Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47948
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江衍偉
dc.contributor.authorHung-Yu Linen
dc.contributor.author林紘宇zh_TW
dc.date.accessioned2021-06-15T06:43:22Z-
dc.date.available2011-07-18
dc.date.copyright2011-07-18
dc.date.issued2011
dc.date.submitted2011-07-05
dc.identifier.citation1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials 9, 205-213 (2010).
2. J. Zhu, Z. Yu, S. Fan, Y. Cui, “Nanostructured photon management for high performance solar cells,” Materials Science and Engineering: R: Reports 70(3-6),330-340 (2010).
3. T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527-1536 (2011).
4. B. A. Andersson, “Materials availability for large-scale thin-film photovoltaics,” Prog. Photovolt: Res. Appl. 8, 61–76 (2000).
5. R. E. I. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology, (Kluwer Academic Publishers, Norwell, Mass., 1998).
6. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
7. J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 41-42, 87-99 (1996).
8. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, (Univ. New South Wales, Australia, Sydney, 1998).
9. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491–493 (1983).
10. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electr. Dev. 29, 300–305 (1982).
11. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
12. H. R. Stuart, and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
13. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
14. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
15. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
16. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
17. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93, 113108 (2008).
18. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
19. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
20. T. Kume, S. Hayashi, H. Ohkuma, K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34, 6448–6451 (1995).
21. M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
22.M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. C. 61, 97–105 (2000).
23. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
24. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007).
25. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
26. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
27. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
28. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
29. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010).
30. L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, and M. M. Koetse, “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett. 90, 143506 (2007).
31. J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar plasmon metal waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model.” Phys. Rev. B 72, 075405 (2005).
32. J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength- scale localization,” Phys. Rev. B 73, 035407 (2006).
33. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
34. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
35. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Optics Express 18(102), A237-A245 (2010).
36. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
37. H. P. Paudel, M. F. Baroughi, and K. Bayat, “Plasmon resonance modes in two-dimensional arrays of metallic nanopillars,” J. Opt. Soc. Am. B 27(9), 1693-1697 (2010).
38. N. A. Azarenkov and N. K. Ostrikov, “Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry,” Phys. Rep. 308, 333–428 (1999).
39. C. F. Bohren, “How can a particle absorb more than the light on it?” Am. J. Phys. 51, 323 (1983).
40. F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Optics Express 18(102), A207-A220 (2010).
41. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47948-
dc.description.abstract藉由基於有限元素法之模擬軟體COMSOL Multiphysics,本論文進行具有一維或二維金屬光柵結構的非晶矽薄膜太陽電池對於光吸收之數值研究。太陽電池由三部分所組成,依序是作為表面電極之氧化銦錫透明導電層、非晶矽半導體層以及作為底部電極之金屬銀光柵層。論文中使用AM1.5G之太陽光譜作為光源,改變入射角度與金屬光柵高度以探討其對太陽電池光吸收之影響。以金屬光柵為底部電極之薄膜太陽電池能在表面形成漸變等效折射率之抗反射層,並且根據非晶矽材料特性,吸收較差的紅光能在底部金屬光柵激發表面電漿波。藉由表面電漿波共振及其散射,可提高場強分佈以增加太陽電池的光吸收。此種太陽電池同時具有抗反射效果以及寬頻吸收的特性。經由適當的金屬光柵設計,相較於水平金屬底部電極之太陽電池,本太陽電池之光吸收最高可提升約56%。zh_TW
dc.description.abstractBy using the commercial software COMSOL Multiphysics which is based on the finite element method (FEM), the absorption effects of the thin-film amorphous silicon solar cell with one-dimensional or two-dimensional metal grating structures are numerically investigated. The solar cell structure consists of three parts: an ITO layer as the top contact, an amorphous silicon layer and a metal Ag grating layer as the back contact. The light source adopted is with the AM1.5G solar spectrum, and different incident angles and grating heights are changed to investigate the influences on the absorption of the solar cell. The thin-film solar cell with metal grating back contact can form the graded-refractive index layer on the surface. Based on the characteristic of the amorphous silicon, the poorly absorbed red light can couple into the surface plasmon mode in the back metal grating contact. The absorption of the solar cell can be enhanced due to the generation of surface wave resonance and scattering. The device combines advantages of both reduced reflection and enhanced absorption over a broad spectral range. The solar cells with the grating structures compared with the reference case of a flat metal surface back contact. The absorption enhancement of the solar cell can reach 56% at best with the appropriate grating design.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:43:22Z (GMT). No. of bitstreams: 1
ntu-100-R98941013-1.pdf: 5102953 bytes, checksum: 6214013cb82c6dc79851bea902d9017e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsChapter 1 Introduction ....................................1
Chapter 2 Surface plasmon (SP) ............................6
2.1 Surface plasmon polariton (SPP) .......................6
2.2 Localized surface plasmon (LSP) .......................8
Chapter 3 Numerical model ................................13
3.1 Methodology of structure design ......................13
3.2 Light absorption .....................................17
3.2.1 Absorption ratio ...................................18
3.2.2 Photon absorption rate .............................19
Chapter 4 Numerical results for one-dimensional metal gratings .................................................25
4.1 Transverse magnetic (TM) incident waves ..............25
4.2 Transverse electric (TE) incident waves ..............31
4.3 Average absorption enhancement ...................35
Chapter 5 Numerical results for two-dimensional metal gratings .................................................55
5.1 Transverse magnetic (TM) incident waves ..............55
5.2 Transverse electric (TE) incident waves ..............62
5.3 Average absorption enhancement ...................64
Chapter 6 Conclusions ....................................87
References ...............................................90
dc.language.isoen
dc.subject太陽電池zh_TW
dc.subject吸收增加zh_TW
dc.subject抗反射zh_TW
dc.subject表面電漿波zh_TW
dc.subject金屬光柵zh_TW
dc.subjectanti-reflectionen
dc.subjectmetal gratingen
dc.subjectsolar cellen
dc.subjectabsorption enhancementen
dc.subjectsurface plasmonsen
dc.title金屬光柵耦合表面電漿波以增加非晶矽薄膜太陽電池
光吸收之模擬研究
zh_TW
dc.titleSimulation on Absorption Enhancement of a Thin-Film Amorphous Silicon Solar Cell through Surface Plasmon Coupling with a Metal Gratingen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor楊志忠
dc.contributor.oralexamcommittee張宏鈞,吳育任
dc.subject.keyword太陽電池,表面電漿波,抗反射,吸收增加,金屬光柵,zh_TW
dc.subject.keywordsolar cell,surface plasmons,anti-reflection,absorption enhancement,metal grating,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2011-07-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved