配兩種不同的還原著色材料:PEDOT以及heptyl viologen (HV)來組裝成一具有多色階之混合式電致色變元件。 根據操作電壓的不同,元件所操作的系統也不同,分成兩個階段:TEMPO-PEDOT系統以及TEMPO-HV系統。當以TEMPO-PEDOT系統運作時,元件可以低電壓取得光學穿透改變約20%在610 nm波長之下;而以較高電壓操作時,元件可取得光學改變高達69%。 TEMPO分子進一步的搭配固態電解質Succinonitrile (SN)以及奈米等級之SiO2顆粒來組成一具有高著色效率的全固態元件。奈米等級之SiO2顆粒不但有消除SN固態電解質之結晶所造成的去色問題,且進一步的提供電子運動的通道,提高HV沈積於ITO玻璃上之效率,進而提高元件的著色效率。 TEMPO被應用來不只當作提供電子之氧化還原對,且可以當作用來接受電子搭配polyaniline (PANI)來使元件可顯現出三種狀態的表現。當元件被操作在正電位時,此時系統是一個TEMPO-HV的表現,呈現出綠色到藍色的狀態;另一方面,當系統被操作在負電位時,系統將呈現一個PANI-TEMPO的狀態,呈現出由綠色到無色的情況。根據以上的結果,TEMPO不只被應用來當作搭配還原著色的材料,且可以搭配氧化著色的材料來使的TEMPO的應用更加的多元化。 在附錄A中介紹了應用TMPD與HV搭配固態電解質SN所形成的全固態電致色變元件,其電流響應與光學反應速度均比溶液態元件性質來的優秀。附錄B則應用了電化學式石英震盪天平(EQCM)儀器,對一氧化著色之電致色變高分子PhSN Diamine-Pas進行不同離子傳輸於高分子薄膜中的運動模式探討,希望找出最適合應用的電解質鹽類系統。 | zh_TW |
| dc.description.abstract | In this dissertation, the main propose is to investigate the electrochemical properties of the organic molecule 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and its applications for electrochromic devices.
Firstly, we make a short introduce of electrochromic (EC) materials and devices and also a completed introduction of conducting polymers and its’ synthesis methods. The history and applications are discussed here. A stable organic radical, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), was studied. We employed TEMPO as a cathodic radical provider in propylene carbonate (PC) and poly(3,4-propylenedioxythiophene) derivatives (PProDOT-Et2) as an anodic electrochromic (EC) thin film, which was obtained through electropolymerization. By assembling them together in a device, the electrochemical and optical performances of this hybrid electrochromic device (ECD) showed reversible cycling stability and high absorbance attenuation in the visible range. By selecting proper electrolytes (LiClO4/PC) and controlling the deposited charge of the PProDOT-Et2 thin film, it was possible to obtain a transmittance change (ΔT) of up to 69% at 590 nm with no degradation after operating between -0.5 and 0.9 V for 10,000 cycles. We talk about TEMPO and two electrochromic (EC) materials, poly(3,4-ethylenedioxythiophene) (PEDOT) and heptyl viologen (HV(BF4)2) were utilized to fabricate a hybrid electrochromic device (ECD). PEDOT and HV(BF4)2 were respectively used as film and solution type cathodic EC materials. The novel ECD exhibited two-stage redox reactions with high absorbance attenuation in the visible region. With the variation of the operating voltage, a transmittance change (ΔT) of 20% at 610 nm was observed in the first stage (-0.5 ~ 0.8 V), and that of 68% was observed in the second stage (0.9 ~ 1.5 V). Furthermore, fast switching times of 6.9 and 2.1s were estimated for bleaching and darkening, respectively. The coloration efficiencies at 610 nm were found to be 171.9 cm2C-1 and 91.0 cm2C-1 for the first and second stages, respectively. Continuously, heptyl viologen (HV(BF4)2) works as the cathodic coloring solution (electrochromic), TEMPO as the anodic radical provider (ion-storage layer), and crystals of succinonitrile (SN)-plastic as the solid matrix. The electrochemical and electrochromic properties of HV(BF4)2 and TEMPO molecules are analyzed from their in a 0.1 M electrolyte of tetrabutylammonium tetrafluoroborate (TBABF4) in PC. 6 wt% silicon dioxide (SiO2) nanoparticles is added to the matrix to eliminate its crystalline nature. This all-solid-state ECD made with this non-crystalline solid matrix shows a high optical contrast with coloration efficiencies of ca. 65.5 and 342.2 cm2/C at 610 nm at two stages. The transmittance of the ECD at 610 nm has changed from 81% (bleached) to 6% (darkened), with an applied potential of 1.5 V. A novel hybrid type electrochromic device (ECD) was fabricated, using a stable TEMPO, polyaniline (PANI) and heptyl viologen (HV(BF4)2). PANI and HV(BF4)2 were used as film and solution type anodic and cathodic EC materials, respectively in chapter 6. TEMPO acts only as an ionic storage layer and works in pair with either of the electrochromic materials. With the variation of the operating voltage between 0 ~ 1.5 V the TEMPO-HV system showed electrochromism and a transmittance change (ΔT) of 46% at 550 nm. With the variation of the voltage between 0 ~ -1.0 V the TEMPO-PANI system showed electrochromism and a ΔT of 45% at 700 nm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:44:44Z (GMT). No. of bitstreams: 1 ntu-100-D95549004-1.pdf: 12630212 bytes, checksum: 24775e2ce7fed17338c93ebb8cfcd11c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chinese abstract (中文摘要) I
Abstract III Table of contents V List of tables XI List of figures XIII Nomenclatures XXII Chapter 1 Introduction 1 1-1 Viologens 6 1-1-1 History of viologens 6 1-1-2 Mechanism and application of viologens 6 1-1-3 Viologen based ECDs 9 1-2 Poly(3,4-alkylenedioxythiophene)s (PXDOTs) 11 1-2-1 Introductions and brief history of PXDOTs 11 1-2-2 Historical development of PEDOT 12 1-2-3 Preparation methods of PEDOT 14 1-2-3-1 Electropolymerization 14 1-2-3-2 Oxidative Chemical Polymerization 16 1-2-4 The basically physical and chemical properties of PEDOT 16 1-2-4-1 Electrochemical property of PEDOT 16 1-2-5 PEDOT based electrochromic device systems 19 1-2-6 Electrochromic properties of PEDOT’s derivatives 26 1-3 Polyaniline used in electrochromic device 29 1-4 Counter electrodes for electrochromic devices 32 1-5 TEMPO radical molecule in electrochemistry 33 1-6 Motivation and research objectives 35 Chapter 2 Experimental 42 2-1 Preparation of PEDOT & PProDOT-Et2 films 42 2-1-1 Chemicals 42 2-1-2 Electropolymerization of PEDOT & PProDOT-Et2 films 42 2-1-3 Characterization of PEDOT & PProDOT-Et2 films 43 2-1-4 Assembly of the PEDOT & PProDOT-Et2 films based ECD 43 2-2 Synthesis of 1,1'-diheptyl-4,4'-bipyridinium (heptyl viologen; HV) 44 2-3-1 Chemicals 44 2-3-2 Preparation method of HV(BF4)2 44 2-3 Preparation of polyaniline (PANI) films 45 2-4-1 Chemicals 45 2-4-2 Electrochemical deposition of PANI 45 Chapter 3 Incorporation of a stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device 46 3-1 Introduction 46 3-2 Results & discussions 48 3-2-1 CV analysis of solvent effects 48 3-2-2 Absorbance spectra and optimal film thickness of PProDOT-Et2 53 3-2-3 Solvent effect and operation windows of TEMPO/solvent/PProDOT-Et2 ECD 55 3-2-3-1 Acetonitrile in TEMPO based ECD 55 3-2-3-2 Dimethylformamide in TEMPO based ECD 61 3-2-3-3 Proplyene carbonate in TEMPO based ECD 66 3-2-4 Diffusion coefficient of TEMPO in ACN, DMF and PC electrolyte 71 3-2-5 Electron transfer rate of PProDOT-Et2 film 75 3-2-6 Reaction mechanism of TEMPO/PProDOT-Et2 hybrid type ECD 78 3-2-7 Surface morphology of PProDOT-Et2 film 79 3-2-8 Long-term stability of TEMPO/PProDOT-Et2 ECD 79 3-3 Summary 81 Chapter 4 A high contrast hybrid electrochromic device containing PEDOT, heptyl viologen, and radical provider TEMPO 82 4-1 Introduction 82 4-2 Experimental 84 4-2-1 Materials 84 4-2-2 Film preparation & measurement 84 4-2-3 Assembly and characterization of the ECD 85 4-3 Results & Discussion 86 4-3-1 CV analysis of the hybrid electrochromic device 86 4-3-2 Absorbance spectra and transmittance response 89 4-3-3 Coloration efficiency and cycling stability 91 4-4 Summary 94 Chapter 5 High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen, and succinonitrile 95 5-1 Introduction 96 5-2 Experimental 98 5-2-1 Materials 98 5-2-2 Preparation of the electrolytes 98 5-2-3 Assembly and characterization of the ECD 99 5-2-4 Measurement 99 5-3 Results & Discussion 100 5-3-1 Cyclic voltammetric (CV) analysis of the all-solid-state electrochromic device 100 5-3-2 In-situ potential-UV-vis absorption 3D spectra and transmittance response 104 5-3-3 The concentration effect of SiO2 nanoparticles 106 5-3-4 Coloration efficiency 106 5-3-5 The effect of SiO2 nanoparticles 109 5-4 Summary 111 Chapter 6 A transparent-green-blue electrochromic device based on 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), polyaniline, and HV(BF4)2 112 6-1 Introduction 113 6-2 Experimental 115 6-2-1 Materials 115 6-2-2 Film preparation 115 6-2-3 Measurement 115 6-2-4 Assembly and characterization of the ECD 116 6-3 Results & Discussion 117 6-3-1 Cyclic voltametric (CV) analysis of the hybrid electrochromic device 117 6-3-2 Absorbance spectra and transmittance response 121 6-3-3 Coloration efficiency 124 6-4 Summary 126 Chapter 7 Conclusions and suggestions 127 7-1 Conclusions 127 7-1-1 Electrochemical property of TEMPO molecule (Chapter 3) 127 7-1-2 Incorporating of TEMPO with PEDOT polymer and HV (Chapter 4) 127 7-1-4 All-solid-state ECD based on TEMPO, HV, and SN (Chapter 5) 128 7-1-5 Green to transparency to blue ECD (Chapter 6) 128 7-2 Suggestions & prospects 129 7-2-1 For TEMPO applications 129 7-2-2 For electrochromic materials 129 7-2-3 For TEMPO polymer 129 Chapter 8 References 130 Appendix A All-solid-state electrochromic device based on succinonitrile 162 A-1 Introduction 162 A-2 Experimental 164 A-3 Results & discussion 165 A-4 Reference 172 Appendix B An EQCM study for anodically coloring electrochromic polymer thin films with pendent phenothiazine redox units 175 B-1 Introduction 176 B-2 Experimental 177 B-2-1 Materials 178 B-2-2 Film preparation 178 B-2-3 Measurement 178 B-3 Results & Discussion 179 B-4 Reference 191 Appendix C Curriculum vitae 196 | |
| dc.language.iso | en | |
| dc.subject | 穩定自由基 | zh_TW |
| dc.subject | TEMPO | zh_TW |
| dc.subject | 氧化還原對 | zh_TW |
| dc.subject | 電致色變 | zh_TW |
| dc.subject | 混合式電致色變元件 | zh_TW |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | Conducting polymer | en |
| dc.subject | Redox pair | en |
| dc.subject | Stable free radical | en |
| dc.subject | Hybrid type ECD | en |
| dc.subject | Electrochromism | en |
| dc.title | 穩定自由基搭配導電高分子應用於有機電致色變元件 | zh_TW |
| dc.title | Organic Electrochromic Devices Based on Stable Free Radical (TEMPO) and Conducting Polymers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 周澤川,楊明長,戴子安,梁文傑,吳嘉文,林正嵐 | |
| dc.subject.keyword | TEMPO,穩定自由基,電致色變,導電高分子,混合式電致色變元件,氧化還原對, | zh_TW |
| dc.subject.keyword | Conducting polymer,Electrochromism,Hybrid type ECD,Stable free radical,Redox pair, | en |
| dc.relation.page | 206 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 12.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
