Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47956
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳業寧(Yehning Chen)
dc.contributor.authorWei-Ru Kuoen
dc.contributor.author郭瑋如zh_TW
dc.date.accessioned2021-06-15T06:43:29Z-
dc.date.available2011-07-18
dc.date.copyright2011-07-18
dc.date.issued2011
dc.date.submitted2011-07-05
dc.identifier.citationBerkowitz, J. (2001), Testing Density Forecasts, with Applications to Risk Management, Journal of Business and Economic Statistics, 19, 465-474.
Berkowitz, J., P.F. Christoffersen, and D. Pelletier (2008), Evaluating Value-at-Risk Models with Desk-Level Data, Working paper, McGill University.
Bollerslev, T. (1986), Generalised Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 31, 307-327.
Brooks, Chris (2002), Introductory Econometrics for Finance, Cambridge University Press, Cambridge, UK.
Caporin, M. and M. McAleer (2009), The Ten Commandments for Managing Investments, to appear in Journal of Economic Surveys (Available at SSRN:
http://ssrn.com/abstract=1342265).
Christoffersen, P.F. (1998), Evaluating Interval Forecasts, International Economic Review, 39, 841-862.
Christoffersen, P.F., and D. Pelletier (2004), Backtesting Value-at-Risk: A Duration-Based Approach, Journal of Financial Econometrics, 2, 84-108.
Dowd, Kevin (2006), Measuring Market Risk, 2nd edn., John Wiley, Chichester, UK.
Engle, R.F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, 50, 987-1007.
Engle, R.F., and S. Manganelli (2004), CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles, Journal of Business and Economic Statistics, 22, 367-381.
Glosten, L., R. Jagannathan and D. Runkle (1992), On the Relation between the Expected Value and Volatility of Nominal Excess Return on Stocks, Journal of Finance, 46, 1779-1801.
Hull , John C. (2010), Risk Management and Financial Institutions, 2nd edn., Pearson Education, Massachusetts.
Jorion, P. (2006), Value at Risk: The New Benchmark for Managing Financial Risk, 3rd edn., McGraw-Hill, New York.
Kupiec, P.H. (1995), Techniques for Verifying the Accuracy of Risk Measurement Models, Journal of Derivatives, 3, 73-84.
Markowitz, H. (1952), Portfolio Selection, Journal of Finance, 7, 1, 77-91.
McAleer, M. (2008), The Ten Commandments for Optimizing Value-at-Risk and Daily
Capital Charges, to appear in Journal of Economic Surveys (Available at SSRN: http://ssrn.com/abstract=1354686).
McAleer, M. and B. da Veiga (2008a), Forecasting Value-at-Risk with a Parsimonious
Portfolio Spillover GARCH (PS-GARCH) Model, Journal of Forecasting, 27, 1-19.
McAleer, M. and B. da Veiga (2008b), Single Index and Portfolio Models for Forecasting Value-at-Risk Thresholds, Journal of Forecasting, 27, 217-235.
McAleer, M., J.-Á. Jiménez-Martin and T. Pérez-Amaral (2009a), A Decision Rule to Minimize Daily Capital Charges in Forecasting Value-at-Risk (Available at SSRN:
http://ssrn.com/abstract=1349844).
McAleer, M., J.-Á. Jiménez-Martin and T. Pérez-Amaral (2009b), Has the Basel II Accord Encouraged Risk Management During the 2008-09 Financial Crisis? (Available at SSRN: http://ssrn.com/abstract=1397239).
Nelson, D.B. (1991), Conditional Heteroskedasticity in Asset Returns: A New Approach, Econometrica, 59, 347-370.
Pérignon, C. and D.R. Smith.(2008), A New Approach to Comparing VaR Estimation Methods, Journal of Derivatives, 15, 54-66.
Riskmetrics (1996), J.P. Morgan Technical Document, 4th edn., New York, J.P. Morgan.
Smith, D.R. (2007), Conditional Backtesting of Value-at-Risk Models, Working Paper, Simon Fraser University.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47956-
dc.description.abstractVaR (Value at Risk)為現今風險管理的重要工具。自從巴賽爾協定開放各家金融機構可自由選擇VaR的計算模型後,如何在眾多計算方法中選出適當的方法便成為了各機構關心的課題。
本文提出兩個新的VaR計算方法。其中一個方法是每日先由數個文獻中常見的VaR計算方法中挑選出能通過Pérignon and Smith (2008)所提出之回溯測試(Backtesting)的計算方法,再以這些方法之VaR平均值作為VaR的估計值。另一個方法則是每日選擇回溯測試p-value最大值的方法所計算出之VaR值作為VaR的估計值。在過程中所使用到的VaR計算方法包含:GARCH、GARCH-T、EGARCH、EGARCH-T、GJR、EWMA (Exponentially Weighted Moving Average)與HS (Historical Simulation)法。
本文以臺灣指數資料來驗證新VaR計算方法之效率性。實證結果發現,與GARCH、GARCH-T、EGARCH、EGARCH-T、GJR、EWMA、HS及McAleer et al. (2009b) 文中的積極策略和保守策略相較,本文提出的兩個方法表現良好。
zh_TW
dc.description.abstractVaR (Value at Risk) has evolved as a standard risk measure. As financial institutions are allowed to choose their internal VaR model, the selection of the most appropriate method has become an important issue for financial institutions.
In this thesis, two new VaR calculating methods are proposed. One involves first using a backtesting method, introduced by Pérignon and Smith (2008), to choose several VaR models from those commonly used by financial institutions. Then the average of the VaRs calculated by those chosen methods is the estimated VaR. The other selects VaR calculated by the common method that has the highest p-value as the estimated VaR. In the process, the common VaR models used are: GARCH, GARCH-T, EGARCH, EGARCH-T, GJR, EWMA (Exponentially Weighted Moving Average) and HS (Historical Simulation).
Taiwan index data are used to testify the efficiency of the new VaR calculating methods. Empirical result shows that, compared to GARCH-T, EGARCH, EGARCH-T, GJR, EWMA, HS, as well as the aggressive and conservative strategies (McAleer et al. (2009b)), new VaR calculating methods perform relatively well.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:43:29Z (GMT). No. of bitstreams: 1
ntu-100-R98723028-1.pdf: 1782410 bytes, checksum: d403381ce9955a7fdc791e926312076c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents第一章 研究動機 1
第一節 研究背景 1
第二節 研究目的 2
第二章 文獻探討 3
第三章 研究方法 6
第一節 VaR簡介 6
一 歷史模擬法(Historical Simulation) 6
二 變異數-共變數法(Variance-Covariance Approach) 7
1 GARCH、GARCH-T 8
2 GJR 9
3 EGARCH、EGARCH-T 9
4 EWMA(指數加權移動平均法)10
第二節 回溯測試 11
第三節 兩個計算VaR的新方法 17
第四節 研究步驟 18
第五節 資料 20
第四章 實證結果 21
第一節 基本敘述統計 21
第二節 VaR估計結果 23
第三節 回溯測試結果 31
第五章 結論 40
參考文獻 42
英文參考文獻 42
dc.language.isozh-TW
dc.subjectEGARCHzh_TW
dc.subjectVaRzh_TW
dc.subjectGARCHzh_TW
dc.subjectGARCH-Tzh_TW
dc.subjectEGARCH-Tzh_TW
dc.subjectGJRzh_TW
dc.subjectEWMAzh_TW
dc.subjectHSzh_TW
dc.subject回溯測試zh_TW
dc.subjectGJRen
dc.subjectVaRen
dc.subjectGARCHen
dc.subjectGARCH-Ten
dc.subjectEGARCHen
dc.subjectEGARCH-Ten
dc.subjectEWMAen
dc.subjectBacktestingen
dc.subjectHSen
dc.titleVaR最適計算方法之選擇zh_TW
dc.titleThe Selection of VaR Modelsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝(Yaw-Huei Wang),李志偉(Chih-Wei Lee)
dc.subject.keywordVaR,GARCH,GARCH-T,EGARCH,EGARCH-T,GJR,EWMA,HS,回溯測試,zh_TW
dc.subject.keywordVaR,GARCH,GARCH-T,EGARCH,EGARCH-T,GJR,EWMA,HS,Backtesting,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2011-07-05
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
1.74 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved