請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4801
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹森(Sen Jan) | |
dc.contributor.author | Hung-Wei Chou | en |
dc.contributor.author | 周宏瑋 | zh_TW |
dc.date.accessioned | 2021-05-14T17:47:32Z | - |
dc.date.available | 2015-03-16 | |
dc.date.available | 2021-05-14T17:47:32Z | - |
dc.date.copyright | 2015-03-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-12 | |
dc.identifier.citation | Chaen, M., Fukusawa, M., Maeda, A., Sakurai, M., Takematsu, M., 1993: Abyssal Boundary Current along the Northwestern Perimeter of the Philippine Basin. Deep Ocean Circulation — Physical and Chemical Aspects, 51–67
Chen, C.T.A.1988: Exchange of Water Masses Between the East China Sea and the Black Stream: A Proposed Descriptive Chemical Oceanographic Study. Extended Abstract of the Workshop on Kuroshio Edge Exchange Processes. Stony Brook, N.Y., May4–6 1988, 6.1–5.6. Chen, C.T.A., 2005: Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough and beyond. J. Geophys. Res., 110, C05012, http://dx. doi.org/10.1029/2004JC002494. Chen, C.T.A.,Huang,M.H.,1996: Amid-depth front separating the South China Sea water and the Philippine Sea water. J. Oceanogr., 52, 17–25. Chen, C.T.A.,Wang,S.L.,1998: Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea. J. Geophys. Res., 103, 12,683–12,688. Defant, A., 1961: Physical Oceanography. New York: Macmillan Company. Emery, W.J., 2003: Water types and water masses. Encyclopedia of Atmospheric Sciences. 2nd Ed, 1556–1567. Ertel, H., 1942: Ein Neuer hydrodynamischer Wirbelsatz. Met. Z., 59, 271–281. Fofonoff, N.P., 1977: Computation of potential temperature of seawater for an arbitrary reference pressure. Deep-Sea Res., 24, 489-491 Fofonoff, N. P., and Millard R. C., 1983: Algorithms for computation of fundamental properties of seawater.,Tech. Rep. 44, UNESCO, Technical Papers in Marine Science. Friedman, R.M., 1989: Appropriating the Weather. Vilhelm Bjerknes and the Construction of a Modern Meteorology. Ithaca and London: Cornell University Press. Fukasawa, M., Teramoto, T. and Taira, K., 1987: Abyssal Current along the Northern Periphery of Shikoku Basin. J. Oceanogr. Soc. Japan, 42, 459–472. Jackett, D.R., McDougall, T.J., Feistel, R., Wright, D.G., Griffies, S.M., 2006: Algorithms for density, potential temperature, conservative temperature and the freezing temperature of seawater. J. of Atmospheric and Oceanic Technology, 23, 1709–1728. Johnson, D.R., Boyer, T.P., Garcia, H.E., Locarnini, R.A., Mishonov, A.V., Pitcher, M.T., Baranova, O.K., Antonov, J.I., and Smolyar, I.V., 2006: World Ocean Database 2005 Documentation. Ed. Sydney Levitus. NODC Internal Report 18, U.S. Government Printing Office, Washington, D.C., pp163 Jung, G. H.,1955: Heat transport in the Atlantic Ocean. Dept. of Oceanography, A. and M. College of Texas, Ph.D. thesis. Kaneko, I.,Takatsuki, Y.and Kamiya, H., 2001: Circulation of Intermediate and Deep Waters in the Philippine Sea. J. Oceanogr., 57, 397-420. Kawabe, M. and Fujio, S., 2010: Pacific Ocean Circulation Based on Observation. J. Oceanogr., 66, 389-403. Mensah, V. , Jan, S., Chiou, M.D., Kuo, T.H., Lien, R.C., 2014: Evolution of the Kuroshio Tropical Water from the Luzon Strait to the east of Taiwan. Deep-Sea Res., I86, 68–81. Mitsuzawa, K. and Holloway, G., 1998: Characteristics of deep currents along trenches in the northwest Pacific. J. Geophys. Res., 103, 13,085–13,092. Moffat, C., Owens, B., Beardsley, R.C., 2009: On the characteristics of Circumpolar Deep Water Intrusions to the west Antarctic Peninsula Continental Shelf. J. Geophys. Res., 114, C05017 Neumann, G., 1954: Notes on the wind-driven ocean circulation, New York University, College of Engineering, Research Div (Unpublished manuscript.) Nitani, H., 1972: Beginning of the Kuroshio. In: Kuroshio-its physical aspects. Tokyo Univ. Press, 129-163. O’Dwyer, J. and Williams, R. G., 1997: The climatological distribution of potential vorticity over the abyssal ocean. J. Phys. Oceanogr., 27, 2488–2506. Pai, S.C., Jan, S., Chu, K.S., Huang, P.Y., Takahashi, M.M., 2015: Kuroshio or Oyashio-Sources of the 700 m Deep Water off Hualien coast, eastern Taiwan. 2015(accepted) Poole, R. and Tomczak, M., 1999: Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep-Sea Res., 46, 1895-1921. Qiu, B., 2001: Kuroshio and Oyashio Currents. Encyclopedia of Ocean Science, Academic Press, New York, 1413–1425. Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension Jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys.Oceanogr., 35, 2090–2103 Qiu, B. and Chen, S., 2012: Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr., 42, 193–206. Stewart, R.H., 2003: Introduction To Physical Oceanography. Department of Oceanography, Texas A & M University, http://oceanworld.tamu.edu/resources/ocng_textbook/PDF_files/book.pdf Stommel, H., 1958: The abyssal circulation. Deep-Sea Res., 5 (1), 80–82. Stommel, H., Arons, A.B., and Faller, A.J., 1958: Some examples of stationary flow patterns in bounded basins. Tellus, 10 (2), 179–187. Stommel, H., and Arons, A.B., 1960: On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217–233. Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean, with application to the equatorial currents of the eastern Pacific. Proc. Nat. Acad. Sci. U.S.A., 33, 318–326. Sverdrup, H.U., Johnson, M.W., Fleming, R.H., 1942: The Oceans. Prentice-Hall, Inc, New York Talley L. D. and McCartney, M. S., 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 1189–1205. Tomczak, M., 1999: Some historical, theoretical and applied aspects of quantitative water mass analysis. J. Marine Res., 57(2), 275–303. Tomczak, M., Large, D., 1989: Optimum multiparameter analysis of mixing in the thermocline of the east Indian Ocean., J. Geophys. Res., 94, 16141–16149 Wijffels, S. E., Hall, M. M., Joyce, T., Torres, D. J., Hacker, P. and Firin,g E., 1998: Multiple deep gyres of the western North Pacific: A WOCE section along 149°E. J. Geophys. Res., 103, 12985–13009 Wright, D. G., Pawlowicz, R., McDougall, T. J., and Feistel, R., 2011: Absolute Salinity, “Density Salinity” and the reference composition salinity Scale: Present and future use in the seawater standard TEOS-10. Ocean Sci., 7, 1–26. Wunsch, C., 2002: Ocean observations and the climate forecast problem. Meteorology at the Millennium, R. P. Pearce, ed. London: Royal Meteorological Society, 233-245. Wunsch, C., 2002b: What is the thermohaline circulation? Science, 298(5596), 1179–1180. Wunsch, C. and Ferrari, R., 2004: Vertical mixing, energy, and the general circulation of the oceans. Ann. Rev. of Fluid Mech., 36, 281-314. You, Y., Lutjeharms, J.R.E., Boebel, O., de Ruijter, W.P.M., 2003: Quantification of the interocean exchange of intermediate water masses around southern Africa. Deep-Sea Res. II, (PII: S0967-0645(02)00384-3). 王冑、陳慶生 (1997) 南海東北部海域次表層與中層水之流徑,熱帶海洋,1997年第十九卷第2期 王柏建 (1997) 台灣東北海域的水團特性──夏季南海水的時空變化 國立臺灣大學海洋研究所碩士論文 石學法,鄢全樹,2013:西太平洋典型邊缘海盆的岩漿活動,地球科學進展,28( 7),737-750 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4801 | - |
dc.description.abstract | 本研究旨在探討臺灣東部海域1000公尺深以下之深層水性質暨其來源和水團組成。本研究先使用「黑潮流量及其變化觀測計畫」下黑潮觀測航次所得之CTD資料,以溫鹽度的斜率變化界定深層水團的密度邊界,接著使用美國國家海洋資料中心的CTD、ARGO水文資料以及科技部海洋學門資料庫的船測CTD資料,整理出包含整個菲律賓海海域東經118°~150°,北緯4°~40°,每0.5°×0.5°為一網格,最大深度為2000公尺深平面網格的三維資料。然後,利用前一階段溫鹽斜率分析所得之密度區間,於設定之密度區間內進行均方根分析,以求鄰近深層海水與台灣東部海域深層海水性質之相似度,再計算位渦度、水層厚和斜壓地轉流場以追溯台灣東部海域深層水之可能路徑。最後,使用由花蓮東方的測線資料,帶入文獻中此地區可能之中、深層水來源水型,使用水團分析方法以求得台灣東部測線斷面上深層水的水團組合成分。
斜率分析研究結果顯示,台灣東部海域之深層水可以分成密度區間為1027.4~1027.5 kg m-3的「深海水第一層」,鹽度34.487~34.551、溫度3.764~2.700℃,以及密度區間為1027.6~1027.65 kg m-3的「深海水第二層」,鹽度34.578~34.610、溫度2.349~2.040℃。均方根分析的研究結果顯示,深海水第一層其鹽度性質與相同緯度海域相似,橫跨整個菲律賓海域,深海水第二層則是與其同緯度以上之菲律賓海北方海域相似。至於位渦度、水層厚以及斜壓地轉流場的計算結果則表示深海水第一層之深海水可能是由近北緯24°之深海通道進入菲律賓海盆,碰到琉球島弧後南下進入花東海盆而形成,深海水第二層也顯示了與深海水第一層類似的流況。水團分析的結果顯示,深海水第一層的水團組成為繞極深層水略等於太平洋中層水的比例,而深海水第二層則為繞極深層水大於太平洋中層水的情形。 | zh_TW |
dc.description.abstract | The purpose of this study is to quantify the sources and routes of deep water mass east of Taiwan. A hydrographic data set, which ranges from 118°E to 150°E and from 4°N to 40°N with maximum depth 2000 m is obtained from Argo and CTD data over the past 20 years. This study adopts root mean square method to investigate the similarity of water masses east of Taiwan. The potential vorticity, water layer thickness and baroclinic geostrophic velocity calculating are also used to trace the deep water route in the Philippine Sea Basin. Finally, this study applies the water mass components analysis with North Pacific Intermediate Water and Circumpolar Deep Water, these two different water masses characters in the CTD datasets east of Taiwan to determine the water mass composition.
The deep water east of Taiwan is defined as 'Layer 1 Deep Water' and 'Layer 2 Deep Water'. The former has a density range from 1027.4 kg m-3 to 1027.5 kg m-3, salinity range from 34.487 to 34.551 and temperature range from 3.764℃ to 2.701℃. The latter has a density range from 1027.6 kg m-3 to 1027.65 kg m-3, salinity range from 34.578 to 34.610 and temperature range from 2.349℃ to 2.040℃. The results of root mean square analysis show the water with similar salinity is zonally distributed in Layer 1 and is in northern half of Philippine Basin in Layer 2. Results from potential vorticity, water layer thickness and baroclinic geostrophic velocity indicate that the deep water east of Taiwan in Layer 1 most likely comes from the Pacific through the Philippine Sea till the Ryukyu Island Arc at 24°N. When the water impinges to the Ryukyu Island Arc, it is separated as two flows toward the north and the south. The southward-moving water goes into the Huatung Basin forming a cyclonic circulation and then leave the Huatung Basin to east of Luzon Island. The deep water east of Taiwan in Layer 2 shows a similar flow pattern as that in Layer 1. The deep water east of Taiwan in Layer 1 consists of Circumpolar Deep Water and North Pacific Intermediate Water but with more Circumpolar Deep Water than North Pacific Intermediate Water in Layer 2. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:47:32Z (GMT). No. of bitstreams: 1 ntu-104-R01241105-1.pdf: 10275133 bytes, checksum: 90612e291ba2e99e163cfd724866a961 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 ii
摘要 iv Abstract v 圖目錄 viii 表目錄 xi 第一章、前言 1 1-1 臺灣東部海域及其水團 1 1-2 深海環流系統簡述 2 1-3 水團與深海環流系統之關係 4 1-4 菲律賓海盆地型與水團 6 1-5 臺灣東部海域深層海流 11 1-5-1 第一種類型:由北往南 11 1-5-2 第二種類型:由南往北 13 1-5-3 第三種類型:由東往西 16 1-6 研究目的 17 第二章、資料來源與處理 18 2-1水文資料 18 2-1-1 黑潮流量及其變化觀測計畫資料 19 2-1-2 美國國家海洋資料中心水文資料 23 2-1-3 科技部海洋學門資料庫水文資料 25 2-1-4 資料網格化 26 2-2 地形水深資料 28 第三章、資料分析方法 29 3-1深海水分層界定 30 3-2水團組成分析 31 3-3水團性質相似度分析 33 3-4水團來源之研究方法 34 3-4-1位渦度及水層高度計算 34 3-4-2斜壓地轉流計算 36 第四章、資料分析結果 38 4-1臺灣東部海域深海水分層斜率 38 4-2 水團分析結果 41 4-3 地轉流結果 46 4-4 RMS結果 49 4-4 PV結果與水層厚度 51 第五章、討論 56 5-1渦旋影響最大深度 56 5-2臺灣東部海域深層水之深度定義 56 5-3 臺灣東部海域深層水之水團組成 57 5-4地轉流不動層設定之合理性 58 5-5深海水第一層之來源 61 5-6深海水第二層之來源 64 第六章、結論 67 參考文獻 69 附錄一 74 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣東部海域深海水團之溫鹽性質與來源探討 | zh_TW |
dc.title | Sources and Routes of Deep Water Masses East of Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 白書禎(Su-Chrng Pai),張明輝(Ming-Huei Chang) | |
dc.subject.keyword | 深海水團,臺灣東部海域,位渦度守恆,水團分析,深海環流, | zh_TW |
dc.subject.keyword | Deep Water Mass,East of Taiwan,Conservation of Potential VorticitylWater Mass Analysis,Deep Circulation, | en |
dc.relation.page | 89 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-02-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 10.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。