Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47905
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管中閔
dc.contributor.authorJiun-Hua Suen
dc.contributor.author蘇俊華zh_TW
dc.date.accessioned2021-06-15T06:42:48Z-
dc.date.available2011-07-11
dc.date.copyright2011-07-11
dc.date.issued2011
dc.date.submitted2011-07-07
dc.identifier.citationReferences
Albrecht, J., Van Vuuren, A., and Vroman, S. (2009), “Counterfactual distributions with sample selection adjustments: Econometric theory and an application to the Netherlands”, Labour Economics, 16(4), 383–396.
Blundell, R. and Powell, J.L. (2003), “Endogeneity in nonparametric and semiparametric regression models”, in Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, volume 2, 655–679.
Chernozhukov, V., Fernandez-Val, I., and Melly, B. (2009), “Inference on counterfactual distributions”, Working Paper.
Chernozhukov, V. and Hansen, C. (2005), “An IV model of quantile treatment effects”, Econometrica, 73(1), 245–261.
--------- (2006), “Instrumental quantile regression inference for structural and treatment effect models”, Journal of Econometrics, 132(2), 491–525.
--------- (2008), “Instrumental variable quantile regression: A robust inference approach”, Journal of Econometrics, 142(1), 379–398.
Chernozhukov, V., Imbens, G.W., and Newey, W.K. (2007), “Instrumental variable estimation of nonseparable models”, Journal of Econometrics, 139(1), 4–14.
Chesher, A. (2003), “Identification in nonseparable models”, Econometrica, 71(5), 1405–1441.
Firpo, S., Fortin, N., and Lemieux, T. (2009), “Unconditional quantile regressions”, Econometrica, 77(3), 953–973.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A. (2005), Robust Statistics: The Approach Based on Influence Functions, Wiley-Interscience.
Horowitz, J.L. and Lee, S. (2007), “Nonparametric instrumental variables estimation of a quantile regression model”, Econometrica, 75(4), 1191–1208.
Imbens, G.W. and Newey,W. K. (2009), “Identification and estimation of triangular simultaneous equations models without additivity”, Econometrica, 77(5), 1481–1512.
Koenker, R. and Bassett, G. (1978), “Regression quantiles”, Econometrica, 46(1), 33–50.
Lee, S. (2007), “Endogeneity in quantile regression models: A control function approach”, Journal of Econometrics, 141(2), 1131–1158.
Li, Q. and Racine, J.S. (2007), Nonparametric econometrics: Theory and practice, Princeton University Press.
Machado, J.A.F. and Mata, J. (2005), “Counterfactual decomposition of changes in wage distributions using quantile regression”, Journal of Applied Econometrics,
20(4), 445–465.
Melly, B. (2005), “Decomposition of differences in distribution using quantile regression”, Labour Economics, 12(4), 577–590.
Powell, D. (2009), “Unconditional quantile regression for panel data with exogenous or endogenous regressors”, Working Paper.
--------- (2010), “Unconditional quantile treatment effects in the presence of covariates”, Working Paper.
--------- (2011), “Unconditional quantile regression for exogenous or endogenous treatment variables”, Working Paper.
Rothe, C. (2010), “Identification of unconditional partial effects in nonseparable models”, Economics Letters, 109(3), 171–174.
Stoker, T.M. (1991), “Equivalence of direct, indirect, and slope estimators of average derivatives”, in Nonparametric and Semiparametric Methods in Econometrics and Statistics, Proceedings of the Fifth International Symposium in Economic Theory and Econometrics, 99–118.
Van der Vaart, A.W. (2000), Asymptotic statistics, Cambridge University Press.
Wooldridge, J.M. (2004), “Estimating average partial effects under conditional moment independence assumptions”, Unpublished Manuscript, Michigan State University.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47905-
dc.description.abstract傳統的分量迴歸主要用於探討被解釋變數的條件分配, 然而政策分析卻可能需要評估該變數的非條件分配。 例如, 我們透過羅倫茲曲線 (Lorenz curve) 的改變, 來闡述所得不均的變化, 而羅倫茲曲線是由所得的非條件分配建構而成。 Firpo, Fortin, and Lemieux (2009, 以下簡稱 FFL), 在不可分離的模型架構 (nonseparable model ) 下, 假設條件分配不變 (unaffected conditional distribution), 提出非條件分量迴歸 (unconditional quantile regression)。 FFL的非條件分量迴歸能估計非條件分量部份效果
(unconditional quantile partial effect), 並以此分析政策。 但是在實證研究的應用上, 由於解釋變數可能具有內生性, 這將導致條件分配不變的假設難以成立, 進而限縮非條件分量迴歸的實用性。
本文延伸 FFL 的非條件分量迴歸。 在不可分離的聯立模型架構 (nonseparable triangular simultaneous equations model ) 下, 我們建構一個內生解釋變數的非條件分量部份效果之估計式, 並在一般條件下, 證明此估計式具有一致性和常態的極限分配。我們藉由引入控制變數 (control variable), 避免了條件分配不變的假設。因此本文的估計方法將更適用於實證研究。 此外, 我們提出在給定分量下, 針對非條件分量部份效果線性假設的檢定統計量。 模擬的結果顯示, 當樣本數充份大時, 本文的估計方法能有效地降低
估計偏誤和均方差。
zh_TW
dc.description.abstractIn this paper, we extend Firpo, Fortin, and Lemieux’s (2009) unconditional quantile regression in the presence of an endogenous variable X. An estimator for the unconditional quantile partial effect (UQPE) of X is constructed in a nonseparable triangular simultaneous equations model via a control variable approach. By introducing a control variable, we avoid the assumption of unaffected conditional distribution imposed in Firpo et al. (2009) so that our estimator is more generally applicable in many empirical studies. We demonstrate that our estimator for the UQPE is consistent and asymptotically normally distributed under some regularity conditions. In addition, a quadratic-form test statistic is proposed to test linear hypotheses on the UQPE of all covariates for a given quantile. Finally, the results of Monte Carlo simulation suggest that our estimation of the UQPE of an endogenous variable effectively reduces the bias and mean square error when the sample size is sufficiently large.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:42:48Z (GMT). No. of bitstreams: 1
ntu-100-R96723078-1.pdf: 1497532 bytes, checksum: 8542dc85f9f526bc18ed13c422c1f200 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
1 Introduction 1
2 Literature Review 3
2.1 Unconditional Quantile Regression 3
2.2 Identification of Unconditional Quantile Partial Effect in the Presence of an Endogenous Variable 7
2.3 Conciliation between FFL and Rothe 9
2.4 Alternatives to Estimation of Marginal (Unconditional) Distribution 11
3 Estimation and Hypothesis Test 13
3.1 How to Estimate and Test the UQPE under Endogeneity 13
3.2 Alternatives to Estimation of the UQPE 16
4 Monte Carlo Simulation 18
5 Conclusion 20
Appendix 21
References 51
dc.language.isoen
dc.subject不可分離模型zh_TW
dc.subject控制變數zh_TW
dc.subject內生性zh_TW
dc.subject非條件分量迴歸zh_TW
dc.subject非條件分量部份效果zh_TW
dc.subjectEndogeneityen
dc.subjectUnconditional Quantile Regressionen
dc.subjectUnconditional Quantile Partial Effecten
dc.subjectControl Variableen
dc.subjectNonseparable Modelen
dc.title估計與檢定具內生性的非條件分量部分效果zh_TW
dc.titleEstimating and Testing Unconditional Quantile Partial Effect under Endogeneityen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張勝凱,黃景沂,林馨怡
dc.subject.keyword控制變數,內生性,不可分離模型,非條件分量部份效果,非條件分量迴歸,zh_TW
dc.subject.keywordControl Variable,Endogeneity,Nonseparable Model,Unconditional Quantile Partial Effect,Unconditional Quantile Regression,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2011-07-07
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved