Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福
dc.contributor.authorKeng-Jen Linen
dc.contributor.author林耿任zh_TW
dc.date.accessioned2021-06-15T06:44:11Z-
dc.date.available2016-07-07
dc.date.copyright2011-07-07
dc.date.issued2011
dc.date.submitted2011-07-01
dc.identifier.citation1. 盧成基, 工業材料, 2001, 179, 72
2. 秋顯堂,“強化塑膠”, 1994, 58期, 10-12.
3. 曹茂盛,“奈米材料導論” , 2002, 學富文化事業有限公司, 193.
4. Thostenson, E.; Li, C.; Chou, T. Science & Technology 2005, 65, 491.
5. Luo, J. J.; Daniel, I. M. Compos. Sci. Technol. 2003, 63, 1607.
6. Park, C.; Park, O.; Lim, J.; Kim, H. Polymer 2001, 42, 7465.
7. Alexandre, M.; Dubois, P. Mater. Sci. Eng. Rep. 2000, 28, 1.
8. Gorga, R. E.; Cohen, R. E. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 2690.
9. Scott, M. A.; Carrado, K. A.; Dutta, P. K. Hand Book of Layered Materials, 2004.
10. Olphen, H. V. Krieger Publishing Company: Malabar, 1991.
11. Moet, A.; Akelah, A.; Salahuddin, N.; Hiltner, A.; Baer, E. Mat. Res. Sco. Symp. 1994, 351, 163.
12. Poppe, L. J. V. F.; Paskevich, J. C.; Hathaway, D. S. Blackwood A Laboratory Manual for X-Ray Powder Diffraction, 2001, U. S. Geological Survey
13. Usuki, A.; Hasegawa, N.; Kadoura, Okamoto, H.; T. Nano Lett. 2001, 266 271.
14. Zhao, Z.; Tang, T.; Qin, Y.; Huang, B. Langmuir 2003, 19, 9260.
15. Utracki, L. A.; Sepehr, M.; Boccaleri, E. Polym. Adv. Technol. 2007, 18, 1.
16. Bhattacharyya, K. P.; Gupta, S. S. Adv. Colloid Interfac. Sci. 2008, 140, 114-131.
17. Schaefer, D. W.; Mark, J. E. Polymer based molecular composites; MRS Symposium Proceedings: Pittsburgh, 1990, 171, 45.
18. Wang, K.; Choi, M.; Koo, C.; Choi, Y.; Chung, I. Polymer 2001, 42, 9819.
19. Wu, B.; Qi, S.; Wang, X. Polymer Testing, 2010, 29, 717.
20. Kaim, M. R.; Yeum, J. H. J. polym. Sci. Part B: Polym. Phys. 2008, 46, 2279.
21. Lin, L.; Qi, Z.; Zhu, X. J. App. Polym. Sci., 1999, 71,1133
22. Mariott, W. R.; Chen, E. Y. X. J. Am. Chem. Soc. 2003, 125, 15726.
23. Jin, Y. H.; Park, H. J.; Im, S. S.; Kwak, S. Y.; Kwak, S. Macromol. Rapid Commun. 2002, 23, 135.
24. Harkins, W. D. J. Am. Chem. Soc., 1947, 69, 1428.
25. Smith, W. V.; Ewart, R. H. J. Chem. Phys., 1948, 16, 592
26. Odian, G. Principles of Polymerization, Wiely-Interscience, Hoboken, 2004.
27. Ni, H.; Du, Y.; Ma, G.; Nagai, M.; Omi, S. Macromolecules 2001, 34, 6577
28. Goodall, A. R.; Wilkinson, M. C.; Hearn, J. J. Polym. Sci. Part A: Polym. Chem., 1977, 15, 2193.
29. Cox, R. A.; Wilkinson, M. C.; Creasey, J. M.; Goodall, A. R.; J. Hearn J. Polym. Sci. Part A: Polym. Chem., 1977, 15, 2311.
30. Lin, K. J.; Dai, C. A.; Lin, K. F. J. Polym. Sci., Part A: Polym. Chem.,
2009, 47, 459.
31. Kong, G.; R. Braun; Dewhirst, M. Cancer Res., 2000, 60, 4440.
32. Koesdjojo, M. T.; Tennico, Y. H.; Remcho, V. T. Anal. Chem., 2008,
80, 2311.
33. Crne, M.; Park, J. O.; Srinivasarao, M. Macromolecules, 2009, 42, 4353.
34. Park, J. B.; Lakes, R. S. Biomaterials: an Introduction, Plenum Press,
New York, 1992.
35. Breen, C. Applied Clay Science, 1999, 15, 187.
36. Graziella, D. P.; Lafuma, F.; Audebert, R. J. Colloid interface Sci. 1986, 119, 474.
37. Oriakhi, C. O.; Lerner, M. M. Materials Research Bulletin 1995, 30, 723.
38. Muzny, C. D.; Butter, B. D.; Hanley, H. J.; Tsvetkov, F.; Peiffer, D. G. Materials Letters 1996, 28, 379.
39. Hild, A.; Sequaris, J. M.; Narres, H. D.; Schwuger, M. Colloids and Surfaces, A: Physicochemical and Engineering Aspect 1997, 123, 515.
40. Breen, C.; Waston, R. J. Colloid Interface Sci. 1998, 208, 422.
41. Xiao, H.; Liu, Z.; Wiseman, N. Journal of Colloid and Interface Science 1999, 216, 409.
42. Oztekin, N.; Alemdar, A.; Gungor, N.; Erim, F. B. Materials Letters 2002, 55, 73.
43. Lee, D. C.; Jang, L. W. J. Appl. Polym. Sci. 1996, 61, 1117.
44. Al-Esaimi, M. M. J. Appl. Polym. Sci. 1997, 64, 367.
45. Chen, G.; Yao, K.; Zhao, J. J. Appl. Polym. Sci. 1998, 73 ,425.
46. Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y. H.; Kotaka, T.; Tateyama, H. Polymer 2000, 41, 3887.
47. Zeng, C.; Lee, J. Macromolecules 2001, 34, 4098.
48. Huang, X.; Brittain, W. J. Macromolecules 2001, 34, 3255.
49. Wang, D. Z.; Jin, Q. Y.; Charles, A. W. Chem. Mater. 2002, 14, 3837.
50. Hwu, M. J.; Jiang, G. J.; Gao, Z. M.; Xie, W.; Pan, W. P. J. Appl. Polym. Sci. 2002, 83, 1702.
51. Pinnavaia, T. J.; Beall, G. E. Polymer-Clay Nanocomposites; Wiley: New York, 2000.
52. Utracki, L. A. Clay-Containing Polymeric Nanocomposites; Rapra Technology: Shrewsbury, 2004.
53. Ke, Y. C.; Stroeve, P. Polymer-Layered Silicate and Silica Nanocomposites; Elsevier: Amsterdam, 2005.
54. Hu, X.; Meng, J. J Polym Sci Part A: Polym Chem 2005, 43, 994.
55. Ray, S.; Galgali, G.; Lele, A.; Sivaram, S. J Polym Sci Part A: Polym Chem 2005, 43, 304.
56. Weimer, M. W.; Chen, H.; Giannelis, E. P.; Sogah, D. Y. J Am Chem Soc 1999, 121, 1615.
57. Zhao, H.; Argoti, S. D.; Farrell, B. P.; Shipp, D. A. J Polym Sci Part A: Polym Chem 2004, 42, 916.
58. Yebassa, D.; Balakrishnan, S.; Feresenbet, E.; Raghavan, D.; Start, P. R.; Hudson, S. D. J Polym Sci Part A: Polym Chem 2004, 42, 1310.
59. Fan, X.; Xia, C.; Advincula, R. C. Langmuir 2005, 21, 2537.
60. Choi, Y. S.; Chung, I. J. Polymer 2004, 45, 3827.
61. Huang, X.; Brittain, W. J. Macromolecules 2001, 34, 3255.
62. Greesh, N.; Hartmann, P. C.; Cloete, V.; Sanderson, R. D. J Polym Sci Part A: Polym Chem 2008, 46, 3619.
63. Lepine, O.; Birot, M.; Deleuge, H. J Polym Sci Part A: Polym Chem 2007, 45, 4193.
64. Mariott, W. R.; Escude, N. C.; Chen, E. Y. X. J Polym Sci Part A: Polym Chem 2007, 45, 2581.
65. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Furanchima, Y.; Kurauchi, T.; Kamigaito, O. J Polym Sci Part A: Polym Chem 1993, 31, 983.
66. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Polym Sci Part A: Polym Chem 1993, 31, 1755.
67. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1179.
68. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1185.
69. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. J Phys Chem Solids 1996, 57, 1005.
70. Shi, H. Z.; Lan, T.; Pinnavaia, T. J Chem Mater 1996, 8, 1584.
71. Yano, K.; Usuki, A.; Okada, A. J Polym Sci Part A: Polym Chem 1997, 35, 2289.
72. Kornmann, X.; Lindberg, H.; Berglund, L. A. Polymer 2001, 42, 1303.
73. Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Adv Polym Sci 1999, 138, 107.
74. Yeom, E. H.; Kim, W. N.; Kim, J. K.; Lee, S. S.; Park, M. Mol Cryst Liq Cryst 2004, 425, 85.
75. Shibayama, M.; Suda, J.; Karino, T.; Okabe, S.; Takehisa, T.; Haraguchi, K. Macromolecules 2004, 37, 9606.
76. Yeh, J. M.; Liou, S. J.; Lai, C. Y.; Wu, P. C. Chem Mater 2001, 13, 1131.
77. Song, S.; Poehlein, G.; W. J Colloid Interface Sci 1989, 128, 486.
78. Hansen, F. K.; Ugelstad, J. J PolymSci Part A: Polym Chem 1978, 16, 1953.
79. Chen, Y. C.; Lee, C. F.; Chiu, W. Y. J Appl Polym Sci 1996, 61, 2235.
80. Lin, K. F.; Shieh, Y. D. J Appl Polym Sci 1998, 69, 2069.
81. Lin, K. F.; Shieh, Y. D. J Appl Polym Sci 1998, 70, 2313.
82. Lin, K. F.; Lin, S. C.; Chien, A. T.; Hsieh, C. C.; Yen, M. H.; Lin, C. S.; Chiu, W. Y.; Lee, Y. H. J Polym Sci Part A: Polym Chem 2006, 44, 5572.
83. Chien, A. T.; Lin, K. F. J Polym Sci Part A: Polym Chem 2007, 45, 5583.
84. Chien, A. T.; Lee, Y. H.; Lin, K. F. J Appl Polym Sci 2008, 106, 355.
85. Kuila, B. K.; Nandi, A. K. Macromolecules 2004, 37, 8577.
86. Heinz, H.; Vaia, R. A.; Farmer, B. L. Langmuir 2008, 24, 3727.
87. Sagitova, E. A.; Donfack, P.; Prokhorov, K. A.; Nikolaeva, G. Y.; Gerasin, V. A.; Merekalova, N. D.; Materny, A.; Antipov, E. M.; Pashinin, P. P. J. Phys. Chem. B 2009, 113, 7482.
88. Hou, S. S.; Schmidt-Rohr, K. Chem. Mater. 2003, 15, 1938.
89. Garai, A.; Kuila, B. K.; Nandi, A. K. Macromolecules 2006, 39, 5410.
90. Tong, Z.; Deng, Y. Ind. Eng. Chem. Res. 2006, 45, 2641.
91. Erol, O.; Unal, H. I.; Sari, B. Polym. Compos. 2010, 31, 471.
92. Choi, Y. S.; Choi, M. H.; Wang, K. H.; Kim, S. O.; Kim, Y. K.; Chung, I. J. Macromolecules 2001, 34, 8978.
93. Choi, Y. S.; Xu, M.; Chung, I. J. Polymer 2005, 46, 531.
94. Chou, C. C.; Chiang, M. L.; Lin, J. J. Macromol. Rapid. Commun. 2005, 26, 1841.
95. Mravčáková, M.; Omastová, M.; Olejníková, K.; Pukánszky, B.; Chehimi, M. M. Synth. Met. 2007, 157, 347.
96. Lin, K. J.; Dai, C. A.; Lin, K. F. J. Polym. Sci, Part A: Polym. Chem. 2009, 47, 459.
97. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, 1953; Chapter 8.
98. Hiemenz, P. C. Principles of Colloid and Surface Chemistry, 2nd Ed., Wiley: New York, 1986; Chapter 8.
99. Jaynes, W. F.; Bigham, J. M. Clays Clay Miner 1986, 38, 93.
100. Narkiewicz-Michalek, J. Langmuir 1992, 8, 7.
101. Kaneko, Y.; Iyia, N.; Bujdák, J.; Sasai, R.; Fujita, T. J. Mater. Res. 2003, 18, 2639.
102. Lee, C. H.; Weng, T. H.; Liu, K. Y.; Lin, K. J.; Lin, K. F. J. Appl. Polym. Sci. 2010, 118, 652.
103. Heinz, H.; Castelijns, H. J.; Suter, U. W. J. Am. Chem. Soc. 2003, 125, 9500.
104. Heinz, H.; Suter, U. W. Angew. Chem. Int. Ed. 2004, 43, 2239.
105. Heinz, H.; Vaia, R. A.; Krishnamoorti, R.; Farmer, B. L. Chem. Mater. 2007, 19, 59.
106. Roe, R. J. Methods of X-ray and Neutron Sxattering in Polymer Science; Oxford: New York, 2000; Chapter 5.
107. Mravčáková, M.; Omastová, M.; Olejníková, K.; Pukánszky, B.; Chehimi, M. M. Synth Met 2007, 157, 347.
108. Chou, C. C.; Chiang, M. L.; Lin, J. J Macromol Rapid Commun 2001, 26, 1841.
109. Choi, Y. S.; Choi, M. H.; Wang, K. H.; Kim, S. O.; Kim, Y. K.; Chung, I. J. Macromolecules 2001, 34, 8978–8985.
110. Odian, G. Principles of Polymerization, 3rd ed.; Wiley: New York, 1991; Chapter 4.
111. Lin, K. F.; Hsu, C. Y.; Huang, T. S.; Chiu, W. Y.; Lee, Y. H.; Young, T. H. J Appl Polym Sci 2005, 98, 2042.
112. Lin, K. J.; Dai, C. A.; Lin, K. F. J Polym Sci Part A: Polym Chem 2009, 47, 459.
113. Lin, K. J.; Weng, T. H.; Lee, C. H.; Lin, K. F. J Polym Sci Part A: Polym Chem 2009, 47, 5891.
114. Yen, M. H.; Lin K. F. J Polym Sci Part B: Polym Phys 2009, 47, 524.
115. Cole, K. C. Macromolecules 2008, 41, 834.
116. Yan, L.; Roth, C. B.; Low, P. F. Langmuir 1996, 12, 4421.
117. Lin, K. J.; Dai, C. A.; Lin, K. F. J Polym Sci Part A: Polym Chem 2009, 47, 459.
118. Niquist, R. A.; Kagel, R. O. Infrared Spectra of Inorganic Compounds; Academic Press: New York, 1971.
119. Briggs, D.; Seah, M. P. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; Wiley: New York, 1983.
120. Tang, C.; Xiang, L.; Su, J.; Wang, K.; Yang, C.; Zhang, Q.; Fu, Q. J Phys Chem B 2008, 112, 3876.
121. Braganca, F. D. C.; Valadares, L. F.; Leite, C. A. D. P.; Galembeck, F. ChemMater 2007, 19, 3334.
122. Fornes, T. D.; Paul, D. R. Macromolecules 2004, 37, 7698.
123. He, C.; Liu, T.; Tjiu, W. C.; Sue, H. J.; Yee, A. F. Macromolecules 2008, 41, 193.
124. McNally, T.; Murphy, W. R.; Lew, C.; Turner, R.; Brennan, G. Polymer 2003, 44, 2761.
125. Mijović, J.; Lin, K. F. J Appl Polym Sci 1985, 30, 2527.
126. Li, Q.; Simon, S. L. Macromolecules 2008, 41, 1310.
127. Williams, J. G. Fracture Mechanics of Polymers; Ellis Horwood: Chichester, 1984.
128. Kang, E. T.; Neoh, K. G.; Huang, S. W.; Lim, S. L.; Tan, K. L. J. Phys. Chem. B 1997, 101, 10744.
129. Chen, M. J.; Gunnells, D. W.; Gardner, D. J.; Milstein, O.; Gersonde, R.; Feine, H. J.; Hüttermann, A.; Frund, R.; Lüdemann, H. D.; Meister, J. J. Macromolecules 1996, 29, 1389.
