請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48009完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳(Y. Jane Tseng) | |
| dc.contributor.author | Tze-Feng Tian | en |
| dc.contributor.author | 田士鋒 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:44:22Z | - |
| dc.date.available | 2016-08-23 | |
| dc.date.copyright | 2011-08-23 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | [1] L. Mondello, et al., 'Comprehensive two-dimensional gas chromatography-mass spectrometry: a review,' Mass Spectrom Rev, vol. 27, pp. 101-24, Mar-Apr 2008.
[2] J. L. Hope, et al., 'Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples,' Talanta, vol. 65, pp. 380-8, Jan 30 2005. [3] M. Kusano, et al., 'Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice,' J Chromatogr B Analyt Technol Biomed Life Sci, vol. 855, pp. 71-9, Aug 2007. [4] R. M. Perera, et al., 'Headspace solid-phase microextraction--comprehensive two-dimensional gas chromatography of wound induced plant volatile organic compound emissions,' Analyst, vol. 127, pp. 1601-7, Dec 2002. [5] K. M. Pierce, et al., 'A principal component analysis based method to discover chemical differences in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) separations of metabolites in plant samples,' Talanta, vol. 70, pp. 797-804, Nov 15 2006. [6] F. David, et al., 'Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode,' J Sep Sci, vol. 31, pp. 3395-403, Oct 2008. [7] X. Guo and M. E. Lidstrom, 'Metabolite profiling analysis of Methylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry,' Biotechnol Bioeng, vol. 99, pp. 929-40, Mar 1 2008. [8] R. E. Mohler, et al., 'Comprehensive analysis of yeast metabolite GC x GC-TOFMS data: combining discovery-mode and deconvolution chemometric software,' Analyst, vol. 132, pp. 756-67, Aug 2007. [9] R. E. Mohler, et al., 'Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells,' Anal Chem, vol. 78, pp. 2700-9, Apr 15 2006. [10] R. E. Mohler, et al., 'Identification and evaluation of cycling yeast metabolites in two-dimensional comprehensive gas chromatography-time-of-flight-mass spectrometry data,' J Chromatogr A, vol. 1186, pp. 401-11, Apr 4 2008. [11] S. O'Hagan, et al., 'Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics,' Anal Chem, vol. 79, pp. 464-76, Jan 15 2007. [12] R. A. Shellie, et al., 'Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts,' J Chromatogr A, vol. 1086, pp. 83-90, Sep 9 2005. [13] A. E. Sinha, et al., 'Algorithm for locating analytes of interest based on mass spectral similarity in GC x GC-TOF-MS data: analysis of metabolites in human infant urine,' J Chromatogr A, vol. 1058, pp. 209-15, Nov 26 2004. [14] P. Q. Tranchida, et al., 'Acquisition of deeper knowledge on the human plasma fatty acid profile exploiting comprehensive 2-D GC,' J Sep Sci, vol. 31, pp. 3347-51, Oct 2008. [15] X. Li, et al., 'Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus,' Anal Chim Acta, vol. 633, pp. 257-62, Feb 9 2009. [16] D. Zhang, et al., 'Two-dimensional correlation optimized warping algorithm for aligning GC x GC-MS data,' Anal Chem, vol. 80, pp. 2664-71, Apr 15 2008. [17] L. Ramos, Comprehensive Two Dimensional Gas Chromatography: Elsevier, Oxford, UK, 2009. [18] A. E1947-98, 'Standard Specification for Analytical Data Interchange Protocol for Chromatographic Data,' ed, 2009. [19] R. Rew, Davis, G., 'NetCDF: an interface for scientific data access,' Computer Graphics and Applications, IEEE vol. 10, p. 6, 1990. [20] M. M. Koek, et al., 'Higher mass loadability in comprehensive two-dimensional gas chromatography-mass spectrometry for improved analytical performance in metabolomics analysis,' J Chromatogr A, vol. 1186, pp. 420-9, Apr 4 2008. [21] K. A. Kouremenos, et al., 'One-pot microwave derivatization of target compounds relevant to metabolomics with comprehensive two-dimensional gas chromatography,' J Chromatogr B Analyt Technol Biomed Life Sci, vol. 878, pp. 1761-70, Jul 1 2010. [22] J. E. Froehlich, et al., 'Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis,' J Proteome Res, vol. 2, pp. 413-25, Jul-Aug 2003. [23] S. Hu, et al., 'Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry,' Proteomics, vol. 5, pp. 1714-28, Apr 2005. [24] I. Jolliffe, Principal Component Analysis: Encyclopedia of Statistics in Behavioral Science, 2005. [25] M. C. C. Glenn W. Milligan, 'A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis,' Multivariate Behavioral Research vol. 21, 2010. [26] E. L. R. Chiang L. H., Richard D. B., 'Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis,' Chemometrics and Intelligent Laboratory Systems, vol. 50, p. 9, 2000. [27] N. D. B. Sidiropoulos, R.; Giannakis, G.B., 'Parallel factor analysis in sensor array processing,' Signal Processing, IEEE Transactions on, vol. 48, p. 11, 2000. [28] B. J. S. Prazen, R. E.; Kowalski, B. R, 'Standardization of Second-Order Chromatographic/Spectroscopic Data for Optimum Chemical Analysis,' Anal. Chem., vol. 70, 1998. [29] C. G. Fraga, et al., 'Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on both dimensions,' Anal Chem, vol. 73, pp. 5833-40, Dec 15 2001. [30] V. G. van Mispelaar, et al., 'Quantitative analysis of target components by comprehensive two-dimensional gas chromatography,' J Chromatogr A, vol. 1019, pp. 15-29, Nov 26 2003. [31] K. M. Pierce, et al., 'A comprehensive two-dimensional retention time alignment algorithm to enhance chemometric analysis of comprehensive two-dimensional separation data,' Anal Chem, vol. 77, pp. 7735-43, Dec 1 2005. [32] C. Oh, et al., 'Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry peak sorting algorithm,' J Chromatogr A, vol. 1179, pp. 205-15, Feb 1 2008. [33] B. Wang, et al., 'DISCO: distance and spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics,' Anal Chem, vol. 82, pp. 5069-81, Jun 15 2010. [34] S. Kim, et al., 'An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure,' Bioinformatics, vol. 27, pp. 1660-6, Jun 15 2011. [35] R. D. C. Team, R: A Language and Environment for Statistical Computing. Vienna, Austria, 2010. [36] P. Michna, 'RNetCDF: R Interface to NetCDF Datasets,' 2011. [37] S. E. Reichenbach, et al., 'Image background removal in comprehensive two-dimensional gas chromatography,' J Chromatogr A, vol. 985, pp. 47-56, Jan 24 2003. [38] A. Kolbe, et al., 'Combined transcript and metabolite profiling of Arabidopsis leaves reveals fundamental effects of the thiol-disulfide status on plant metabolism,' Plant Physiol, vol. 141, pp. 412-22, Jun 2006. [39] K. Cho, et al., 'Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling,' J Proteome Res, vol. 7, pp. 2980-98, Jul 2008. [40] W. H. Heijne, et al., 'Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology,' Expert Rev Proteomics, vol. 2, pp. 767-80, Oct 2005. [41] C. T. Ferrara, et al., 'Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling,' PLoS Genet, vol. 4, p. e1000034, Mar 2008. [42] F. Carrari, et al., 'Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior,' Plant Physiol, vol. 142, pp. 1380-96, Dec 2006. [43] E. Y. Xu, et al., 'Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants,' Chem Res Toxicol, vol. 21, pp. 1548-61, Aug 2008. [44] H. Nam, et al., 'Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification,' Bioinformatics, vol. 25, pp. 3151-7, Dec 1 2009. [45] G. Su, et al., 'Integrated metabolome and transcriptome analysis of the NCI60 dataset,' BMC Bioinformatics, vol. 12 Suppl 1, p. S36, 2011. [46] N. Gehlenborg, et al., 'Visualization of omics data for systems biology,' Nat Methods, vol. 7, pp. S56-68, Mar 2010. [47] B. H. Junker, et al., 'VANTED: a system for advanced data analysis and visualization in the context of biological networks,' BMC Bioinformatics, vol. 7, p. 109, 2006. [48] Z. Hu, et al., 'VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology,' Nucleic Acids Res, vol. 37, pp. W115-21, Jul 1 2009. [49] G. Pavlopoulos, et al., 'Arena3D: visualization of biological networks in 3D,' BMC Systems Biology, vol. 2, pp. 104-104, 2008. [50] P. Shannon, et al., 'Cytoscape: a software environment for integrated models of biomolecular interaction networks,' Genome Res, vol. 13, pp. 2498-504, Nov 2003. [51] M. J. McGuffin and I. Jurisica, 'Interaction techniques for selecting and manipulating subgraphs in network visualizations,' IEEE Trans Vis Comput Graph, vol. 15, pp. 937-44, Nov-Dec 2009. [52] A. Barsky, et al., 'Cerebral: visualizing multiple experimental conditions on a graph with biological context,' IEEE Trans Vis Comput Graph, vol. 14, pp. 1253-60, Nov-Dec 2008. [53] G. D. Bader, et al., 'Pathguide: a pathway resource list,' Nucleic Acids Res, vol. 34, pp. D504-6, Jan 1 2006. [54] K. Arakawa, et al., 'KEGG-based pathway visualization tool for complex omics data,' In Silico Biol, vol. 5, pp. 419-23, 2005. [55] M. Kanehisa and S. Goto, 'KEGG: kyoto encyclopedia of genes and genomes,' Nucleic Acids Res, vol. 28, pp. 27-30, Jan 1 2000. [56] F. Garcia-Alcalde, et al., 'Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data,' Bioinformatics, vol. 27, pp. 137-9, Jan 1 2011. [57] H. Neuweger, et al., 'Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example,' BMC Syst Biol, vol. 3, p. 82, 2009. [58] T. Tokimatsu, et al., 'KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps,' Plant Physiol, vol. 138, pp. 1289-300, Jul 2005. [59] O. Thimm, et al., 'MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes,' Plant J, vol. 37, pp. 914-39, Mar 2004. [60] S. Symons, et al., 'Integrative systems biology visualization with MAYDAY,' J Integr Bioinform, vol. 7, 2010. [61] A. Ludemann, et al., 'PaVESy: Pathway Visualization and Editing System,' Bioinformatics, vol. 20, pp. 2841-2844, November 1, 2004 2004. [62] D. Maglott, et al., 'Entrez Gene: gene-centered information at NCBI,' Nucleic Acids Res, vol. 39, pp. D52-7, Jan 2011. [63] R. Apweiler, et al., 'UniProt: the Universal Protein knowledgebase,' Nucleic Acids Res, vol. 32, pp. D115-9, Jan 1 2004. [64] G. R. W. I. R. s. c. a. o. d. c. b. B. Bolker, et al., gplots: Various R programming tools for plotting data, 2010. [65] B. Zhang, et al., 'WebGestalt: an integrated system for exploring gene sets in various biological contexts,' Nucleic Acids Research, vol. 33, pp. W741-W748. [66] W. Huang da, et al., 'Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,' Nat Protoc, vol. 4, pp. 44-57, 2009. [67] H. J. Atherton, et al., 'Metabolomics of the interaction between PPAR-[alpha] and age in the PPAR-[alpha]-null mouse,' Mol Syst Biol, vol. 5, 2009. [68] J. Xia and D. S. Wishart, 'MetPA: a web-based metabolomics tool for pathway analysis and visualization,' Bioinformatics, vol. 26, pp. 2342-4, Sep 15 2010. [69] H. Bando, et al., 'Genes commonly upregulated by hypoxia in human breast cancer cells MCF-7 and MDA-MB-231,' Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, vol. 57, pp. 333-340, 2003. [70] Y. Wang, et al., 'Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity,' Journal of Lipid Research, vol. 47, pp. 2028-2041, September 1, 2006 2006. [71] Q. Sun, et al., 'Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth,' Proceedings of the National Academy of Sciences, vol. 108, pp. 4129-4134, March 8, 2011 2011. [72] A. Wolf, et al., 'Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme,' The Journal of Experimental Medicine, vol. 208, pp. 313-326, February 14, 2011 2011. [73] T. Gruber, 'The role of common ontology in achieving sharable, reusable knowledge bases,' Proceedings of KR’ 1991: Principles of Knowledge Representation and Reasoning, pp. 601-2, 1991. [74] M. Ashburner, et al., 'Gene ontology: tool for the unification of biology. The Gene Ontology Consortium,' Nat Genet, vol. 25, pp. 25-9, May 2000. [75] D. A. Natale, et al., 'Framework for a protein ontology,' BMC Bioinformatics, vol. 8 Suppl 9, p. S1, 2007. [76] P. N. Robinson, et al., 'The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease,' Am J Hum Genet, vol. 83, pp. 610-5, Nov 2008. [77] J. K. Nicholson, et al., ''Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data,' Xenobiotica, vol. 29, pp. 1181-1189, 1999. [78] M. Krummenacker, et al., 'Querying and computing with BioCyc databases,' Bioinformatics, vol. 21, pp. 3454-5, Aug 15 2005. [79] G. Joshi-Tope, et al., 'Reactome: a knowledgebase of biological pathways,' Nucleic Acids Res, vol. 33, pp. D428-32, Jan 1 2005. [80] D. S. Wishart, et al., 'HMDB: the Human Metabolome Database,' Nucleic Acids Res, vol. 35, pp. D521-6, Jan 2007. [81] I. Schomburg, et al., 'BRENDA: a resource for enzyme data and metabolic information,' Trends Biochem Sci, vol. 27, pp. 54-6, Jan 2002. [82] M. Kanehisa, et al., 'From genomics to chemical genomics: new developments in KEGG,' Nucleic Acids Res, vol. 34, pp. D354-7, Jan 1 2006. [83] A. Hamosh, et al., 'Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders,' Nucleic Acids Res, vol. 33, pp. D514-7, Jan 1 2005. [84] D. S. Wishart, et al., 'DrugBank: a comprehensive resource for in silico drug discovery and exploration,' Nucleic Acids Research, vol. 34, pp. D668-D672. [85] E. Lim, et al., 'T3DB: a comprehensively annotated database of common toxins and their targets,' Nucleic Acids Research, vol. 38, pp. D781-D786, January 1, 2010 2010. [86] A. M. Richard and C. R. Williams, 'Distributed structure-searchable toxicity (DSSTox) public database network: a proposal,' Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 499, pp. 27-52, 2002. [87] M. Baccini, et al., 'The NuGO proof of principle study package: a collaborative research effort of the European Nutrigenomics Organisation,' Genes & Nutrition, vol. 3, pp. 147-151, 2008. [88] B. Smith, et al., 'The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration,' Nat Biotech, vol. 25, pp. 1251-1255, 2007. [89] D. A. Moreira and M. A. Musen, 'OBO to OWL: a protege OWL tab to read/save OBO ontologies,' Bioinformatics, vol. 23, pp. 1868-1870, July 15, 2007 2007. [90] J. Day-Richter, et al., 'OBO-Edit—an ontology editor for biologists,' Bioinformatics, vol. 23, pp. 2198-2200, August 15, 2007 2007. [91] A. Sreekumar, et al., 'Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression,' Nature, vol. 457, pp. 910-4, Feb 12 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48009 | - |
| dc.description.abstract | 這篇論文包含了三個主題,第一個主題是二維氣相層析質譜圖的滯留時間校準演算法,第二個主題是3Omics:整合轉錄體學,蛋白質體學與代謝體學之系統生物學網路視覺化工具,第三個主題是人類代謝本體資料庫。
二維氣相層析質譜圖 (GCxGC-MS) 在代謝體實驗分析上帶來了更佳的分離能力,選擇性與靈敏度。在分析過程中,隨著時間或無法控制的環境因素如溫度,壓力,基質效應,或靜相降解將會造成分批注入的同樣樣品或不同樣品上的同個訊號在層析圖滯留時間上有所偏移。本篇開發的滯留時間校正演算法-2DGCMS-aligner,能夠直接使用由儀器產生的netCDF格式,偵測層析質譜圖上的訊號並使用歐式距離與Pearson相關係數來校正偏移的訊號。這個演算法已被實作成一套完整的GCxGC-MS數據分析軟體。這個軟體的功能包含了基線校正,波峰偵測,滯留時間校正與數據視覺化,可用在常規的分析上。此滯留時間演算法使用了在不同實驗條件下產生的數據作為展示並有效的矯正了滯留時間的偏移,在計算的準確度上勝於現有的滯留時間校正演算法。 3Omics 是一個能夠整合系統生物學的網路視覺化工具。它能快速整合人體的轉錄體,蛋白質體與代謝體的實驗數據以分析其關聯性並將結果視覺化。一個生化反應的上中下游之分析經整合轉錄體,蛋白質體與代謝體數據,可在3Omics透過相關網路分析 (Correlation Network),共同表現分析 (Co-expression),表現型分析 (Phenotyping),KEGG生物途徑集分析 (KEGG Pathway Enrichment) 與基因本體集 (GO enrichment) 分析而理解人體系統如何行使功能。3Omics透過相關網路來顯示在時間序列或不同實驗條件上的生物組學之間的關係。若三種生物組學的數據中缺少一種,3Omics會使用PubMed文獻資料庫中的轉錄體,蛋白質體與代謝體資訊來填補。共同表現分析能夠協助探索生物組學間的共同功能。表現型分析整合了人類孟德爾遺傳學資料庫的資料。KEGG生物途徑富集分析使用代謝體的數據並在KEGG資料庫中探索富集的生物途徑。基因本體富集分析幫助使用者找出顯著表現的轉錄數據所對應的基因本體。3Omics將現有的軟體之優點與功能納入其中,簡化了數據分析的程序並讓使用者只需要簡單的操作就能夠得到分析的結果。視覺化與分析結果也可讓使用者下載作為後續的分析使用。使用者可以到http://cmdd.csie.ntu.edu.tw/~3omics免費取得並使用。 在最後的章節中,我們建立了人類代謝本體資料庫 (Human Metabolome Ontology)。目前在代謝體的分析流程中,對於代謝體的生物意義進行評估與解釋需要手動收集各種零散的文獻如Gene Ontology,BRENDA,KEGG Brite,KEGG Pathway,人類代謝體資料庫,OMIM等等工程繁瑣。我們開發了人類代謝本體資料庫 (HMO) 來加速整合各種代謝體功能,代謝體化學結構分類以及代謝體與其交互作用的目標,藉此能夠為後續的計算分析提供穩健的基礎生醫知識架構。HMO提供了三個獨立的本體:生物功能,化學結構分類與代謝體目標。生物功能是指代謝體所涉及的代謝途徑。化學性質分類闡述了代謝體的來源如內生性或衍生性,以及其化學結構分類如碳水化合物,脂質。代謝體目標提供了代謝體作用的目標物,其代謝體組成與其他代謝體之交互作用,以及目標在組織或細胞的所在位置。HMO以Open Biomedical Ontology (OBO) 的格式架設在擁有友善介面的網路應用程式上。目前的HMO版本包含了16120個代謝物,1840個代謝體目標以及161個與代謝體相關的疾病。HMO的名詞包含了408個生物功能,129個化學性質分類,以及22837個代謝體目標。HMO在本體領域上建立了詳盡的代謝體資源資料庫中心,讓使用者能夠利用與共享資源。使用者可以到http://cmdd.csie.ntu.edu.tw/~hmo免費取得並使用。 | zh_TW |
| dc.description.abstract | Three works are included in this thesis including 1) an algorithm for Comprehensive two-dimensional gas chromatography mass spectrometry alignment, 2) 3Omics: a web based systems biology visualization tool for integrating human transcriptomic, proteomic and metabolomic data, and 3) HMO: a tool for understanding the human metabolome.
A novel peak alignment algorithm, 2DGCMS-aligner, has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS) data. 2DGCMS-aligner uses the netCDF data generated from the instrument as input directly. It detects blobs, clusters of pixels that are brighter or darker than their surround in a chromatogram, of each GCxGC/TOF-MS raw data to generate blob tables instead of peak tables to perform alignment. 2DGCMS-aligner correlates the blobs with Euclidean distance of the first- and second retention times in the blob tables and the mass spectra with Pearson’s correlation coefficient. This alignment algorithm in 2DGCMS-aligner can be applied to GCxGC-MS data generated by either consistent or inconsistent instrument environment to adjust retention time shifts along both chromatographic dimensions caused by uncontrollable fluctuations in temperature and pressure, matrix effects and stationary phase degradation. 2DGCMS-aligner also includes an option to correct baseline on raw data directly. The performance of 2DGCMS-aligner peak alignment algorithm was compared and demonstrated with three existing alignment methods on the two sets of GCxGC-MS data sets acquired in different experiment conditions and a mixture of standard metabolites. 3Omics: a web based systems biology visualization tool for integrating human transcriptomic, proteomic and metabolomic data was developed to visualize and rapidly integrate multiple inter- or intra-transcriptomic, proteomic, and metabolomic human data. A biochemical cascade is generated through consolidation of transcript, protein, and metabolite data and implements via the application of five commonly used analyses of correlation network, co-expression, phenotyping, KEGG pathway enrichment, and GO enrichment. 3Omics incorporates the advantages and operations of existing software into a single platform, therefore simplifying the data analysis procedure and enabling the user to perform a one-click integrated analysis for free. Visualization and analysis results are downloadable for further user customization and analysis. The 3Omics software can be freely accessed at http://cmdd.csie.ntu.edu.tw/~3omics. Last part of this thesis work is the construction of Human Metabolome Ontology (HMO). Final step in current metabolomics studies involves assessment and biological interpretation of metabolome. It often requires tedious manual collections of literature or linking information scattered in Gene Ontology, BRENDA, KEGG Brite, KEGG Pathway, Human Metabolome Database, OMIM and so on. We developed the HMO to facilitate integration of biological functions, and chemical classification of metabolome and comprehensive understanding of metabolome and its target interactions as the common language and knowledge framework allowing further computational analysis. HMO consists of three independent ontologies: biological functions, chemical taxonomies and metabolome targets. It provides a comprehensive metabolome centered resource that enables the sharing and reuse of the know-ledge across domains of ontologies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:44:22Z (GMT). No. of bitstreams: 1 ntu-100-R98922152-1.pdf: 5615436 bytes, checksum: e792d0142c0d87d3851f9ec67cbac195 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiv Chapter 1 An Algorithm for Comprehensive Two-dimensional Gas Chromatography Mass Spectrometry Alignment 1 1.1 Introduction 1 1.2 Materials 6 1.2.1 Mixture of Standard Compounds of Angelica sinensis 6 1.2.2 GCxGC-MS Analysis 6 1.3 2DGCMS-aligner Algorithm 7 1.3.1 Data Preprocessing 7 1.3.2 Baseline Correction 8 1.3.3 Blob Detection 10 1.3.4 Alignment 11 1.3.5 Comparison of 2DGCMS-aligner alignment algorithm with mSORT, DISCO and mSPA 13 1.4 Results and Discussion 16 1.4.1 Baseline Correction 17 1.4.2 Blob Detection 21 1.4.3 Alignment 23 1.4.4 Evaluation for 2DGCMS-aligner alignment algorithm 28 1.5 Conclusion 31 Chapter 2 3Omics: a web based systems biology visualization tool for integrating human transcriptomic, proteomic and metabolomic data 32 2.1 Introduction 32 2.2 Design and Implementation 36 2.2.1 System Overview 36 2.2.2 Correlation analysis 36 2.2.3 Co-expression analysis 38 2.2.4 Phenotype Analysis 39 2.2.5 KEGG pathway enrichment analysis 39 2.2.6 Gene Ontology-based functional enrichment analysis 40 2.3 Results 40 2.3.1 Summary of 3Omics’ features 40 2.3.2 Main functions of 3Omics and case study 43 2.3.3 Comparison of 3Omics and other software 49 2.3.4 Case studies 51 Chapter 3 HMO: a tool for understanding the human metabolome 59 3.1 Introduction 59 3.2 HMO Ontologies 62 3.2.1 Three Ontologies of HMO 62 3.2.2 Ontology hierarchy 63 3.3 Implementation 67 3.3.1 Architecture 67 3.3.2 Term Information 68 3.3.3 Searching 69 3.3.4 Browsing 71 3.4 Discussion 73 3.5 Conclusion 76 REFERENCE 77 APPENDIX 84 | |
| dc.language.iso | en | |
| dc.subject | 代謝體學 | zh_TW |
| dc.subject | 二維氣相層析質譜圖滯留時間校正 | zh_TW |
| dc.subject | 2DGCMS-aligner | zh_TW |
| dc.subject | 系統生物學的網路視覺化工具 | zh_TW |
| dc.subject | 人類代謝本體資料庫 | zh_TW |
| dc.subject | 2DGCMS-aligner | en |
| dc.subject | Metabolomics | en |
| dc.subject | Human Metabolome Ontology | en |
| dc.subject | Systems Biology Visualization | en |
| dc.subject | 2DGC alignment | en |
| dc.title | 二維氣相層析質譜圖之滯留時間校準演算法 | zh_TW |
| dc.title | Alignment Algorithm for Comprehensive Two-dimensional Gas Chromatography-Mass Spectrometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳家揚(Chia-Yang Chen),李宏萍(Hong-Ping Li),郭錦樺(Ching-Hua Kuo) | |
| dc.subject.keyword | 二維氣相層析質譜圖滯留時間校正,2DGCMS-aligner,系統生物學的網路視覺化工具,人類代謝本體資料庫,代謝體學, | zh_TW |
| dc.subject.keyword | 2DGC alignment,2DGCMS-aligner,Systems Biology Visualization,Human Metabolome Ontology,Metabolomics, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
