請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47936
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 三木健(Takeshi Miki),謝志豪(Chih-hao Hsieh) | |
dc.contributor.author | Wei-Ting Lin | en |
dc.contributor.author | 林瑋庭 | zh_TW |
dc.date.accessioned | 2021-06-15T06:43:12Z | - |
dc.date.available | 2011-07-26 | |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-06 | |
dc.identifier.citation | Amarasekare, P. 2008. Spatial dynamics of foodwebs. Annual Review of Ecology Evolution and Systematics 39:479-500.
Amarasekare, P. 2010. Effect of non-random dispersal strategies on spatial coexistence mechanisms. Journal of Animal Ecology 79:282-293. Amarasekare, P. and R. M. Nisbet. 2001. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. American Naturalist 158:572-584. Armsworth, P. R. and J. E. Roughgarden. 2005. The impact of directed versus random movement on population dynamics and biodiversity patterns. American Naturalist 165:449-465. Auger, P. and J. C. Poggiale. 1996. Emergence of population growth models: Fast migration and slow growth. Journal of Theoretical Biology 182:99-108. Bolker, B. M. and S. W. Pacala. 1999. Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal. American Naturalist 153:575-602. Bollens, S. M. and B. W. Frost. 1989. Predator-induced diel wertical migration in a planktonic copepod. Journal of Plankton Research 11:1047-1065. Bowler, D. E. and T. G. Benton. 2005. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biological Reviews 80:205-225. Byers, J. E. 2000. Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. Journal of Experimental Marine Biology and Ecology 248:133-150. Campbell, C. A. M., J. Pettersson, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock. 1993. Spring migration of damson-hop aphid, Phorodon humuli (Homoptera, Aphididae),and summer host plant-derived semiochemicals released on feeding. Journal of Chemical Ecology 19:1569-1576. Clobert, J., J. F. Le Galliard, J. Cote, S. Meylan, and M. Massot. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters 12:197-209. Cote, J. and J. Clobert. 2007. Social information and emigration: lessons from immigrants. Ecology Letters 10:411-417. Danchin, E., L. A. Giraldeau, T. J. Valone, and R. H. Wagner. 2004. Public information: From nosy neighbors to cultural evolution. Science 305:487-491. Doligez, B. and T. Part. 2008. Estimating fitness consequences of dispersal: a road to 'know-where'? Non-random dispersal and the underestimation of dispersers' fitness. Journal of Animal Ecology 77:1199-1211. Fretwell, S. D. and H. L. Lucas. 1969. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19:16-36. Geritz, S. A. H., É. Kisdi, G. Meszéna, and J. A. J. Metz. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology:35-57. Han, B. P. and M. Straskraba. 1998. Modeling patterns of zooplankton diel vertical migration. Journal of Plankton Research 20:1463-1487. Hanski, I. 1983. Coexistence of competitors in patchy environment. Ecology 64:493-500. Holt, R. D. 1985. Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theoretical Population Biology 28:181-208. Hsu, S. B., S. P. Hubbell, and P. Waltman. 1978a. Competing Predators. SIAM Journal on Applied Mathematics 35:617-625. Hsu, S. B., S. P. Hubbell, and P. Waltman. 1978b. A contribution to the theory of competing predators. Ecological Monographs 48:337-349. Kishimoto, K. 1990. Coexistence of any number of species in the Lotka-Volterra competitive system over two patches. Theoretical Population Biology 38:149-158. Kostal, V. and S. Finch. 1996. Preference of the cabbage root fly, Delia radicum (L), for coloured traps: Influence of sex and physiological status of the flies, trap background and experimental design. Physiological Entomology 21:123-130. Krug, P. J. and R. K. Zimmer. 2000. Developmental dimorphism and expression of chemosensory-mediated behavior: Habitat selection by a specialist marine herbivore. Journal of Experimental Biology 203:1741-1754. Levin, S. A. 1974. Dispersion and population interactions. American Naturalist 108:207-228. Levins, R. and D. Culver. 1971. Regional coexistence of species and competition between rare species. Proceedings of the National Academy of Sciences of the United States of America 68:1246-1248. Lin, Y. T. K. and G. O. Batzli. 2001. The influence of habitat quality on dispersal demography, and population dynamics of voles. Ecological Monographs 71:245-275. McPeek, M. A. and R. D. Holt. 1992. The evolution of dispersal in spatially and temporally varying environments. American Naturalist 140:1010-1027. Michalski, J., J. C. Poggiale, R. Arditi, and P. M. Auger. 1997. Macroscopic dynamic effects of migrations in patchy predator-prey systems. Journal of Theoretical Biology 185:459-474. Namba, T. and C. Hashimoto. 2004. Dispersal-mediated coexistence of competing predators. Theoretical Population Biology 66:53-70. Nieminen, M. 1996. Migration of moth species in a network of small islands. Oecologia 108:643-651. Poethke, H. J., W. W. Weisser, and T. Hovestadt. 2010. Predator-Induced dispersal and the evolution of conditional dispersal in correlated environments. American Naturalist 175:577-586. Powers, S. P. and C. H. Peterson. 2000. Conditional density dependence: the flow trigger to expression of density-dependent emigration in Bay Scallops. Limnology and Oceanography 45:727-732. Pulliam, H. R. 1988. Source, sinks, and population regulation American Naturalist 132:652-661. Richardson, J. S. 1991. Seasonal food limitation of detritivores in a montane stream-an experimental test. Ecology 72:873-887. Rowell, J. T. 2010. Tactical population movements and distributions for ideally motivated competitors. American Naturalist 176:638-650. Saglam, I. K., D. A. Roff, and D. J. Fairbairn. 2008. Male sand crickets trade-off flight capability for reproductive potential. Journal of Evolutionary Biology 21:997-1004. Schaefer, J. 2001. Riffles as barriers to interpool movement by three cyprinids (Notropis boops, Campostoma anomalum and Cyprinella venusta). Freshwater Biology 46:379-388. Snider, S. B. and J. F. Gilliam. 2008. Movement ecology: Size-specific behavioral response of an invasive snail to food availability. Ecology 89:1961-1971. Takeuchi, Y. 1989. Diffusion-mediated persistence in two-species competition Lotka-Volterra model. Mathematical Biosciences 95:65-83. Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:2-16. Weisser, W. W., C. Braendle, and N. Minoretti. 1999. Predator-induced morphological shift in the pea aphid. Proceedings of the Royal Society of London Series B-Biological Sciences 266:1175-1181. Zhao, L. Q., D. H. Zhu, and Y. Zeng. 2010. Physiological trade-offs between flight muscle and reproductive development in the wing-dimorphic cricket Velarifictorus ornatus. Entomologia Experimentalis Et Applicata 135:288-294. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47936 | - |
dc.description.abstract | 在具有空間結構的環境中,生物在不同區塊 (patch) 間隨機的遷移被認為可以促使競爭物種共存。然而,有些生物會利用適應度 (fitness) 的相關線索 (cue),主動修正他們移動的方向和強度,稱為調適型遷移 (directed dispersal)。調適型遷移,尤其是當其對適應度有利時,對物種競爭有何影響目前則尚未有定論。本研究以兩區塊、兩種消費者競爭同一資源的關聯群聚 (metacommunity) 模型探討這一重要問題。我們比較了在三種遷移模式下,遷移對兩種消費者共存的影響;三種模式包括隨機遷移與兩種分別以當地資訊和整體資訊為基礎的調適型遷移。對於調適型遷移是否增進適應度,我們也建立判斷準則,並以遷移對適應度的影響 (adaptiveness) 解讀結果。我們發現 (1) 以當地資訊為基礎的遷移模式可能降低適應度,在此情況下,促進共存的機制與遷移為隨機時相同。此外,(2) 在調適型遷移增加適應度的情況下,原為弱勢的競爭者若移動能力較佳,可以快速集中到資源較多的區塊,因此與優勢競爭者共存。此為生物遷移促進共存的新機制。本研究也顯示,生物的適應行為,對遷移促進物種共存的機制而言相當重要。 | zh_TW |
dc.description.abstract | Random dispersal has been considered to promote species coexistence in spatially structured environments. However, dispersal can be directed, which means dispersal is motivated by fitness-related cues. The effects of directed dispersal, especially which improves fitness of individual (i.e. adaptive dispersal), on the coexistence of competing species remain unclear. We address this important question by constructing a two-patch metacommunity model of two consumers competing for a single resource. We compared the effects of dispersal on coexistence of consumers between three different modes: a random mode and two directed modes using local or global information of resource availability. We interpreted competitive outcomes in terms of adaptiveness of dispersal. We found that (i) directed dispersal based on local information can be maladaptive and promote coexistence in the same way that random dispersal does. In addition, (ii) when directed dispersal is adaptive, the inferior competitor with high moving ability can take advantage by tracking the patch of higher resource level, and thus coexistence is possible. This is a new mechanism of dispersal-mediated coexistence. These results strongly imply the importance of adaptive behavior in dispersal-mediated coexistence of competing species. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:43:12Z (GMT). No. of bitstreams: 1 ntu-100-R98241214-1.pdf: 846693 bytes, checksum: f294165af71895eeb75536b3117eb818 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………….………i
誌謝…………………………………………………………………………….………ii Abstract (English)………………………………………………………………........1 Abstract (Chinese)……………………………………………………………..........2 Introduction…………………………………………………………………….……..3 Method………………………………………………………………………………....9 Model…………………………………………………………………………..…….9 Metacommunity model: general formulation………………………..………9 Dispersal mode………………………………………………………..……...12 Analysis…………………………………………………………………….………15 Results…………………………………………………………………………..……20 Random dispersal…………………………………………………………….……20 Fitness-dependent dispersal………………………………………..……………22 Growth-dependent dispersal……………………………………………..………25 Discussions…………………………………………………………………………28 References……………………………………………………………………..……….38 Figures…………………………………………………………………………..…43 Appendix 1: Fitness-dependent dispersal…………….………………………50 Appendix 2: Growth-dependent dispersal……………………………………57 | |
dc.language.iso | en | |
dc.title | 調適型遷移對競爭消費者的影響 | zh_TW |
dc.title | Effects of Directed Dispersal on Competing Consumers | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許世壁(Sze-Bi Hsu),林雨德(Yu-Teh Kirk Lin),沈聖峰(Sheng-Feng Shen) | |
dc.subject.keyword | 遷移模式,關聯群聚,競爭共存,遷移對適應度的影響, | zh_TW |
dc.subject.keyword | Dispersal mode,metacommunity,competitive coexistence,adaptiveness, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 826.85 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。