130. Bhuniya, S. P.; Maiti, S. Eur. Polym. J. 2002, 38, 195-201.
131. Matsukuma, D.; Aoyagi, T.; Serizawa, T. Langmuir 2009, 25, 9824.
132. Sun, H.; Huo, H.; Nie, H.; Yang, S.; Fan, L. Eur. Polym. J. 2009, 45, 1169.
133. Shi, J. L.; Kang, E. T.; Neoh, K. G.; Tan, K. L.; Liaw, D.J. Eur. Polym. J. 1998, 34, 1429.
134. Park, Y. J.; Kim, H. J.; Rafailovich, M.; Sokolov, J. J. Adhesion Sci. Technol. 2003, 17, 1831.
135. Hsueh, C. H.; Bei, H.; Liu, C. T.; Becher, P. F.; George, E. P. Scripta. Mater. 2008, 59, 111.
136. Hiemenz, P. C. Principles of Colloid and Surface Chemistry, 2nd ed.;Wiley: New York, 1986; Chapter 8.
137. Zhang, Z. F.; Eckert, J.; Schultz, L. Acta. Mater. 2003, 51, 1167.
138. Flores, K. M. Scripta. Mater. 2006, 54, 327.
139. Tu, C. W.; Liu, K. Y.; Chien, A. T.; Lee, C. H.; Ho, K. C.; Lin, K. F. Eur. Polym. J. 2008, 44, 608.
140. Williams, J. G. Fracture Mechanics of Polymers, Wiley: New York, 1985 Ch. 7.
141. Dőll, W. Advances in Polym Sci. 52/53, 1983, 105.
142. Ravetti, R.; Gerberich, W. W.; Hutchinson, T. E. J. Mater. Sci. 1975, 10, 1441.
143. Lee, C. H.; Chien, A. T.; Yen, M. H.; Lin, K. F. J. Polym. Res. 2008, 15, 331.
144. Lin, K. J.; Weng, T. H.; Lee, C. H.; Lin, K. F. J. Polym. Sci. A. Polym. Chem. 2009, 47, 5891.
145. Lin, K. J.; Lee, C. H.; Lin, K. F. J. Polym. Sci. B. Polym. Phys. 2010, 48, 1064.
146. Lin, K. J; Hsueh, C. H; Lin, K. F Mater Chem Phys 2011, 128, 177.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47999-
dc.description.abstract本論文主要研究蒙脫石在無乳化劑乳化聚合過程中之脫層機制,並藉由陰離子界面活性劑與蒙脫石吸附行為去解釋蒙脫石之脫層現象。此外,聚甲基丙烯酸甲酯乳液由於Tg太高無法直接成膜,因此我們加入低Tg的丙烯酸甲酯與甲基丙烯酸甲酯進行共聚合反應而製備蒙脫石/丙烯酸甲酯-甲基丙烯酸甲酯共聚物 [MMT/P(MA-co-MMA)] 奈米複合乳膠膜。此外,我們發現MMT/P(MA-co-MMA) 奈米複合乳膠膜具有特殊機械性質行為,因此將在以下研究中深入的去研究並討論。本研究分為三部份,第一部份探討十二烷基硫酸鈉 (SDS) 和溴化十六烷三甲基銨 (CTAB) 兩種離子界面活性劑在水中吸附於蒙脫石 (MMT) 上的機制,與乾燥後之混合物其界面活性劑與蒙脫石的插層結構。並藉由此現象去解釋蒙脫石於無乳化劑乳化聚合過程中,蒙脫石的脫層機制。第二部份探討脫層蒙脫石/丙烯酸甲酯-甲基丙烯酸甲酯共聚物奈米複合材料之特殊機械性質。最後,第三部份我們利用文獻方法設計一種測試剪切強度的裝置,利用此裝置測試蒙脫石/丙烯酸甲酯-甲基丙烯酸甲酯共聚物乳膠膜之剪切強度。
在第一部份,我們利用道南平衡 (Donnan equilibrium) 原理去解釋水溶液中SDS與蒙脫石的吸附行為,此行為導致SDS/MMT混合物呈現親水性質;然而CTAB吸附蒙脫石是利用庫倫引力 (Columbus attraction) 或陽離子交換 (cation exchange) 形成親油性的CTAB/MMT混合物。利用XRD和TEM分析探討後,結果發現SDS既不會增加蒙脫石的層間距也不會改變蒙脫石本身類似球狀的結構。另一方面, CTAB進入蒙脫石層間後使CTAB/MMT混合物會形成一個整體規則排列的層狀結構,同時蒙脫石的層間距也會增加。此外,蒙脫石在無乳化劑乳化聚合過程,水相中所形成之聚合離子自由基 (polymerizing ionic radicals) 會擴散進入蒙脫石層間,因此我們可以利用此現象推論出蒙脫石在無乳化劑乳化聚合之脫層機制。這些聚合離子自由基在蒙脫石層間會聚集形成盤狀的微胞結構,而在微胞化過程結束之前大部分的蒙脫石都已脫層完畢。蒙脫石脫層後,盤狀微胞會成為之後進行無乳化聚合反應的場所。相較於一般的無乳化劑乳化聚合反應,含有蒙脫石之無乳化聚合反應其盤狀微胞的量遠比球狀微胞的量要多很多,因此MMT/PMMA奈米複合材料乳液的聚合轉換率會比MMA乳液有顯著的提升。
