Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47917
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林讚標
dc.contributor.authorYin-Chu Chenen
dc.contributor.author陳映竹zh_TW
dc.date.accessioned2021-06-15T06:42:56Z-
dc.date.available2013-07-25
dc.date.copyright2011-07-25
dc.date.issued2011
dc.date.submitted2011-07-07
dc.identifier.citationApel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399.
Asada, K. (1999). The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639.
Barroso, C., Romero, L., Cejudo, F., Vega, J., and Gotor, C. (1999). Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Molecular Biology 40: 729-736.
Bianchi, M.W., Roux, C., and Vartanian, N. (2002). Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiologia Plantarum 116: 96-105.
Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., and Hsieh, H.L. (2007). Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiology 143: 1189-1202.
Chen, J., and Goldsbrough, P.B. (1994). Increased Activity of γ-Glutamylcysteine Synthetase in Tomato Cells Selected for Cadmium Tolerance. Plant Physiology 106: 233-239.
Cole, S.P., Downes, H.F., Mirski, S.E., and Clements, D.J. (1990). Alterations in glutathione and glutathione-related enzymes in a multidrug-resistant small cell lung cancer cell line. Molecular Pharmacology 37: 192-197.
Cummins, I., Cole, D.J., and Edwards, R. (1999). A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. The The Plant Journal. 18: 285-292.
DeRidder, B.P., and Goldsbrough, P.B. (2006). Organ-specific expression of glutathione S-transferases and the efficacy of herbicide safeners in Arabidopsis. Plant Physiology 140: 167-175.
Dietz, K.-J., Jacob, S., Oelze, M.-L., Laxa, M., Tognetti, V., de Miranda, S.M.N., Baier, M., and Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. Journal of Experimental Botany 57: 1697-1709.
Dixon, D., Cole, D., and Edwards, R. (2000). Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Archives of Biochemistry and Biophysics 384: 407 - 412.
Dixon, D.P., and Edwards, R. (2009). Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. Journal of Biological Chemistry 284: 21249-21256.
Dixon, D.P., and Edwards, R. (2010). Glutathione Transferases. The Arabidopsis Book: e0131.
Dixon, D.P., Davis, B.G., and Edwards, R. (2002). Functional divergence in the glutathione transferase superfamily in plants. Journal of Biological Chemistry 277: 30859-30869.
Dixon, D.P., Skipsey, M., and Edwards, R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71: 338-350.
Dixon, D.P., Hawkins, T., Hussey, P.J., and Edwards, R. (2009). Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. Journal of Experimental Botany 60: 1207-1218.
Edwards, R., and Dixon, D. (2000). The role of glutathione transferases in herbicide metabolism. In Herbicides and their mechanisms of action. Edited by Cobb AH, Kirkwood RC. Sheffield: Sheffield Academic Press: 33 - 71.
Edwards, R., and Dixon, D.P. (2005). In Methods in Enzymology Glutathione Transferases and Gamma-Glutamyl Transpeptidases 8: 169.
Edwards, R., Dixon, D.P., and Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science 5: 193-198.
Foyer, C.H., and Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11: 861-905.
Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: The heart of the redox hub. Plant Physiology 155: 2-18.
Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.J., Pruvost, C., and Jouanin, L. (1995). Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology 109: 1047-1057.
Frova, C. (2006). Glutathione transferases in the genomics era: New insights and perspectives. Biomolecular Engineering 23: 149-169.
Grant, C., MacIver, F., and Dawes, I. (1996). Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Current Genetics 29: 511-515.
Griffith, O.W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry 106: 207-212.
Gruhler, A., Schulze, W.X., Matthiesen, R., Mann, M., and Jensen, O.N. (2005). Stable Isotope Labeling of Arabidopsis thaliana Cells and Quantitative Proteomics by Mass Spectrometry. Molecular & Cellular Proteomics 4: 1697-1709.
Jiang, H.W., Liu, M.J., Chen, I.C., Huang, C.H., Chao, L.Y., and Hsieh, H.L. (2010). A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiology 154: 1646-1658.
Kampranis, S., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P., and Makris, A. (2000). A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. The Journal of Biological Chemistry 275: 29207 - 29216.
Kocsy, G., von Ballmoos, P., Suter, M., Ruegsegger, A., Galli, U., Szalai, G., Galiba, G., and Brunold, C. (2000). Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211: 528-536.
Kushnir, S., Babiychuk, E., Kampfenkel, K., Belles-Boix, E., Montagu, M.V., and Inze, D. (1995). Characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide. Proceedings of the National Academy of Sciences of the United States of America 92: 10580-10584.
Loyall, L., Uchida, K., Braun, S., Furuya, M., and Frohnmeyer, H. (2000). Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12: 1939 - 1950.
Marrs, K. (1996). The functions and regulation of glutathione S-transferases in plants.
Annual Review of Plant Physiology and Plant Molecular Biology 47: 127 - 158.
Mezzari, M.P., Walters, K., Jelinkova, M., Shih, M.-C., Just, C.L., and Schnoor, J.L. (2005). Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiology 138: 858-869.
Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science 9: 490-498.
Mueller, L., Goodman, C., Silady, R., and Walbot, V. (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiology 123: 1561 - 1570.
Murashige, T., and Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15: 473-497.
Noctor, G., and Foyer, C.H. (1998). ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology 49: 249-279.
Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany 53: 1283-1304.
Nutricati, E., Miceli, A., Blando, F., and De Bellis, L. (2006). Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Reports 25: 997-1005.
Roxas, V., Smith, R., Allen, E., and Allen, R. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology 15: 988 - 991.
Sappl, P., Onate-Sanchez, L., Singh, K., and Millar, A. (2004). Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Molecular Biology 54: 205-219.
Sappl, P.G., Carroll, A.J., Clifton, R., Lister, R., Whelan, J., Harvey Millar, A., and Singh, K.B. (2009). The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The The Plant Journal. 58: 53-68.
Scandalios, J.G. (2002). The rise of ROS. Trends in Biochemical Sciences 27: 483-486.
Sheehan, D., Meade, G., Foley, V., and Dowd, C. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemistry Journal 360: 1 - 16.
Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6: 410-417.
Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125: 27-58.
Soranzo, N., Sari Gorla, M., Mizzi, L., De Toma, G., and Frova, C. (2004). Organisation and structural evolution of the rice glutathione S -transferase gene family. Molecular Genetics and Genomics 271: 511-521.
Takahashi, M., and Asada, K. (1988). Superoxide production in aprotic interior of chloroplast thylakoids. Archives of Biochemistry and Biophysics 267: 714-722.
Thomashow, M.F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology 50: 571-599.
Wellburn, F.A.M., Creissen, G.P., Lake, J.A., Mullineaux, P.M., and Wellburn, A.R. (1998). Tolerance to atmospheric ozone in transgenic tobacco over-expressing glutathione synthetase in plastids. Physiologia Plantarum 104: 623-629.
Wilce, M., and Parker, M. (1994). Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205: 1 - 18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47917-
dc.description.abstract麩胺基硫轉移酶 (glutathione S-transferases; GST) 被熟知參與植物面對氧化逆境。然而,對於GST基因在植物體中所扮演的調控功能,目前所知仍然有限。近來我們實驗室團隊發現當GST基因tau家族中的AtGSTU17基因缺失時,植株對於鹽及乾旱的耐受性相較於野生型更為提升。有此外表型的產生主要因為AtGSTU17基因缺失時,植物體中glutathione和abscisic acid增加,對外表型產生影響。因此我們推測AtGSTU17 於植物體面對非生物性逆境時,扮演負調節者的角色。我們希望了解atgstu17所產生的外表型,是否也會出現於tau家族其他基因缺失時。我們使用atgstu7, atgstu8, atgstu18進行研究,觀察其在非生物性逆境下之功能。經由一系列非生物性逆境測試後,發現此三個基因缺失之植株於乾旱及鹽處理下,表現出和atgstu17 不同的外表型。然而在abscisic acid處理、滲透壓逆境及鹽逆境下,相對於野生型植株則有較高的發芽率。推論AtGSTU7、AtGSTU8、AtGSTU18可能於逆境之下浸潤後的種子以及幼苗發育初期,扮演負調控者的角色。此外篩選atgstu25 homozygote植株的過程中,發現取用atgstu25 hemizygote產生的子代進行分析,得到WT : hemizygote : homozygote = 1:2:0顯示當AtGSTU25缺失時,可能造成致死現象。zh_TW
dc.description.abstractGlutathione S-transferases (GSTs) have been well-documented to be involved in oxidative stress metabolism. However, reports on GST gene participating in regulatory function are limited. Previously our lab had found that glutathione S-transferase U17 (AtGSTU17) knock-out plants were more tolerant to drought and salt stresses than wild-type plants. The mechanism causing these phenotypes of atgstu17 can be explained mostly by the combined effect of elevated contents of both glutathione and abscisic acid. Thus, AtGSTU17 plays a negative role in regulating abiotic stress tolerance. Three homozygous knockout mutants, atgstu7, atgstu8, atgstu18, were chosen for further study with their function in response to abiotic stress. Preliminary stress experiments indicated that the mentioned above atgstu mutants showed different phenotypes from the atgstu17 mutant plants in terms of salt and drought tolerance. However, the germination rates of the three mutants were higher than wild-type plants when they were treated with abscisic acid, salt, and osmotic stress. We suggested that these three genes might play a negative regulatory role during seed imbibitions and seedling development under stress conditions. Genetic analysis of F2 segergating population indicated that wild-type (AtGSTU25/AtGSTU25), hemizygous (AtGSTU25/atgstu25), and homozygous mutant (atgstu25/atgstu25) plants were in a ratio of 1:2:0, indicating that the homozygous mutant allele is lethal.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:42:56Z (GMT). No. of bitstreams: 1
ntu-100-R98b42003-1.pdf: 9827487 bytes, checksum: 6bda84c7e65e20a9a7bf77cf92dd640c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 III
中文摘要 IV
Abstract V
縮寫表 VI
第一章 序論 1
前言 1
1.1 植物於逆境下之氧化還原反應及常見抗氧化物 1
1.2 GSH與GST的關係 2
1.3 GSH於植物遭受逆境時所扮演的角色 2
1.4 植物GSTs 的歷史及分類 3
1.5 植物GSTs 的功能 4
1.6 GST tau家族與非生物逆境的關係 5
1.7 研究目標 5
第二章 材料與方法 7
2.1 植物材料、生長條件 7
2.2  AtGSTU7、AtGSTU8、 AtGSTU18、 AtGSTU25 基因序列分析 7
2.3 DNA 萃取及Polymerase Chain Reaction (PCR) 擴大基因片段 7
2.4 分析T-DNA homozygous lines 9
2.5 RNA 萃取,RNase-free DNase I 處理及 cDNA 合成,和 RT-PCR 9
2.6 氧化逆境下的生長情況測試 11
2.7 非生物性逆境下之發芽測試 11
2.8 ABA處理下根部延長試驗 11
2.9 突變株的非生物性逆境耐受性分析 11
2.10 Glutathione萃取 12
2.11 去除果莢葉綠素 12
第三章 結果 14
3.1  atgstu7、atgstu8、atgstu18、atgstu25植株之取得 14
3.2  阿拉伯芥裡的AtGSTU7、AtGSTU8、AtGSTU18及AtGSTU25基因 14
3.3  atgstu7、atgstu8、atgstu18在甲基紫精(MV)處理下之生長情形 14
3.4  atgstu7、atgstu8、atgstu18於鹽逆境下之種子發芽率 15
3.5  atgstu7、atgstu8、atgstu18在滲透壓逆境下之發芽率測試 15
3.6  atgstu7、atgstu8、atgstu18在ABA處理下之種子發芽率 16
3.7  atgstu7、atgstu8、atgstu18在ABA處理下之根長度 16
3.8 atgstu7、atgstu8、atgstu18在乾旱逆境下之耐受性測試 17
3.9  atgstu7、atgstu8、atgstu18在高鹽下之耐受性測試 17
3.10 atgstu7、atgstu8、atgstu18與野生型之GSH及GSH/GSSG 18
3.11 篩選AtGSTU25 T-DNA 插入品系 18
3.12 T-DNA插入AtGSTU25異型合子果莢結實狀況 18
第四章 討論 19
4.1  AtGSTU7、 AtGSTU8、 AtGSTU18及AtGSTU25於阿拉伯芥表現的位置 19
4.2  atgstu7、 atgstu8、atgstu18在甲基紫精 (MV) 處理下之生長情形和野生型間差異不明顯 19
4.3  atgstu7、 atgstu8、atgstu18之發芽率 19
4.4  atgstu7、atgstu8、atgstu18與野生型於ABA處理下之根長未出現明顯差異 20
4.5  atgstu7、atgstu8、atgstu18中GSH含量及在乾旱、鹽逆境下之耐受性 20
4.6  atgstu25 基因型分析的結果及果莢結實狀況 21
第五章 參考文獻 23
第六章 圖表 30
附錄 44
dc.language.isozh-TW
dc.subject耐鹽zh_TW
dc.subject麩胺基硫轉移&#37238zh_TW
dc.subject穀胱甘&#32957zh_TW
dc.subject氧化逆境zh_TW
dc.subject耐乾旱zh_TW
dc.subjectsalt toleranceen
dc.subjectGlutathione S-transferasesen
dc.subjectglutathioneen
dc.subjectoxidative stressen
dc.subjectdrought toleranceen
dc.title分析阿拉伯芥AtGSTU7、AtGSTU8、AtGSTU18及AtGSTU25
等基因失去功能時在非生物逆境下之反應
zh_TW
dc.titleCharacterization of loss-of-function mutants of AtGSTU7, AtGSTU8, AtGSTU18 and AtGSTU25 of Arabidopsis thaliana in response to abiotic stressesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭石通,靳宗洛,陳仁治,鄭萬興
dc.subject.keyword麩胺基硫轉移&#37238,穀胱甘&#32957,氧化逆境,耐乾旱,耐鹽,zh_TW
dc.subject.keywordGlutathione S-transferases,glutathione,oxidative stress,drought tolerance,salt tolerance,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2011-07-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
Appears in Collections:植物科學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
9.6 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved