Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47920Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 周楚洋 | |
| dc.contributor.author | Wan-Ting Liao | en |
| dc.contributor.author | 廖婉婷 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:42:59Z | - |
| dc.date.available | 2012-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | 白明德。1999。厭氧生物產氫機制與程序操作策略之研究。碩士論文。成功大學環境工程學系。
AOAC official methods of analysis, 14th ed. 1984. 7.074-7.077: Fiber (acid detergent) and lignin in animal feed. Washington, DC: AOAC. APHA. 1992. Standard method for the examination of water and wastewater. 18th Edition. Washington. Chen, W., S. Chen, S. KumarKhanal, S. Sung. Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrogen Energy. 31(15): 2170-8. Chin, H. L., Z. S. Chen, C. P. Chou. 2003. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog. 19: 383-8. Chu, C. F., Y. Y. Li, K. Q. Xu, Y. Ebie, Y. Inamori, H. N. Kong. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. 2008. Int. J. Hydrogen Energy. 33(18):4739-46. Collet, C., N Adler, J.P. Schwitzguébel, P. Pe´ringer. 2004. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int. J. Hydrogen Energy. 29: 1479–85. Cui, M. J., Z. L. Yuan, X. H. Zhi, and J. Q. Shen. 2009. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int. J. Hydrogen Energy. 34(19): 7971-7978. Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy. 26(1): 13-28. Fang, H. H. P., and Y. Liu. 2001. Anaerobic wastewater treatment in (sub-) tropical regions. In: Advances in Water and Wastewater Treatment Technology- Molecular Technology, Nutrient Removal, Sludge Reduction and Environmental Health, 285-294. The Netherlands: Elsevier Science. Fang, H. H. P., C. L. Li, and T. Zhang. 2006. Acidophilic biohydrogen production from rice slurry. Int. J. Hydrogen Energy. 31(6): 683-692. Fan, Y. T., G. S. Zhang, X. Y. Guo, Y. Xing, and M. H. Fan. 2006. Biohydrogen-production from beer lees biomass by cow dung compost. Biomass and Bioenergy. 30(5): 493-496. Gelhaye, E., H. Petitdemange, and R. Gay. 1993. Adhesion and growth rate of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose. J. Bacteriol. 175(11): 3452–3458. Guo, X. M., E. Trably, E. Latrille, H. Carrere, J. P. Steyer. 2010. Hydrogen production from agricultural waste by dark fermentation: a review. Int. J. Hydrogen Energy. 35(19): 10660-10673. Hallenbeck, P. C., and J. R. Benemann. 2002. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy. 27(11/12): 1185-1193. Han, S. K., H. S. Shin. 2004. Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy. 29: 569-77. Jayalakshmi S., K. Joseph, V. Sukumaran. 2009. Biohydrogen generation from kitchen waste in an inclined plug flow reactor. Int. J. Hydrogen Energy. 34(21): 8854-8858. Kaparaju P., M. Serrano, A. B. Thomsen, P. Kongjan and I. Angelidaki. 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology. 100 (9): 2562–2568. Karlsson A., L. Vallin, J. Ejlertsson. Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. 2008. Int. J. Hydrogen Energy. 33(3): 953-62. Kim, I. S., M. H. Hwang, N. J. Jang, S. H. Hyun, and S. T. Lee. 2004. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy. 29(11): 1133-1140. Kim, S. H., H. S. Shin. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. 2008. Int. J. Hydrogen Energy. 33(19): 5266-74. Kjeldahl, J. Neue Methods zur Bestimmung des Stickstoffs in Organischen Korpern. 1883. Z. Anal. Chem. 22:366–382. Kotsopoulos, T. A., I. A. Fotidisa, N. Tsolakis, G. D. Martzopoulosa. 2009. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyperthermophilic temperature(70°C). Biomass and Bioenergy. 33(9): 1168-1174. Lay, J. J., K. S. Fan, J. I. Chang, and C. H. Ku. 2003. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int. J. Hydrogen Energy. 28(12): 1361-1367. Lee, Z., S. Li, J. Lin, Y. Wang, P. Kuo, S. S. Cheng. Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. 2008. Int. J. Hydrogen Energy. 33(19):5234-41. Levin, D.B., R. Islam, N. Cicek, and R. Sparling. 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy. 31: 1496–503. Lewis, M. J. and T. W. Young. 1995. Barley. Brewing, 36–47. Chapman & Hall, London. Li, D. and H. Chen. 2007. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation, Int J Hydrogen Energy. 32: 1742-1748. Li, C. L. and Herbert H. P. Fang. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Environ Sci. Technol. 37(1): 1-39. Lu, Y., Q. Lai, C. Zhang, H. Zhao, K. Ma, X. Zhao. Characteristics of hydrogen and methane production from corn stalks by an augmented two- or three-stage anaerobic fermentation process. 2009. Bioresour Technol. 100(12): 2889-95. Mata-Alvarez, J., S. Macé, , and P. Llabrés. 2000. Anaerobic digestion of organic solid wastes-An overview of research achievements and perspectives. Bioresour. Technol. 74(1): 3-16. Meyer-Pittroff, R. 1988. Utilization of spent brewers’ grain for energy production. Brauwelt. 128: 1156-1158. Mussatto, S. I., G. Dragone, and I.C. Roberto. 2006. Brewers’ spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43: 1-14. Nandi, R., and S. Sengupta. 1998. Microbial production of hydrogen-An overview. Crit. Rev. Microbiol. 24(1): 61-84. Noike, T., and O. Mizuno. 2000. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. 42(12): 155-162. NREL Ethanol Project laboratory. 1998. Determination of Carbohydrates in Biomass by High Performance Liquid Chromatograph. Chemical Analysis and Testing Task Laboratory Analytical Procedure #002. Okamoto, M., T. Miyahara, O. Mizuno, and T. Noike. 2000. Biological hydrogen potential of materials characteristics of the organic fraction of municipal solid wastes. Water Sci. Technol. 41(3): 25-32. Pakarinen, O., A. Lehtomäki, and J. Rintala,. 2008. Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. Int. J. Hydrogen Energy. 33(2): 594-601. Shin. H., J. Youn. Conversion of food waste into hydrogen by thermophilic acidogenesis. 2005. Biodegradation. 16(1): 33-44. Silva, J.P., S. Sousa, I. Goncalves, J. J. Porter, S. Ferreira-Dias. 2004. Modeling adsorption of acid orange 7 dye in aqueous solutions to spent brewery grains. Separation and Purification Technology. 40: 163–170. Siriwongrungson, V., Raymond J. Zeng, I. Angelidaki. 2007. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Re. 41(18):4204-4210. Taguchi, F., K. Yamada, K. Hasegawa, T. Taki-Saito, K. Hara. 1996. Continuous hydrogen production by Clostridium sp. Strain no. 2 from cellulose hydrolysate in an aqueous two phase system. J. Ferment Bioeng. 82:80–83. Tang, G., J. Huang, Z. Sun, Q. Tang, C. Yan, and G. Liu. 2008. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J. Biosci Bioeng. 106(1): 80-7. Van Ginkel, S., S. Sung and J. J. Lay. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci. Technol. 35: 4726–4730. Van Soest, P. J., and R. H. Wine. 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 50: 50-55. Van Soest, P. J., J. B. Robertson, B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597. Venkata, M. S., B. V. Lalit, P. N. Sarma. 2007. Anaerobic biohydrogen production from diary wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzy. Microb. Technol. 41:506–515. Yang, P. L., R. H. Zhang, J. A. McGarvey, J. R. Benemann. 2007. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrogen Energy. 32: 4761–4771. Yokoyama H., M. Waki, N. Moriya, T. Yasuda, Y. Tanaka, K. Haga. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. 2007. Appl Microbiol Biotechnol. 74(2): 474-83. Zhu, Y. and S. T. Yang. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by C. tyrobutyricum. J. Biotech. 110: 143–157. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47920 | - |
| dc.description.abstract | 酒粕為釀酒產業的主要廢棄物,約佔生成副產物之85%,酒粕目前主要做為畜牧業飼料的添加物,但因為富含有機成份,所以也應思考其他方面的應用。氫氣除了具高熱值外,其燃燒後僅會產生水,是一種理想的替代能源,且能經由生物程序降解有機物產生。因此本研究之目的即利用酒粕為原料,找出以其進行生物產氫的最佳操作條件。
本研究所使用的酒粕其成份為:纖維素5.35%、半纖維34.83%、木質素9.01%及灰分2.63%。菌種則取自養牛場的厭氧污泥,經過加熱前處理15分鐘以去除其他耗氫菌,同時保留產氫菌;也進行高溫醱酵測試是否有抑制甲烷生成菌之效果。酒粕亦加入稀鹽酸做前處理,並加熱至沸騰後維持30分鐘,然後將離心後之污泥冷卻後與適量乾燥酒粕置入反應槽,均勻混合,在不同溫度(37℃, 45℃, 50℃, 55℃及60℃)及不同pH (5, 6, 6.5及7)的條件下進行醱酵測試。 實驗結果發現以2%稀鹽酸做前處理之產氫效果比0.365%來得好,最佳產氫條件為pH6及37℃,最大產氫量及氫氣濃度分別達到46 mL H2/g TVS及73.17%。而反應槽添佳營養液除了可以縮短菌種產氫時間,使產氫醱酵作用在24小時內結束外,並能有效降低甲烷的生成量。 | zh_TW |
| dc.description.abstract | Spent grain is the main waste in brewery industry, contributing around 85% of total byproducts. It is mainly used as the animal feed additives. However, other applications should be concerned about since it contains abundant organics. Hydrogen has being considered as an ideal alternative energy for its high heating value and it produce only clean water after combustion, and it could be produced through biodegradation of the organic material. The objective of this study is to find out the optimum operational condition for using the spent grain as substrate.
The composition of the spent grain used in this study is: 5.35% cellulose, 34.83% hemi-cellulose, 9.01% lignin and 2.63% ash. The seeding bacteria were obtained from the anaerobic sludge in a dairy farm. Heating pretreatment of 15 minutes for the sludge was conducted to kill those hydrogen utilizing bacteria. Thermophilic fermentation tests were also conducted to tests its effect in inhibiting the methanogen. Dilute acid was added to the spent grain for pretreatment and was heated to boiling for 30 minutes. The pretreated spent grain was then mixed with the centrifuged cold sludge homogeneously and fed into the reactor. Fermentation tests were designed and conducted under conditions of different temperature (37℃, 45℃, 50℃, 55℃ and 60℃) and different pH (5, 6, 6.5 and 7). Experimental results showed that 2% HCl pretreatment had higher hydrogen production than 0.365% HCl. The maximal hydrogen yield of 46 mL H2/g TVS and the hydrogen content of 73.17% were achieved under the optimal operational condition: pH 6 and 37℃. Addition of nutrient broth could shorten the hydrogen-producing time within 24 hrs and effectively decrease the methane production. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:42:59Z (GMT). No. of bitstreams: 1 ntu-100-R98631014-1.pdf: 1543194 bytes, checksum: a31e81dacc8c2b371ac259be9add3938 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 前言 1 第二章 文獻探討 3 2-1 酒粕製程 3 2-2 酒粕成分特性 4 2-3 酒粕潛在應用 4 2-4 生物產氣 5 2-5 產氫原料 7 2-6 產氫操作條件 8 2-6-1 pH 9 2-6-2 溫度 11 2-6-3 前處理 11 2-6-4 反應槽模式 12 2-7 產氫微生物代謝活動 13 2-7-1 產氫菌 15 2-7-2 耗氫菌 16 2-7-3 代謝型競爭菌 17 第三章 研究方法 18 3-1 實驗材料 18 3-1-1 菌種 18 3-1-2 基質 18 3-2 實驗設備 19 3-3 實驗設計 20 3-3-1 酒粕之酸前處理 21 3-3-2 添加營養液與初始pH之影響 21 3-3-3添加營養液與高溫醱酵之產氫影響 22 3-3-4酸水解後固液部份對產氫之影響 22 3-4 分析方法 22 第四章 結果與討論 25 4-1 酒粕成分分析 25 4-2 添加營養液與初始pH之影響 25 4-3 酸前處理之影響 29 4-4 高溫醱酵對產氫之影響 30 4-5 酸水解後固液部份對產氫之影響 31 4-6 菌種前處理與添加營養液之影響 33 第五章 結論 38 第六章 建議 39 參考文獻 40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 牛場污泥 | zh_TW |
| dc.subject | 酒粕 | zh_TW |
| dc.subject | 生物產氫 | zh_TW |
| dc.subject | biohydrogen production | en |
| dc.subject | cow sludge | en |
| dc.title | 酒粕生物產氫之研究 | zh_TW |
| dc.title | Biohydrogen Production from Brewers' Spent Grain | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 程梅萍,陳力騏,陳力騏 | |
| dc.subject.keyword | 酒粕,生物產氫,牛場污泥, | zh_TW |
| dc.subject.keyword | biohydrogen production,cow sludge, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| Appears in Collections: | 生物機電工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 1.51 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