在第二部份中,利用XRD和TEM可以發現在無乳化劑乳化聚合製備MMT/P(MA-co-MMA) 奈米複合乳膠膜時,在成膜過程中我們發現當蒙脫石達一定含量,脫層蒙脫石奈米矽片彼此間會傾向於再度堆疊的現象。當蒙脫石含量從0 wt% 增加至20 wt% 時,我們可以由DSC偵測到其Tg會從原來的19.2 0C些微的降低至17.2 0C。然而在動態機械分析儀測量下所得到的Tg反而會從22 0C增加至32 0C,這是由於高分子局部的鏈段被脫層蒙脫石奈米矽片給限制住。當添加1wt% 蒙脫石之P(MA-co-MMA) 奈米複合乳膠膜經由拉伸後會出現一些橢圓形的裂縫,此現象是由於脫層蒙脫石奈米矽片在高分子基材上的裂縫產生固著作用 (Pinning effect)。當蒙脫石添加量增加至10 wt% 以上時,MMT/P(MA-co-MMA) 奈米複合乳膠膜會從柔軟的狀態變成硬脆的性質,此現象是由於脫層蒙脫石奈米矽片重新堆疊導致其楊氏模數 (Young’s modulus) 和拉伸強度明顯增加所致。
在第三部份中,我們利用文獻方法設計一種測試剪切強度的裝置,先將試片固定在裝置中再控制試片剪切平面的角度,利用不同傾斜角度 (試片之剪切平面與裝置軸心之夾角) 所得到之破裂強度去推算出高分子乳膠膜之剪切強度。由於試片在裝置中呈現直立式的串聯模式,當一個試片破裂後,另一個試片會呈現剛要破裂的情形,因此我們可利用SEM去觀察高分子乳膠膜表面產生的剪切帶 (shear band)。當傾斜角度由300增加至600時,由於正向應力增加之故,剪切帶偏向集中在膜的中心位置。有趣的是,當角度由300增加至450時,垂直於破裂方向之相鄰兩條紋的距離會隨著角度增加而增加,而且出現平行於破裂方向的條紋。當角度增加至600時,我們可以發現破裂表面上會產生小島狀結構,而此小島狀結構是由平行和垂直交錯的破裂條紋所產生。然而,當試片被施予正向壓力時,剪切破裂被限制在試片的中心位置上,因此破裂面的平坦度會影響島嶼狀結構。另一方面,當添加蒙脫石時可發現MMT/P(MA-co-MMA) 奈米複合薄膜試片之破裂表面形貌與奈米複合薄膜所受之剪切力和正向應力有關。利用莫爾─庫倫準則 (Mohr-Coulomb criterion),我們可以計算蒙脫石含量對於本質剪切強度 (τs,無正向應力之剪切強度) 之影響。當P(MA-co-MMA) 奈米複合薄膜添加1 wt% 蒙脫石時,τs 會從1.66增加至2.78 MPa。當蒙脫石含量增加至15 wt% 時,τs 會增加至5.32 MPa。此外,蒙脫石含量和傾斜角度也會影響奈米複合乳膠膜試片之破裂表面形貌。在低含量蒙脫石和低傾斜角的情況時,破裂表面會出現垂直於破裂方向的條紋。然而,蒙脫石含量或傾斜角度增加時,脫層蒙脫石奈米矽片與奈米複合薄膜彼此界面會出現微裂縫,使破裂表面變粗糙。蒙脫石含量和傾斜角度繼續增加時,被壓縮之脫層蒙脫石奈米矽片會在破裂表面上堆疊形成一群大薄片形貌。
總結,我們成功的利用無乳化劑無乳化聚合方法製備出脫層蒙脫石/高分子奈米複合乳液並且完整的探討藉由無乳化劑乳化聚合的方式來製備脫層蒙脫石的機制。因此利用此製程技術,未來將可以廣泛的應用在各種奈米結構之功能性材料上。
zh_TW
dc.description.abstractThis research is mainly to investigate the exfoliation mechanism of montmorillonite (MMT) in the soapless emulsion polymerization. Based on the adsorption of anionic surfactant by MMT in aqueous, we can explain that the exfoliation behavior of MMT. Furthermore, the fabricated MMT/PMMA nanocomposite latex particles are too rigid to be cast into a film. To lower the glass transition temperature of nanocomposites, we have added methacrylate monomers to copolymerize with methylmethylacrylate in the presence of MMT during soap-free emulsion polymerization. Therefore, we reported the unique mechanical properties of the exfoliated MMT/P(MA-co-MMA) nanocomposite films
The study is divided into three parts; the first part of this research was to investigate the adsorption of sodium dodecylsulfate (SDS) and cetyltrimethylammonium bromide (CTAB) by MMT respectively in aqueous solution and their intercalation structures after removal of water. Based on the experimental observation, a justified exfoliation mechanism of MMT in the soapless emulsion polymerization under the presence of MMT was proposed. The second part of this research was to investigate the unique mechanical properties of exfoliated MMT/P(MA-co-MMA) nanocomposites. Finally, the third part of this research was to investigate the shear strength of fracture surface for MMT/P(MA-co-MMA) nanocomposite films utilized a unique test fixture.
In the first part of this research, the adsorption of SDS by MMT in aqueous solution was associated with the Donnan equilibrium for ions leading to the hydrophilic nature of SDS/MMT hybrid, whereas the adsorption of CTAB resulted from the Coulomb attraction or so-called cation exchange leading to the hydrophobic nature of CTAB/MMT. X-ray scattering (XRD) and transmission electron microscopic (TEM) investigations on the dried SDS/MMT hybrids revealed that the adsorbed SDS neither substantially increased the interlayer distance nor changed the rough spherical texture of pristine MMT. On the other hand, the adsorbed cetyltrimethyl ammonium cations increased the interlayer distance of MMT, resulting in a well integrated CTAB/MMT lamellar structure. Therefore, we proposed a justified exfoliation mechanism of MMT during soapless emulsion polymerization based on the above experimental results as that the polymerizing ionic radicals in water phase were considered as a major component to diffuse into the gallery of MMT. They have been observed to organize into disk-like micelles in the interlayer regions to exfoliate MMT. The exfoliation of MMT was almost completed before micellization stage was over. After exfoliation, the disk-like micelles became a polymerization loci for monomers. Because the disk-like micelles in numbers were substantially over the commonly formed spherical micelles in the typical soap-free emulsion polymerization, the conversion rate of MMA to MMT/PMMA nanocomposite latex was faster.
In the second part of this research, the exfoliated montmorillonite (MMT) nanoplatelets tended to re-stack with each other after casting the MMT/ poly(methylacrylate-co-methylmethacrylate) P(MA-co-MMA) latex solutions fabricated by soap-free emulsion polymerization into films as revealed by X-ray diffraction and transmission electron microscopy. As the content of MMT was increased from 0 to 20 wt %, the Tg measured by differential scanning calorimetry was slightly decreased from 19.2 to 17.2 0C, whereas that measured by dynamic mechanical analysis was increased from 22 to 32 0C, indicating that the local motion of polymer segments has been retarded by MMT nanoplatelets. Besides, the elongated elliptical voids appeared during stretching of 1 wt % MMT/P(MA-co-MMA) film to cracking also illustrated the pinning effect provided by the exfoliated MMT. As the content of MMT was increased more than 10 wt %, the mechanical behavior of MMT/P(MA-co-MMA) nanocomposite films was changed from ductile to brittle nature with significant increase of Young’s modulus and tensile strength owing to the restacking of exfoliated MMT nanoplatelets.
In the third part of this research, the shear strength of ductile polymer films was measured using a unique test fixture that is capable of controlling the normal to shear plane angle in a confined testing space. Two specimens were loaded in series in the test fixture such that as one fractured the other was in a state just prior to fracture and could be used for the investigation of shear bands by SEM. As the normal to shear plane angle was increased from 30 to 60°, the shear bands were more concentrated in the center region owing to the higher normal compressive stress. Interestingly, the fracture surface showed that the distance between two adjacent striations perpendicular to the fracture direction increased as the normal to shear plane angle was increased from 30 to 45° and the striations parallel to the fracture direction appeared. As the angle was further increased to 60°, small islands formed by cross-over between the parallel and perpendicular striations appeared in the fracture surface. The formation of islands was related to the flatness of the fracture surface because the shear fracture has been confined in the center of the specimens by high normal compressive stress. On the other hand, it was found that fracture of the films depended on both the shear and the normal stresses and could be described by Mohr-Coulomb criterion. The effects of MMT contents on the intrinsic shear strength (i.e., the shear strength at zero normal stress),
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:44:11Z (GMT). No. of bitstreams: 1
ntu-100-D94549004-1.pdf: 9112314 bytes, checksum: e617ecd6a40e603963b65a70c4155f0d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要…………………………………………………………………………..I
英文摘要…………………………………………………………………………..IV
目錄………………………………………………………………………………..IX
表目錄……………………………………………………………………………..XII
圖目錄……………………………………………………………………………..XIII
第一章 諸論
1-1 前言………………………………………………………………………….…..1
1-2 高分子奈米複合材料…………………………………………………………...2
1-2-1奈米黏土介紹……………………………………………………………..4
1-2-2蒙脫石改質方法…………………………………………………………..6
1-2-3蒙脫石奈米複合材料之製備…………………………………………......7
1-3 高分子聚合反應………………………………………………………………...9
1-3-1乳化聚合之界面活性劑………………………………………………....11
1-3-2無乳化聚合反應機制…………………………………………………....12
1-3-3乳膠顆粒成膜機制……………………………………………………....13
1-4 聚甲基丙烯酸甲酯及其共聚高分子 ……..…………………………….…...14
第二章 文獻回顧與研究目的
2-1黏土/高分子作用相關文獻………………………………………….……..……15
2-2甲基丙烯酸甲酯/黏土奈米複合材料相關文獻…………….………...……......17
2-3利用無乳化聚合法製備蒙脫石/高分子奈米複合乳膠顆粒…………….……..21
2-4研究動機與研究方法……………………………………………………....……23
第三章 實驗設備與方法
3-1 實驗藥品……………………………………………………………………..….26
3-2 實驗儀器設備………………………………………………………………..….27
3-3 實驗步驟……………………………………………………………………..….30
3-3-1蒙脫石的膨脹應變率的測試方法………………………………..….….30
3-3-2 製備高濃度的界面活性劑插層型蒙脫石粉末……………………..….30
3-3-3 純化MMA單體………………………………………………………...31
3-3-4 水溶液中MMT 對KPS及MMA的吸收…………………….............31
3-3-5 無乳化劑乳化聚合製備PMMA乳膠與PMMA/MMT奈米複合乳膠…………………………………………………………….………...…32
3-3-6製備P(MA-co-MMA) 和1 wt% MMT/P(MA-co-MMA) 奈米複合乳膠膜…………………………………………………………………….…...33
3-3-7 製備接枝P(MA-co-MMA) 的脫層的MMT 奈米矽片……….….…..33
3-3-8製備MMT/P(MA-co-MMA) 奈米複合乳膠膜………………….….….34
3-3-9 MMT/P(MA-co-MMA) 奈米複合乳膠膜之剪切力測試…………..…..34
3-3-10 SEM形態學上之研究與樣品測量………………………………….….35
第四章 結果與討論
4-1 蒙脫石與界面活性劑之離子電荷吸附與插層機制.………………………...36
4-1-1 前言……………………………………………………………………..36
4-1-2 蒙脫石的膨脹應變率…………………………………………………..37
4-1-3 離子界面活性劑插層下的蒙脫石奈米結構…………………………..39
4-2蒙脫石/聚甲基丙烯酸甲酯奈米複合乳膠顆粒在無乳化聚合過程中之脫層機制………………………………………………………………………….…….43
4-2-1 前言………………………………………………………….…………..43
4-2-2 蒙脫石對過硫酸鉀 (KPS) 以及甲基丙烯酸甲酯 (MMA) 的吸收…44
4-2-3 無乳化劑乳化聚合……………………………………………………...45
4-3蒙脫石/丙烯酸甲酯及甲基丙烯酸甲酯共聚物奈米複合乳膠膜之特殊性質...51
4-3-1 前言……………………………………………………………………...51
4-3-2 脫層蒙脫石奈米矽片之接枝行為……………………………………...53
4-3-3 添加1wt% MMT之奈米複合乳膠膜之特殊機械性質……………….54
4-3-4 脫層蒙脫石奈米矽片之重新堆疊行為………………………………...56
4-4新穎的特殊方法去測量高分子奈米複合乳膠膜之剪切力……………………60
4-4-1 前言……………………………………………………………………...60
4-4-2 剪切力之測量………………………………………………………….61
4-4-3 剪切破壞表面之形態研究 …………………………………………...63
4-4-4 MMT/P(MA-co-MMA) 奈米複合乳膠膜之剪切強度……………….64
4-4-5 MMT/P(MA-co-MMA) 奈米複合乳膠膜剪切破壞表面之形態研究.65
第五章 結論………………………………………………………………………..68
第六章 建議事項…………………………………………………………………..71
第七章 參考文獻…………………………………………………………………..72
List of Publications………………………………………………………….……....142
dc.language.isozh-TW
dc.title利用無乳化劑乳化共聚合法製備丙烯酸甲酯-甲基丙烯酸甲酯共聚物/蒙脫石奈米複合乳膠膜之結構及性質研究zh_TW
dc.titlePreparation, Morphology and Properties of Poly(methyl acrylate-co-methyl methacrylate)/Montmorillonite Nanocomposite Films through Soap-free Emulsion Copolymerizationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor戴子安
dc.contributor.oralexamcommittee林唯芳,林江珍,邱文英,廖文彬,吳宗明
dc.subject.keyword蒙脫石,離子界面活性劑,無乳化聚合,脫層,奈米複合材料,接枝,聚甲基丙烯酸甲酯,丙烯酸甲酯-甲基丙烯酸甲酯共聚物,剪切強度,破裂表面,zh_TW
dc.subject.keywordMontmorillonite,ionic surfactant,soap-free emulsion polymerization,exfoliation,nanocomposite,grafting,poly(methyl methacrylate) poly(methylacrylate-co-methylmethacrylate),shear strength,fracture surface,en
dc.relation.page145
dc.rights.note有償授權
dc.date.accepted2011-07-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
8.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved