請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47907
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖振鐸 | |
dc.contributor.author | Wei-Jia Huang | en |
dc.contributor.author | 黃偉嘉 | zh_TW |
dc.date.accessioned | 2021-06-15T06:42:49Z | - |
dc.date.available | 2011-07-18 | |
dc.date.copyright | 2011-07-18 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-07 | |
dc.identifier.citation | 1. 沈明來 (1999). 試驗設計學。台北:九州圖書。
2. Bingham, D.R. and Sitter, R.R. (2003). Fractional Factorial Split-plot Designs for Robust Parameter Experiments. Technometrics 45, 80-89. 3. Bingham, D.R., Schoen, E.D. and Sitter, R.R. (2004). Designing fractional factorial split-plot experiments with few whole-plot factors. Applied Statistics 53, 325-339. 4. Cheng, C.S and Tsai, P.W. (2009).Optimal two-level regular fractional factorial block and split-plot designs. Biometrika 96, 83-93 5. Federer, W.T. (1976). Sampling, blocking, and model considerations for the completely randomized,randomized complete block,and incomplete block experiment designs. Biometrical Journal 18, 511-525 6. Federer, W.T. (1976). Sampling, blocking, and model considerations for the r-row by c-column experiment designs. Biometrical Journal 18, 595-607 7. Federer, W.T. (1977). Sampling, blocking, and model considerations for split-plot and split-block designs. Biometrical Journal 19,181-200 8. Federer, W.T. and Meredith, M.P. (1992). Covariance analysis for split-plot and split-block designs. The American Statistician 46,155-162. 9. Federer, W.T. and King, F. (2007). Variations on Split Plot and Split Block Experiment Design. New York: Wiley. 10. Mead, R. (1988). The design of experiments.statistical principles for pratical application. Cambridge University Press. 11. Mcleod, R.G. and Brewster, J.F. (2004). The design of blocked fractional factorial split-plot experiments. Technometrics 46, 135-146. 12. Milliken, G. A. and Johnson, D.E. (2009). Analysis of messy data. Volume 1: designed experiment. CRC Press. 13. Montgomery, D.C. (2009). Design and analysis of experiments. New York: Wiley. 14. Nelder, J.A. (1964). The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 147-162. 15. Searle, S.R., Casella, G., Mcculloch, C.E (1992). Variance components. New York: Wiley. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47907 | - |
dc.description.abstract | 試驗設計早期多用於農業上,但中後期至現代,工業上的應用漸多。在目前應用上,不管農業上或工業上,多朝向多層級設計(multi-stratum design)研究,即包含兩個或兩個以上的參試因子,利用巢式劃分(nesting)或跨越劃分(crossing)來決定試驗單位。多層級設計一般會符合簡單直交區集結構(simple orthogonal block structure),巢式劃分與跨越劃分即為簡單直交區集結構基本的區集劃分方式。最簡單的巢式劃分為裂區設計(Split-plot designs),而最簡單的跨越劃分為條區設計(Split-Block designs)。但目前的研究大多只是利用多層級設計的基本架構套用於實用中,並未去詳加探討層級的精確度比較,處理效應置放的問題。藉由Nelder提出的兩個重要函數,我們可以相當容易了解層級如何劃分,再藉由空白變方分析表(null analysis of variance)中變方成分(variance component)的計算,可以看出何者變異較大,即可將較重要的因子放置在變異較小的層級中。 | zh_TW |
dc.description.abstract | Multi-stratum designs are often used with applications in various areas, such as agriculture, industry, social science, etc. The main purpose of such designs is to effectively arrange treatments or treatment combinations to experimental units. The partition of experimental units basically uses the two schemes nesting and crossing. So the multi-stratum designs usually contain at least two experimental factors. The simplest nesting design is the split plot design, and the simplest crossing design is the split block design. Most of the published studies only implement the basic framework of multi-stratum designs, but often do not discuss which stratum has higher precision or how to arrange treatments or treatment combinations into the stratum. By two basic functions corresponding to nesting and crossing, proposed by Nelder (1964), we show how to divide the stratum and construct the null analysis of variance. This would guide users to arrange the more important effects in the stratum with less variation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:42:49Z (GMT). No. of bitstreams: 1 ntu-100-R98621207-1.pdf: 2313474 bytes, checksum: ae0db69f24dd5f472d2bbb04ed3ebfcc (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
摘要 1 Abstract 2 第一章 緒論 3 1.1 研究目的 3 1.2 前人研究 6 第二章 多層級試驗設計 8 2.1 跨越劃分(crossing) 8 2.2 巢式劃分(nesting) 15 2.3 巢式劃分與跨越劃分的結合(combination) 20 第三章 實例與資料分析 33 3.1 跨越劃分與巢式劃分綜合應用 ((n1/n2)×n3) 33 3.2 裂區設計 (n1/n2/n3) 38 3.3 跨越劃分與巢式劃分綜合應用 ((n1×n2)/n3) 40 3.4 目前誤差項最多的試驗設計 43 3.5 非簡單直交區集結構的多層級試驗設計 46 第四章 結論 47 4.1 結論 47 參考文獻 49 | |
dc.language.iso | zh-TW | |
dc.title | 多層級試驗設計之評介 | zh_TW |
dc.title | An Introduction to Multi-stratum Designs | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡風順,高振宏 | |
dc.subject.keyword | 多層級設計,簡單直交區集結構,巢式劃分,跨越劃分, | zh_TW |
dc.subject.keyword | simple orthogonal block structure,nesting,crossing, | en |
dc.relation.page | 50 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。